
The Journal of Infectious Diseases

64  •  JID  2017:216  (1 July)  •  Bolick et al

The Journal of Infectious Diseases®    2017;216:64–71

Increased Urinary Trimethylamine N-Oxide Following 
Cryptosporidium Infection and Protein Malnutrition 
Independent of Microbiome Effects
David T. Bolick,1 Jordi Mayneris-Perxachs,2 Greg L. Medlock,3 Glynis L. Kolling,3 Jason A. Papin,3 Jon R. Swann,4 and Richard L. Guerrant1

1Division of Infectious Diseases and International Health, UVA Center for Global Health, University of Virginia, Charlottesville; 2Technological Unit of Nutrition and Health, 
EURECAT—Technological Center of Catalonia, Reus, Spain; 3Department of Biomedical Engineering, University of Virginia, Charlottesville; and 4Department of Surgery and 
Cancer, Division of Computational and Systems Medicine, Imperial College London, United Kingdom.

Cryptosporidium infections have been associated with growth stunting, even in the absence of diarrhea. Having previously detailed 
the effects of protein deficiency on both microbiome and metabolome in this model, we now describe the specific gut microbial and 
biochemical effects of Cryptosporidium infection. Protein-deficient mice were infected with Cryptosporidium parvum oocysts for 
6–13 days and compared with uninfected controls. Following infection, there was an increase in the urinary excretion of choline- and 
amino-acid-derived metabolites. Conversely, infection reduced the excretion of the microbial–host cometabolite (3-hydroxyphenyl)
propionate-sulfate and disrupted metabolites involved in the tricarboxylic acid (TCA) cycle. Correlation analysis of microbial and 
biochemical profiles resulted in associations between various microbiota members and TCA cycle metabolites, as well as some 
microbial-specific degradation products. However, no correlation was observed between the majority of the infection-associated 
metabolites and the fecal bacteria, suggesting that these biochemical perturbations are independent of concurrent changes in the 
relative abundance of members of the microbiota. We conclude that cryptosporidial infection in protein-deficient mice can mimic 
some metabolic changes seen in malnourished children and may help elucidate our understanding of long-term metabolic conse-
quences of early childhood enteric infections.
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Malnutrition is a global health epidemic. Undernutrition 
results in growth and cognitive impairment, a host of inflam-
matory markers and an increased susceptibility to enteric 
infections [1]. The consequences of these infections, such as 
diarrhea and malabsorption from intestinal damage, further 
deprive the host of nutrients and lead to a vicious reciprocal 
cycle of undernutrition and enteric infections. The cumulative 
effects of this chronic cycle result in developmental shortfalls 
and impaired responses to vaccines [2–6]. Understanding 
how nutritional deficiencies prolong enteric infections and 
combine to the detriment of the host is essential to break 
this cycle.

Cryptosporidiosis, a protozoan infection, is prevalent 
in malnourished populations, areas with limited access to 
clean water and sanitation, as well as immunocompromised 
individuals [2, 7–13]. Cryptosporidium infections with or 
without overt diarrhea have been associated with signif-
icant growth shortfalls, and we have previously demon-
strated that, as seen in children, malnutrition substantially 

worsens Cryptosporidium infection in a murine model 
[14–16]. Following 3 days of Cryptosporidium infection, sig-
nificant growth impairment was observed in protein-mal-
nourished mice, accompanied by increased intestinal 
injury and inflammation. Unlike nourished equivalents, 
protein-malnourished mice were unable to rapidly clear 
Cryptosporidium and continue to have detectable organisms 
in the stool for more than 7 days [17, 18].

A previous study found strong effects of C. parvum on the 
murine microbiota, although the authors acknowledge that 
small treatment group size across multiple experiments may 
have amplified differences between uninfected and infected 
groups [19]. Studies in children and rodents have indicated 
that undernutrition results in both compositional and func-
tional modulations in the resident gut microbiota [19]. In 
a study examining the effect of various diets on the mouse 
microbiota and metabolome, we observed that mice fed a 
low-protein diet retained a fecal microbiota more similar in 
composition to newly weaned mice than those on any other 
diet [20–22]. In the current study, we examined the effects of 
cryptosporidiosis on the fecal microbiome and urinary meta-
bolic phenotypes of mice on the same protein-deficient diets. 
We disentangled the infection-specific metabolic alterations 
from those related to the diet. This approach reveals that 
several metabolic shifts after infection occur independent of 
changes in specific microbiota.
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METHODS

Animal Husbandry

Mice used in this study were male, 22 days old, C67BL/6 strain, 
and ordered from Jackson Laboratories (Bar Harbor, ME). Mice 
weighed approximately 11 g on arrival and were cohoused in 
groups up to 5 animals per cage. This study was carried out in 
strict accordance with the recommendations in the Guide for the 
Care and Use of Laboratory Animals of the National Institutes 
of Health. The protocol was approved by the Committee on 
the Ethics of Animal Experiments of the University of Virginia 
(protocol no. 3315).

Rodent Diet

Weaned mice (22 days old) were fed a defined protein-deficient 
diet (dPD; 2% protein; Research Diets, New Brunswick, NJ) as 
previously published [23].

Cryptosporidium Challenge

Mice were infected with a single inoculum of 5 × 106 purified 
C. parvum oocysts (Iowa Strain, Waterborne, Inc) by orogastric 
gavage as previously described [17]. Following challenge with 
C. parvum oocysts, mice were weighed daily. Feces and urine 
samples were collected every other day.

Lipocalin-2 and Myeloperoxidase Measurements

Lipocalin-2 (Lcn2) and myeloperoxidase (MPO) were measured 
in fecal samples collected 5 days after Cryptosporidium infection. 
Samples were homogenized in a radioimmunoprecipitation 
assay buffer with protease inhibitors, centrifuged at 8000  rpm 
for 10 minutes, and supernatant collected. Stool supernatant was 
assayed for total protein (BCA), Lcn2 (R&D Systems), and MPO 
(R&D Systems), according to manufacturer’s instructions. Data 
were reported as pg of Lcn2 or MPO per µg total protein.

DNA Isolation

DNA was isolated from fecal pellets using the QIAamp DNA 
stool mini kit as previously described [24]. Stool DNA was 
analyzed for the C.  parvum–specific 18S ribosomal ribonu-
cleic acid (rRNA) gene to determine shedding of organism in 
the stool. Polymerase chain reaction conditions and primer 
sequences were as previously published [18]. The V3-V4 hyper-
variable regions of the 16S rRNA gene from fecal DNA sam-
ples were amplified using Illumina specific primers: (Illumina; 
forward: 5'-TCGTCGGCAGCGTCAGATGTGTATA-AGAG 
ACAGCCTACGGGNGGCWGCAG–3', reverse: 5'–GT- 
CTCGTGGGCTCGGAGATGTGTATAAGAGACAGG 
ACTAC- HVGGGTATCTAATCC–3'). For detailed methods of 
16S rRNA gene sequencing and 1H NMR spectroscopy-based 
metabolic profiling, please see Supplementary Methods.

RESULTS

We have previously shown significant weight loss, coloniza-
tion, fecal shedding of the parasite, and inflammation in mice 

maintained on a protein-deficient diet infected with C. parvum 
[15, 17, 18, 24]. A  protein-malnourished state was necessary 
for the infection to establish, as C.  parvum infections could 
not be sustained in nourished mice. Peak shedding of oocysts 
usually occurs approximately 5 days postinfection, which coin-
cides with up to 20% weight loss in infected mice. Using this 
same model of protein malnutrition, we infected mice with 
5 × 106 C. parvum oocysts. As in previous studies, infected mice 
had significant weight loss and shedding of oocysts in stool 
(Supplementary Figure 1).

Lcn2 Is Significantly Upregulated by Cryptosporidiosis

We have previously shown that protein deficiency alone is capa-
ble of disrupting intestinal epithelial tight junctions [18] and 
elevating fecal biomarkers of inflammation [23]. As shown in 
Figure 1, C. parvum infection with protein deficiency further 
increases myeloperoxidase and significantly increased Lcn2 
compared with protein deficiency alone.

Urinary Metabolic Alterations Induced by C. parvum Infection

The urinary metabolic profiles of control and infected mice were 
compared at 6, 7, and 13 days postinfection using an orthog-
onal partial least squares–discriminant analysis (OPLS-DA) 
approach to assess the biochemical response to C. parvum 
exposure. Significant OPLS-DA models with good predictive 
abilities were obtained for this comparison at all time points. 
Following 7 days of C. parvum infection (OPLS-DA model: 
Q2Y = 0.66; P = .025), the excretion of choline, phosphocholine, 
and the gut microbial metabolites of choline, dimethylamine 
(DMA) and trimethylamine (TMA), as well as the host oxida-
tion product of TMA, trimethylamine N-oxide (TMAO), were 
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Figure  1.  Lcn2 and myeloperoxidase levels in stools from C.  parvum–infected 
mice 3  days postinfection. *Protein Deficient (dPD) vs dPD + Crypto; P  =  .029. 
Abbreviations: Crypto, C. parvum; Lcn2, lipocalin-2.
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increased compared to the uninfected controls (Figure 2). At 13 
days of infection (OPLS-DA model: Q2Y = 0.71; P = .001) DMA 
and TMAO excretion remained higher in the infected mice 
compared with the control mice, but the excretion of the other 
choline-related metabolites was comparable. Products of the 
combinatorial metabolism between the gut microbiota and host 
were also increased 7 and 13 days postinfection, respectively. 
This included metabolites of the amino acids phenylalanine 
(phenylacetylglycine [PAG]), tryptophan (3-indoxyl-sulfate 
[3-IS]), and tyrosine (4-cresyl glucuronide [4-CG] and 4-cre-
syl-sulfate [4-CS]). However, the excretion of 3-hydroxy-phe-
nyl propionic acid sulfate (3-HPPA sulfate) and cinnamate and 
a cinnamate derivate, all gut microbial–host cometabolites of 
polyphenols and/or phenylalanine, was reduced 6 and/or 7 

and 13 days postinfection, respectively. In addition, following 
6 days of C. parvum infection (OPLS-DA model: Q2Y = 0.82; 
P = .001), several TCA cycle metabolites (succinate, citrate, 
isocitrate, malate, 2-oxoglutarate, and fumarate) were increased 
in urine compared with uninfected controls. However, some 
of these changes (succinate, citrate, and fumarate) were not 
observed at 7 days, and by 13 days postinfection most alter-
ations were observed in the opposite direction (decreased), 
with the exception of cis-aconitate, which was excreted in 
greater amounts compared with uninfected controls. Similar 
trends were observed in the excretion of metabolites related to 
inflammation and oxidative stress (allantoin, pseudouridine, 
N-acetyl glycoproteins [NAG], and fucose). These metabolites 
were excreted in lower amounts 6 days postinfection but were 
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Figure 2.  Heatmap summary of the Crypto-induced urinary metabolic alterations identified by the OPLS-DA models. The color (ranging from –1 dark blue to +1 dark red) 
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excreted in higher amounts 13 days postinfection compared 
with uninfected controls. No difference was observed in their 
excretion 7 days postinfection. Other notable changes in the 
urinary metabolic profiles included a decrease in sucrose, ace-
tate, and alanine at 6 and/or 7 days postinfection, which was not 
observed after 13 days of infection.

Effects of Protein Deficiency and Cryptosporidium on Gut Resident 

Microbiota

We have recently shown that protein deficiency retards the 
aging-induced diversification of the fecal microbiome relative 
to a defined nourished diet [23]. Although cryptosporidiosis 
caused major changes in urinary metabolites, there was sur-
prisingly little effect of C.  parvum infection on the bacterial 
composition of the feces. Only 26 microbial sequence variants 
(SVs) were found to be differentially abundant between infected 
and uninfected groups at any time point, and these 26 SVs 
stratified infected and uninfected groups independent of time 
(Supplementary Figure 2). At all time points, infection slightly 
reduced α-diversity, consistent across a variety of α-diversity 
metrics (Figure  3, Supplementary Figure  2). Considering all 
SVs that met filtering criteria (see Methods), β-diversity calcu-
lations and nonmetric multidimensional scaling led to delinea-
tion of infected and uninfected samples (Figure 4).

Microbial–Metabolic Interactions in Response to Malnutrition

Unsupervised hierarchical clustering analysis (HCA) of the 
metabolites identified to contribute to the C. parvum infection 
at days 6, 7, and 13 is shown in Figure 5 (upper-right quadrant). 

The interpretation that 7 days postinfection represents a tran-
sition in the metabolic shift from 6 to 13 days postinfection is 
more evident from the heatmap. C. parvum–infected samples at 
6 days appear on the left, whereas all 13-day postinfected sam-
ples are located on the right, with some 7-day infected samples 
clustering with either 6- or 13-day infected samples. The clus-
tergram, constructed using relative abundances of the bacteria 
identified to be significantly different between any age-matched 
infected and uninfected mice, resulted in distinct clusters of 
uninfected and infected mice (Figure 5, lower-left quadrant). In 
addition, there seems to be a transition in the SVs from 6 to 
13 days, with some 7-day samples clustering with either 6- or 
13-day infected samples.

The correlation heatmap (Figure  5, upper-left quadrant) 
identified significant correlations between SVs and metabolites. 
The most notable metabolite–bacterial correlations included 
those between TCA cycle metabolites and 4 SVs identified as 
members of the genera Enterococcus, Blautia, Anaeroplasma, 
and Anaerotruncus. Additionally, an unknown bacterial group 
(25_NA) was strongly correlated with 3 products of microbi-
al-specific metabolism (cinnamate, a cinnamate derivative, and 
3-HPPA sulfate). The bacterial group 25_NA was not detected 
in any infected samples, and cinnamate and the cinnamate 
derivative are present at very low amounts in infected samples.

DISCUSSION

These findings of metabolites and biomarkers seen in experi-
mentally controlled dietary (protein)–deficient mice with and 
without cryptosporidial infection with additional microbi-
ome studies extend studies of cryptosporidial infection and 
their potential impact in field studies. In particular, we iden-
tify that modulations in choline, protein, and tryptophan 
metabolism seen with protein deficiency alone are magnified 
by cryptosporidial infection. Furthermore, these choline path-
way metabolites, such as TMAO, may well have long-term risk 
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consequences, as they have been strongly associated with car-
diovascular disease risk in humans in later life [25]. Indeed, 
we and others have shown that early-life malnutrition, enteric 
infections, diarrhea, or enteropathy may have such long-term 
consequences as metabolic syndrome and cardiovascular dis-
ease, as well as stunting and cognitive effects [26–28]. Thus, 
these are the first specific metabolic findings with a common 
enteric infection, cryptosporidiosis, in a protein-deficient state 
that provide experimental evidence to support such potential 
consequences of the common dietary and enteric infections 
seen in young children in resource-limited settings.

Regarding fecal biomarkers that are altered in malnourished 
children and in our murine cryptosporidial infections, we find 
significant increases in the epithelial and inflammatory marker, 
Lcn2, as well as the inflammatory marker MPO. Consistently, 
cryptosporidiosis in malnourished children living in endemic 
areas (Haiti and Northeast Brazil) has also been associated with 
evidence of mild to moderate intestinal or systemic inflamma-
tion, including elevated fecal lactoferrin, and fecal or systemic 
interleukin-8 and tumor necrosis factor–α, more than that seen 
in healthy adult volunteers [29–31]. Similarly, we see effects on 
intestinal and inflammatory biomarkers in our protein-defi-
cient murine model of experimental cryptosporidial infection 
that exceed those seen in protein deficiency alone, again sug-
gesting a compounding of modest diet-induced changes [23] 
with added cryptosporidial infection, thus potentially modeling 
(and dissecting) both diet and infection components of envi-
ronmental enteropathy. Also of interest is the greater increase 
in Lcn2 relative to MPO in our model. Because Lcn2 is seen 
in epithelial cells as well as in inflammatory cells, while MPO 
is more specifically associated with inflammation, these effects 
likely reflect a more direct disruption of epithelial-cell integrity 
by cryptosporidial infection, opposite to the greater relative 
increases in MPO we see in our murine models of enteroag-
gregative Escherichia coli or Campylobacter infections (unpub-
lished data, submitted).

As expected after the introduction of an enteric pathogen, 
cryptosporidiosis impacted the composition of the microbi-
ota. Infected mice were most notably enriched with SVs from 
Clostridium XVIII and had reduced levels of several SVs that 
could not be assigned identity at the genus level. Given the 
limited taxonomic resolution of 16S rRNA gene sequencing 
analysis, as well as the small region we used (180 base pairs), 
the cause of this shift requires further investigation. Overall, 
it is unclear whether modulation of the microbiota is a result 
of interaction between C.  parvum and the microbiota, or an 
indirect effect in which cryptosporidiosis alters the intestinal 
environment, thereby altering the microbiota. Consistent with 
our observations the study of murine C. parvum infection by 
Ras et al. [19] found clear differences in the fecal microbial pro-
files between infected and uninfected mice using beta diversity 
analyses. In their study, 4 Bacteroidetes operational taxonomic 

units (OTUs) were identified as enriched during C.  parvum 
oocyst shedding relative to uninfected controls, while 4 other 
Bacteroidetes OTUs were depleted. These results contrast with 
the shifts we identified, which were almost exclusively within 
the Firmicutes phylum. However, Ras and colleagues performed 
3 other mouse experiments with slightly altered infection pro-
tocols, and a meta-analysis of 16S rRNA sequencing from all 4 
experiments indicated strong clustering by experiment in beta 
diversity analysis. The inconsistencies in specific taxonomic 
shifts across these experiments imply that C. parvum infection 
does not induce a specific alteration of the microbiota, or that 
the effect cannot be identified using taxonomic analyses.

A previous murine study found that cryptosporidiosis 
induced by C.  parvum was enhanced in germ-free immuno-
deficient mice relative to immunodeficient mice harboring 
the altered Schaedler flora, a model microbiota composed of 
8 bacterial species [32]. This finding indicates that C. parvum 
colonization is affected by interactions between the intestinal 
microbiota and the parasite or host, even with a reduced micro-
biota. C.  parvum growth is also inhibited to a greater extent 
in mature mice compared to freshly weaned mice, a finding 
originally thought to be due to increasing diversity of the gut 
microbiota with age [33]. The protein-deficient model in our 
study results in lower alpha diversity than age-matched mice on 
other diets, reinforcing that the result shown in Harp et al. [33] 
may be due to age-related differences in microbiota composi-
tion. However, colonization resistance conferred by the altered 
Schaedler flora rules out diversity as a determinant of coloni-
zation resistance; instead, indicating that specific functional-
ities carried out by 8 or fewer bacterial species are sufficient. 
The potential for individual bacterial species to influence colo-
nization of C. parvum suggests that direct interaction between 
C. parvum and the intestinal microbiota is likely during cryp-
tosporidiosis. Studies using mouse models with varying degrees 
of colonization resistance, coupled with metagenomic and/or 
metatranscriptomic analyses, are required to further character-
ize interactions between C. parvum and the microbiota.

At 6 days postinfection, we observed an increase in the uri-
nary excretion of TCA cycle intermediates, with the exception 
of cis-aconitate. This initial stimulation of the TCA cycle may 
reflect the high energy demands required to fight the infectious 
process, resulting from the recruitment of inflammatory cells 
and elevated proliferation rates among lymphocyte populations 
[34]. However, C. parvum lacks both the TCA cycle and cyto-
chrome-based respiratory chain, thus relying mainly on glycol-
ysis for adenosine triphosphate production. This could lead to a 
depletion of the TCA cycle intermediates as the infection pro-
gresses and explains the lower levels of TCA cycle intermediates 
in the urine of C. parvum–infected mice at 13 days compared 
with uninfected controls. However, we did not observe any dif-
ference in glycolysis metabolites, such as pyruvate, lactate, or 
acetate.
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Thus, the suppression of TCA cycle may not be due to a stim-
ulation of glycolysis. Alternatively, it could be related to the 
higher excretion of cis-aconitate, a metabolite produced from 
the dehydration of citrate by aconitase, an iron-sulfur protein. 
Successful iron acquisition from host cells is almost entirely 
necessary for any protozoan pathogen to survive, grow, and 
replicate. C. parvum lacks a sulfur assimilation pathway, which 
is expected to be substituted from the host cells. This can lead to 
an aconitase deficiency and depletion of TCA cycle intermedi-
ates. In fact, aconitase knockdown flies contained high levels of 
cis-aconitate, while most other TCA cycle metabolites, includ-
ing 2- oxoglutarate, succinate, fumarate, and malate, as well as 
metabolites of glycolysis, were significantly decreased [35]. In 
addition, several studies have shown that aconitases are inhib-
ited by iron deficiency or oxidative stress [36].

Decreased aconitase activity may also lead to decreased pro-
duction of nicotinamide adenine dinucleotide phosphate, an 
important defense against oxidative stress [36]. Thus, oxidative 
stress seems to play an important role in the development of 
C. parvum infection in mice [37].

Cryptosporidiosis is also associated with a persistent systemic 
inflammatory response. Consistently, the unsupervised HCA 
showed a cluster comprising NAG, fucose, pseudouridine, and 
allantoin. These metabolites are related to inflammation and oxi-
dative stress. Thus, allantoin appears to be a useful biomarker of 
gut inflammation, and both allantoin and pseudouridine have 
been associated with inflammation and oxidative stress. Elevated 
levels of NAG signals from acute-phase reactive proteins have 
been associated with inflammatory conditions [38]. Finally, 
fucose is a sugar that can be found in the glycosylated part of the 
glycoproteins and is also found abundantly in the mammalian gut. 
Systemic invasion of pathogens or microbial products in the cir-
culation has been shown to induce fucosylation of the epithelium 
in the small intestine, where it seems to have a protective role in 
both gut-centered and systemic infection and inflammation [39].

Interestingly, choline and phosphocholine (PC) were 
excreted in higher amounts in infected mice. PC was identi-
fied as the predominant lipid in C.  parvum–infected bovine 
kidney cells and, interestingly, C.  parvum has been suggested 
to be capable of sequestering phospholipids from the host to 
incorporate them into the membranes [40]. Thus, the greater 
abundance of choline and PC can be related to the degradation 
of host membranes by the parasite. In addition, choline-derived 
metabolites (DMA, TMA, and TMAO) were also excreted in 
higher amounts by infected mice.

Our results also suggested a change in microbial activity, in 
some cases coupled to the relative abundance of specific SVs. 
Gut microbial–derived metabolites such as PAG, 4-CG, 4-CS, 
3-IS, DMA, TMA, and TMAO were excreted in higher amounts, 
whereas 3-HPPA sulfate, cinnamate, and a cinnamate derivate 
were excreted in lower amounts by infected mice. This was rein-
forced by the fact that TMA, TMAO, choline, 4-CS, 4-CG, and 

3-IS cluster together, as did 3-HPPA sulfate, cinnamate, and the 
cinnamate derivate. PAG, 4-CG and 4-CS, and 3-IS are derived 
from phenylalanine, tyrosine, and tryptophan, respectively. On 
the other hand, DMA, TMA, and TMAO are choline-derived 
metabolites, while 3-HPPA sulfate and cinnamate result from 
polyphenol metabolism. Similar to our findings, elevations in 
TMA, PAG, 4-CG and reductions in hippurate and/or 3-HPPA 
sulfate have been previously identified in hosts infected with 
helminths (such as Schistosoma mansoni [41, 42] and S. japoni-
cum [43–46]) and intestinal nematodes [47]. Similar results have 
also been observed in protozoan parasites such as Plasmodium 
berghei [48] and Trypanosoma brucei brucei [49].

The correlation between these metabolites and the SVs con-
firmed their microbial origin. For example, 4-CG is derived 
from microbial degradation of tyrosine by species such as 
Clostridium difficile, C.  scatalogens, and certain Lactobacillus 
species. In accordance, 4-CG correlated with 59_NA and 123_
NA, both clostridia SVs. However, choline-derived metabo-
lites showed no significant correlations with the microbiome. 
Alternatively, these changes could be due to renal damage. For 
example, DMA and TMAO have been associated with renal 
cortex damage in methanol intoxication patients [50]. An 
increase in DMA and TMAO was observed at 13 days, when 
TCA cycle intermediates were depleted. These changes could 
be the direct products of parasite metabolism. Future studies 
should also address whether altered renal function might con-
tribute to these findings as well.

In conclusion, these metabolomic, biomarker, and micro-
biome studies of cryptosporidial infections in protein-defi-
cient mice help dissect common major dietary and pathogen 
elements in enteropathy commonly seen in children in devel-
oping areas. They also elucidate metabolic and inflammatory 
pathways that have direct relevance to growth failure and even 
potential long-term metabolic disease consequences. They also 
provide a powerful experimental model to help elucidate key 
pathways involved, and also to assess innovative interventions 
to ameliorate environmental enteropathy and its triple burden 
of potentially lasting consequences in impoverished children.
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