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Abstract

Motivation: Regulatory sequences are not solely defined by their nucleic acid sequence but also by

their relative distances to genomic landmarks such as transcription start site, exon boundaries or

polyadenylation site. Deep learning has become the approach of choice for modeling regulatory

sequences because of its strength to learn complex sequence features. However, modeling relative

distances to genomic landmarks in deep neural networks has not been addressed.

Results: Here we developed spline transformation, a neural network module based on splines to

flexibly and robustly model distances. Modeling distances to various genomic landmarks with

spline transformations significantly increased state-of-the-art prediction accuracy of in vivo RNA-

binding protein binding sites for 120 out of 123 proteins. We also developed a deep neural network

for human splice branchpoint based on spline transformations that outperformed the current best,

already distance-based, machine learning model. Compared to piecewise linear transformation, as

obtained by composition of rectified linear units, spline transformation yields higher prediction ac-

curacy as well as faster and more robust training. As spline transformation can be applied to fur-

ther quantities beyond distances, such as methylation or conservation, we foresee it as a versatile

component in the genomics deep learning toolbox.

Availability and implementation: Spline transformation is implemented as a Keras layer in the

CONCISE python package: https://github.com/gagneurlab/concise. Analysis code is available at

https://github.com/gagneurlab/Manuscript_Avsec_Bioinformatics_2017.

Contact: avsec@in.tum.de or gagneur@in.tum.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, deep learning has proven to be powerful for model-

ing gene regulatory sequences. Improved predictive accuracies have

been obtained for a wide variety of applications spanning the model-

ing of sequences affecting chromatin states (Kelley et al., 2016;

Zhou and Troyanskaya, 2015), transcription factor binding

(Alipanahi et al., 2015), DNA methylation (Angermueller et al.,

2017) and RNA splicing (Leung et al., 2014; Xiong et al., 2015),

among others. Using multiple layers of non-linear transformations,

deep learning models learn abstract representations of the raw data
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and thereby reduce the need for handcrafted features. Moreover, the

deep learning community, which extends much beyond the field of

genomics and includes major web companies, is actively developing

excellent software frameworks that allow rapid model development,

model exchange and scale to very large datasets (Abadi et al., 2016;

Bastien et al., 2012; Collobert et al., 2002; Jia et al., 2014).

Altogether, it is advantageous to leverage these strengths and further

develop deep learning modules specific for regulatory genomics.

The distance to defined locations in genes such as transcription

start site (TSS), start codon, stop codon, exon junctions or polyade-

nylation [poly(A)] site, which we refer to collectively as genomic

landmarks, plays an important role in regulatory mechanisms.

Genomic landmarks are often bound by regulatory factors. For in-

stance, RNA 50 ends are bound by capping factors, exon junctions

by the exon junction complex and the poly(A)-tail by the poly(A)-

binding proteins. These factors provide spatial clues for other fac-

tors to be recruited and to interact. Furthermore, distances to gen-

omic landmarks can be important for structural reasons. The

relatively well-defined distance between the TATA-box and the TSS

is due to structural constraints in the RNA polymerase complex

(Sainsbury et al., 2015). Also, the splice branchpoints are typically

localized within 18–44 nt of the acceptor site due to specific con-

straints of the spliceosome (Mercer et al., 2015; Wahl et al., 2009).

Therefore, splice branchpoints are not only defined by their se-

quence but also by their distances to the acceptor site. This informa-

tion can be used to improve prediction of branchpoint location from

sequence (Bitton et al., 2014; Corvelo et al., 2010; Signal et al.,

2016).

Despite their important role in gene regulation and their success-

ful usage in computational models, distances to genomic landmarks

have not been included in deep learning models. Typical sequence-

based deep learning models take into account the effects of relative

position within each sequence (internal position), either by using

strided pooling after convolutional layers followed by fully con-

nected layers or by using weighted sum pooling (Shrikumar et al.,

2017). However, modeling effects of internal positions does not

cover modeling of positions to genomic landmarks. These are

defined externally to the sequence and can lie at very long distances,

as in the case of enhancer to promoter distances. Additionally, gen-

omic landmarks might be difficult to discover de novo by the model.

While categorical genomic region annotation such as promoter,

UTR, intron or exon capture relevant spatial information and help

improving prediction performances (Pan and Shen, 2017; Stra�zar

et al., 2016), they are still not capturing distances to genomic land-

marks quantitatively.

Here we demonstrate the importance of using relative distances

to genomic landmarks as features in sequence-based deep learning

models. Technically, we achieve this by introducing spline trans-

formation (ST), a neural network module to efficiently integrate sca-

lar features such as distances into neural networks. Spline

transformation is based on smooth penalized splines (P-splines;

Eilers and Marx, 1996) and can be applied both in the context of

fully connected layers as well as convolutional layers. We show that

deep neural networks (DNNs) modeling effects of distances to gen-

omic landmarks outperform state-of-the art models on two import-

ant tasks. First, we obtain consistent improvements for predicting

UV crosslinking and immunoprecipitation (CLIP) peaks across two

datasets: a large enhanced CLIP (eCLIP) ENCODE dataset contain-

ing 112 RNA-binding proteins (RBPs) (Van Nostrand et al., 2016)

and a well-studied CLIP benchmark dataset (Pan and Shen, 2017;

Stra�zar et al., 2016) containing 19 RBPs from 31 experiments.

Second, we obtain the best model for predicting splice site

branchpoint (Mercer et al., 2015). Furthermore, we show that

across our applications, spline transformation leads to better pre-

dictive performance, trains faster and is more robust to initialization

than piecewise linear transformations (PLTs), an alternative class of

functions based on the popular rectified linear units (ReLUs).

2 Materials and methods

2.1 Spline transformation
2.1.1 Definition

We considered input data that not only consist of one-hot-encoded

sequence vectors but also of scalar vectors. One typical and simple

case is where each input consists of a nucleic acid sequence and a

scalar vector of the same length containing the distance of every nu-

cleotide to a genomic landmark of interest (Fig. 1). Another case is

to have a single value per input sequence, for instance encoding the

distance of the sequence midpoint to a genomic landmark. A single

value per sequence may be appropriate when positional effects vary

over much longer scales than the length of the sequence.

The positional effects are modeled with a smooth transformation

function. We used P-splines or penalized splines (Eilers and Marx,

1996). Spline transformation fS is defined as

fSðxÞ ¼
XB

k¼1

wkbkðx; pÞ; (1)

where bk is the kth B-spline basis function of degree p 2N (De

Boor, 1978) (Fig. 1) and x is a multi-dimensional array of positions.

In all the applications presented here we used cubic splines, i.e.

p¼3. Spline bases are non-negative functions with finite support.

Knots of the spline basis functions fb1; . . . ; bDg are placed equidis-

tantly on the range of input values x, such that the following relation

holds:

XB

k¼1

bkðx; pÞ ¼ 1 8x; p: (2)

The only trainable parameters in spline transformation are

w1; . . . ;wB.

To favor smooth functions, a smoothness regularization is added

to the global loss function:

regularizationðwÞ ¼ kwTSw; (3)

where S is a symmetric positive matrix effectively encoding the

squared second-order differences of the coefficients w, which ap-

proximate the square of second-order derivatives (Eilers and Marx,

Fig. 1. Simplified sketch of a model architecture using spline transformation.

In addition to DNA sequence, relative distances to various genomic land-

marks are used as features. Spline transformation [Equation (1)] learns a

smooth transformation of the raw distances. Transformed distances are then

merged with sequence-based activations of convolutional layers
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1996). The advantage of this approach is that one can have finely

spaced bases and use the regularization parameter k to set the

amount of smoothing.

2.1.2 Integration into neural networks

Spline transformation is applicable at the network input values. In

that case, the approximate range of values—a necessary requirement

for the knot placement—is known. How and where the output of

spline transformation is merged into the network is application spe-

cific. In the case of single values per sequence, the transformed val-

ues are added to the flattened output of the last convolutional layer,

right before the fully connected layers (Supplementary Fig. S1a). In

the case of scalar vectors along the sequence, their spline-

transformed values are typically merged with the output of the first

sequence-based convolutional layer (Supplementary Fig. S1b).

2.1.3 Implementation

We implemented spline transformation using Keras (https://github.com/

fchollet/keras, Chollet et al., 2015), inspired by the MGCV R package

(Wood, 2006). The implementation consists of three essential compo-

nents: (i) a pre-processing function encodeSplines, which takes as input

an array of values x, uniformly places B-spline bases across the range of

x and computes ½b1ðxÞ; . . . ;bBðxÞ� for each array element; (ii) a Keras

layer SplineT effectively performing a weighted sum of the basis func-

tions and (iii) a Keras regularizer SplineSmoother penalizing the squared

mth-order differences of weights along the last dimension [Equation (3),

by default second-order]. All three components are compatible with

three or more dimensional input arrays x. Altogether this allows flexible

usage of spline transformations in Keras models. The code is open

source and is part of the CONCISE python package: github.com/gag-

neurlab/concise.

2.1.4 Alternative to spline transformation: piecewise linear

transformation

As an alternative to spline transformation, we consider a piecewise

linear transformation achieved by stacking two fully connected

layers with ReLU activation (Nair and Hinton, 2010) in-between.

Formally:

fPLðxÞ ¼
XB

k¼1

w
ð2Þ
k maxð0;wð1Þk xþ b

ð1Þ
k Þ : (4)

In contrast to spline transformation, the piecewise linear trans-

formation is based on trainable basis functions

(maxð0;wð1Þk xþ b
ð1Þ
k Þ) and has hence more parameters. This can be

of great advantage when the modeled function is compositional

(Montúfar et al., 2014), but can also represent a disadvantage when

the modeled function is smooth.

2.2 Hyper-parameter tuning with Bayesian optimization
In most of the trained DNNs, we employed Bayesian optimization

for hyper-parameter tuning using the Tree-structured Parzen

Estimator algorithm implemented in the hyperopt python package

(Bergstra et al., 2013). For each trial, a hyper-parameter configur-

ation is proposed by the Bayesian optimizer. The corresponding

model is trained on the training set and evaluated on the validation

set. The evaluation metric gets reported back to the optimizer.

Model yielding the best performance on the validation set across all

trials is selected and evaluated on the test set. This allows for a fair

comparison between methods, as all the methods get equal amount

of hyper-parameter tuning trials.

2.3 eCLIP peak prediction
2.3.1 Data

RBP occupancy peaks measured by eCLIP-seq (Van Nostrand et al.,

2016) for human cell lines K562 and HepG2 were obtained from

ENCODE version 3 (ENCODE Project Consortium, 2004). There

were in total 316 experiments measuring 112 proteins. Genome as-

sembly version GRCh38 and the corresponding GENCODE genome

annotation release 25 (Harrow et al., 2012) were used.

For each RBP and each cell line (K562 and HepG2), a single set of

peaks was created by intersecting the peaks from two replicate experi-

ments, using the intersection centers as the peak midpoints (36.9% of

the minimal peak number per cell line per RBP on average). This

intersection was done to reduce the number of false-positive peaks, as

the intersecting peaks were 2.2 times more likely to be reproduced

across cell lines compared to all peaks. The positive set of peaks for

each RBP was created by combining the intersected peak centers from

multiple cell lines. Next, peak midpoints were overlapped with

protein-coding genes. Peaks that did not map onto any annotated

gene (9.9%) were discarded. Each gene–peak pair was considered as a

single positive class instance. Around 94.0% of peaks mapped to a

single gene and the average number of mapped genes per peak was

1.064. Example peak coverages are shown in Figure 2a. The negative

set was generated by uniformly sampling within each gene four times

as many locations as true binding sites in that gene. All peaks (both

negative and positive) were resized to the width of 101 nt anchored at

the peak center. Negative peaks that overlapped positive peaks of the

same RBP were discarded.

Finally, the sequence underneath the peak was extracted, reverse-

complemented for peaks from the negative strand and one-hot encoded.

Relative distances from the peak center to the following eight nearest

genomic landmarks on the same strand were extracted: gene TSS, tran-

script TSS, start codon, exon–intron boundary, intron–exon boundary,

stop codon, transcript poly(A) site and gene poly(A) site. These features

were further transformed with fposðxÞ ¼ signðxÞ log10ð1þ jxjÞ and

min–max scaled to fit the ½0; 1� range. Data points from chromosomes

1, 3 were used for model validation (16%) and hyper-parameter tuning,

data points from chromosomes 2, 4, 6, 8, 10 (23%) for final perform-

ance assessment and the rest for model training.

2.3.2 Models

As a baseline model we considered an elastic-net model with a ¼ 0:5

(glmnet package, Friedman et al., 2010) based on k-mer counts

(k 2 6;7) and positional features transformed by 10 B-spline basis

functions. Smoothness regularization of B-spline features was not

used. Optimal number k and the regularization strength were deter-

mined by 10-fold cross-validation. Models with and without the

positional features were compared.

Next, we used a DNN based on two different data modalities:

(i) 101 nt one-hot encoded RNA sequence beneath the peak and

(ii) signed log-transformed relative distances to genomic landmarks

(Supplementary Fig. S1a). DNN sequence module consisted of two

1D convolutional layers (16 filters each, kernel sizes 11 and 1, ReLU

activation after each), followed by max-pooling (pooling size of 4).

The positional features were either not used (DNN) or were modeled

using spline transformation (DNN w/dist) in two different ways: (i)

the main investigated model used a single scalar per input sequence

(Supplementary Fig. S1a) and (ii) the alternative model used a vector

of distances alongside the sequence (Supplementary Fig. S1b). For

the main model, activation arrays of the convolutional layers (RNA

sequence) and spline transformation (positional features) were con-

catenated and followed by two fully connected layers: a hidden fully
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connected layer (100 units and ReLU activation) and a final fully

connected layer with sigmoid activation. For the alternative model,

the activation array of spline transformation was merged with the

output of the first sequence-based convolutional layer.

Batch normalization (Ioffe and Szegedy, 2015) was used after

every layer and dropout (Srivastava et al., 2014) before every fully

connected layer. The models were optimized using ADAM (Kingma

and Ba, 2014). Bayesian optimization (Section 2.2) was used to de-

termine the optimal set of hyper-parameters for each RBP individu-

ally from 20 parameter trials, yielding the best area under the

precision–recall curve (auPR) on the validation set.

2.4 iDeep CLIP benchmark
2.4.1 Data

To compare our approach with the RBP binding site prediction

model iDeep (Pan and Shen, 2017), we used the same CLIP dataset,

pre-processing code and model code as Pan and Shen (2017), both

provided by the authors at https://github.com/xypan1232/iDeep.

The CLIP dataset contains 31 CLIP experiments measuring 19 dif-

ferent RBPs and was originally generated by Stra�zar et al. (2016)

(available at https://github.com/mstrazar/iONMF/tree/master/data

sets). Unlike eCLIP (Section 2.3.1), the peaks for each RBP from dif-

ferent experiments were not merged. Correspondingly, the results are

always reported for each experiment individually rather than each

RBP. We extended the existing set of features with relative distances

to eight nearest genomic landmarks [gene TSS, transcript TSS, start

codon, exon–intron boundary, intron–exon boundary, stop codon,

transcript poly(A) site and gene poly(A) site], following the same pro-

cedure as for the eCLIP data (Section 2.3.1). In contrast to the eCLIP

data processing, we used hg19-based GENCODE annotation v24.

2.4.2 Models

As the baseline model we used the provided iDeep model with one

minor modification: we replaced the softmax activation of the last

layer with a sigmoid activation function (softmax is unnecessary for a

binary classification task). The iDeep model is based on five different

data modalities: (i) Region type, (ii) Clip-cobinding, (iii) Structure,

(iv) Motif and (v) Sequence. The additional data modality introduced

here—relative distance to eight genomic landmarks (Section 2.4.1)—

was modeled with spline transformation using B¼32 basis functions

and 6 output units for each feature, followed by a fully connected

layer with 64 output units. This module was integrated into the iDeep

model by concatenating the activations to the last hidden layer

(Supplementary Fig. S1c). Spline transformation was used without

smoothness regularization, because we restricted ourselves the same

set of hyper-parameters as the iDeep model and have not done any

hyper-parameter tuning. All models were optimized using RMSprop

(Tieleman and Hinton, 2012), same as the original iDeep.

2.5 Branchpoint prediction
2.5.1 Data

Branchpoint prediction is a binary classification task to predict

measured high-confidence branchpoints in introns, 18–44 nt up-

stream of the 50 intron–exon boundary. The same dataset and pre-

processing procedure was used as described in the work of Signal

et al. (2016). Briefly, high-confidence annotated branchpoints from

Mercer et al. (2015) were used to generate the positive set. Negative

set comprises of positions not annotated as high- or low-confidence

branchpoints in the work of Mercer et al. (2015). This yields in total

52 800 positive and 933 739 negative examples. Signal et al. (2016)

designed and used the following features in the classification model

(Fig. 3a): 11 nt sequence window around the position encoded as

dummy variables, distances to the first five canonical AG dinucleo-

tides downstream, distance to the poly-pyrimidine tract (PPT) and

its length, distance to the associated 30 exon and distance to the

nearest 50 exon located on the same strand. GENCODE v12

(Harrow et al., 2012) was used for genome annotation. Using the

code provided by Signal et al. (2016) (https://github.com/betsig/

splice_branchpoints), we were able to reproduce the results of Signal

et al. (2016). The only major change to the pipeline was to a priori

set aside points from chromosomes 4, 5, 6, 7, 8 and X (21% of all

the data) as a test set. The test set was only used to test the predictive

performance of our models and not to tune the hyper-parameters as

done in Signal et al. (2016). Exact code changes can be tracked in

our forked repository (https://i12g-gagneurweb.informatik.tu-muen

chen.de/gitlab/avsec/splice_branchpoints).

2.5.2 Models

All the models use the same set of features as Signal et al. (2016).

branchpointer: Branchpoint prediction model developed by

Signal et al. (2016). It is a combination of two stacked models: sup-

port vector machine (SVM) with ‘rbfdot’ kernel and a gradient-

boosted decision trees model, both from the caret R package (Kuhn,

2008).

Fig. 2. Relative distance to genomic landmarks boosts the in vivo prediction

of RBP binding sites. (a) eCLIP peak distribution across all genes. Genes (y-

axis) are sorted by their length and aligned at their start site. Color intensity

represents the number of peaks per bucket (100 genes � 1000 nt) and satur-

ates at 10 peaks per bucket. Grey lines represent gene TSS and poly(A) site.

(b) auPR for predicting in vivo RBP binding sites measured by eCLIP for a

subset of RBPs (6/112). Methods labelled by ‘w/dist’ rely, in addition to RNA

sequence, on two positional features: distance to TSS and poly(A) site.

Distribution of the auPR metric (boxplot instead of point-estimate) is obtained

by generating 200 bootstrap samples of the test set and computing auPR for

each of them. *** denotes P< 0.001 (Wilcoxon test). (c and d) Benefit of add-

ing eight genomic landmark features with spline transformation to the (c)

DNN model for all 112 RBPs measured by eCLIP in ENCODE and (d) iDeep

model (Pan and Shen, 2017) for 19 RBPs across 31 CLIP experiments. Black

represents statistically significant difference (P<0.0001, Wilcoxon test on 200

bootstrap samples, Bonferroni correction for multiple testing)
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glmnet: Logistic regression with elastic-net regularization using

the glmnet R package (Friedman et al., 2010) with parameters

a¼0.5 and regularization strength determined by 5-fold cross-

validation on the training dataset.

NN: DNN developed here (Fig. 3b). For computational efficiency,

the model predicts the branchpoint class for all 27 positions in an in-

tron simultaneously, while using the same parameters for each position.

Specifically, the models take as input one-hot encoded 37 nt long RNA

sequence and 9 position-related features, each as an integer array of

length 27. Parameter sharing across 27 positions within an intron is

achieved with 1D convolutions using kernel size of 1. The only excep-

tion is the first convolutional layer processing RNA sequence where

kernel size of 11 is used. That way, the set of features for predicting the

branchpoint class at a single position is exactly the same as for branch-

pointer and positions are completely independent of each other.

The nine positional features were transformed either with: (i)

spline transformation or (ii) piecewise linear transformation.

Moreover, two levels of model complexity were compared: ‘shallow’

and ‘deep’. They differ in the number of convolutional filters, num-

ber of hidden layers (Fig. 3b) and also in the weight initialization for

the first sequence-based convolutional layer: ‘shallow’ models were

initialized with the position-specific scoring matrix of the high-

confidence branchpoints derived from the training set and ‘deep’

models were initialized with the (random) glorot-uniform initializa-

tion. In total, four different model architectures were used. Hyper-

parameters were tuned for each of the four NN classes individually

using Bayesian optimization (Section 2.2).

2.5.3 Position weight matrix analysis

Weights of the convolutional filter wij were converted to a position

weight matrix (PWM) by

PWMij ¼
bi exp ðwijÞP
i bi exp ðwijÞ

;

where i 2 fA;C;G;Tg is the nucleotide identity and bi is the back-

ground probability (A: 0.21, C: 0.25, G: 0.20 and T: 0.34 in the

branchpoint dataset). Note that we are denoting T also as Uracil.

Branchpoint-centered PWM was created from 11 nt long sequences cen-

tered at the high-confidence branchpoints from Mercer et al. (2015).

2.6 Table 1 description
Table 1 shows the average auPR for the following models:

DNNþdist(PL) and DNNþdist(ST): DNNs using sequence and

distance features. Distance features were processed either using

piecewise linear transformation or spline transformation. For eCLIP

and CLIP, the average axis values from Figure 4c were used. For

branchpoint, the auPR of the deep model from Figure 4c was used.

DNN: DNNs using only sequence as input. For eCLIP, the average

x-axis value from Figure 4c was used. For CLIP, the iDeep model was

(a)

(b)

(c)

(d)

(e)

Fig. 3. Spline transformation improves branchpoint prediction: (a) Features for branchpoint prediction designed by Signal et al. (2016) (adapted from Signal et al.,

2016). (b) NN model architectures (deep and shallow) for branchpoint prediction developed here. For each predicted binary class (1¼high-confidence branch-

point, NA¼ ignored low-confidence branchpoint, 0¼else), the model takes as input 11 nt sequence window and 9 position-related features. (c) auROC and auPR

bootstrap distribution (n¼200) for branchpoint prediction on the test set. Our NN models, spline transformation shallow (NN w/ST shallow) and spline transfor-

mation deep (NN w/ST deep), are compared to the state-of-the-art model branchpointer (Signal et al., 2016) and an elastic-net baseline using the same features.

*** denotes P<0.001 (Wilcoxon test). (d) Fraction of branchpoints per position for the two most important features in the log-odds scale (black dot, outlier shown

in red) compared to the shallow NN model fit: inferred spline transformation (orange) and predicted branchpoint log-odds (blue). (e) Information content of the

shallow NN convolutional filter transformed to the PWM and the branchpoint-centered PWM (Section 2)

Table 1. Test accuracy (auPR) of investigated models across all tasks (Section 2)

Task State-of-the-art model glmnet glmnetþ dist DNN DNNþdist(PL) DNNþdist(ST)

eCLIP / 0.557 0.677 0.663 0.743 0.776***

CLIP iDeep: 0.800 0.555 0.660 0.625 0.804 0.835***

branchpoint branchpointer: 0.640 0.419 0.502 0.478 0.645 0.651***

Note: Significance of the improvement for DNNþ dist(ST) against DNNþ dist(PL) was assessed across all RBPs for eCLIP and CLIP tasks and across the 200

bootstrap samples for the branchpoint task.

***P< 0.001, Wilcoxon test, paired for eCLIP and CLIP.
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retrained for all 31 RBPs using only the sequence data modality. For

branchpoint, the DNN model using only the sequence as input was re-

trained and its hyper-parameters optimized as for the original model.

glmnet and glmnetþdist: Elastic-net logistic regression analogs

of the DNN and DNNþdist(ST) models. For eCLIP and CLIP, the

models follow the same approach as those shown in Figure 2b, but

use 6-mers for the sequence features and all eight distance features

in the glmnetþdist model. For branchpoint, the glmnet value in

Figure 3c was used for the glmnetþdist and the same model was re-

trained using only sequence features for the glmnet column.

3 Results

3.1 Relative distance to genomic landmarks improves

in vivo RBP binding prediction
We first investigated the benefit of modeling effects of position with

respect to genomic landmarks for the task of predicting in vivo bind-

ing sites of RBPs. We used a large and consistently generated dataset

of eCLIP data for 112 RBPs from the ENCODE project (Section 2,

Van Nostrand et al., 2016).

For a representative detailed investigation, we first focused on

six RBPs with more than 10 000 peaks and exhibiting various peak

distributions along genes (Fig. 2a). Comparing the relative positions

within genes between the binding and non-binding sites

(Supplementary Fig. S2), we selected two RBPs with high enrich-

ment toward the TSS (DDX3X, NKRF, t-test comparing positions

of binding sites versus non-binding sites P < 10�100), two RBPs

showing high enrichment toward the poly(A) site (UPF1 and PUM2,

P < 10�100) and two RBPs showing no significant positional prefer-

ence (TARDBP, SUGP2, P>0.5). We next asked what the contribu-

tion of using a DNN on the one hand and of modeling positional

effects on the other hand for the task or predicting eCLIP peaks was.

To this end, we fitted four models (Section 2): (i) an elastic-net logis-

tic regression based on k-mer counts from 101 nt sequence around

the candidate peak as a non-deep supervised learning algorithm

(glmnet), (ii) an extension of the latter model that also included

relative distance to gene TSS and poly(A) site transformed by spline

transformation (glmnet w/dist), (iii) a DNN based on the 101 nt se-

quence around the candidate peak (DNN) and (iv) an extension of

the latter model with spline transformation of relative distance to

gene TSS and poly(A) site (DNN w/dist, Supplementary Fig. S1a).

For each of the six RBPs, the DNNs yielded a significantly larger

auPR (a metric between 0 and 1, the larger, the better) compared to

their corresponding elastic-net based models (Fig. 2b). Moreover,

modeling positional effects significantly improved the performance

for all four RBPs showing positional preference. In three out of four

cases (UPF1, PUM2 and DDX3X), the glmnet model even outper-

formed the DNN model lacking positional features. Overall, DNN

with distance was always the most performant model. Although its

training took typically 10–100 times longer than elastic-net

(Supplementary Fig. S3), it remained practical (<1000 s on a desk-

top CPU using four threads) and did not take longer than DNN

without distance. These results show the importance of modeling

positional effects for predicting RBP binding peaks and the power of

combining this approach with DNNs.

Next, we extended our set of positional features in DNN w/dist to

eight genomic landmarks (nearest gene TSS, transcript TSS, start

codon, exon–intron boundary, intron–exon boundary, stop codon,

transcript poly(A) site, gene poly(A) site; Supplementary Fig. S4) and

compared it with DNN across all the 112 RBPs. Using relative dis-

tances increased the auPR by up to 0.31 (UPF1, from 0.54 to 0.85),

on average by 0.11 (from 0.66 to 0.77, P < 10�16 paired Wilcoxon

test, Fig. 2c). Altogether, 110 RBPs showed significant auPR increase

and none a significant decrease (P < 0:0001, Wilcoxon test,

Bonferroni correction for multiple testing). Similar result was also ob-

tained with an alternative version of the DNN w/dist model using a

vector of distances along the sequence rather than a single value per

sequence. Since the performance of the two DNN w/dist variants dif-

fered only by 0.0014 on average (Supplementary Fig. S5), we used the

simpler model (scalar per sequence) for the downstream analysis.

As expected, RBPs with the smallest auPR increase did not ex-

hibit positional preference for any of the eight genomic landmarks,

in contrast to the RBPs with the largest auPR increase

(Supplementary Fig. S4). Among the 10 RBPs with the smallest

auPR increase were 4 members (HNRNPM, HNRNPC, HNRNPK

and HNRNPU) of the Heterogeneous nuclear ribonucleoprotein

particle, which is a general nuclear complex binding precursor

RNAs (Choi et al., 1986).

The models were robust to exclusion of individual distance fea-

tures (Supplementary Fig. S6), even for the RBPs with the most strik-

ing positional preference (Supplementary Fig. S4). This likely reflects

redundancy among the distances. For instance, positional preference

towards the gene end can well be captured by distance towards the

closest poly(A) site or even the closest stop codon. This property

makes these models robust to the exact choice of genomic landmarks.

However, we note that it also renders model interpretation difficult.

To further validate our observations from the eCLIP data, we ex-

tended the current state-of-the-art model for RBP binding site pre-

diction—iDeep (Pan and Shen, 2017) with the same eight genomic

landmark features. iDeep is a DNN trained and evaluated on a CLIP

dataset of 19 proteins measured by 31 experiments created by

Stra�zar et al. (2016). It does not model distances to genomic land-

marks quantitatively. However, it is based on indicator features for

five gene regions (exon, intron, 50 UTR, 30 UTR, CDS) for each nu-

cleotide in the classified sequence. Since iDeep was already imple-

mented in Keras, extending it with our spline transformation

module could be done easily (Section 2). When we added the eight

positional features with spline transformation on top of iDeep, the

(a)

(d) (e)

(b) (c)

Fig. 4. Spline transformation outperforms piecewise linear transformation in

terms of generalization accuracy, hyper-parameter robustness and training

efficiency. (a–c) Test accuracy (auPR) comparing spline transformation to

piecewise linear transformation for all the tasks presented in the paper (Figs

2c and d and 3c). Black represents statistically significant difference

(P<0.0001, Wilcoxon test on 200 bootstrap samples, Bonferroni correction

for multiple testing). (d and e) Training and hyper-parameter tuning metrics

for the branchpoint task. PL, piecewise linear. (d) Validation accuracy (auPR)

of all the hyper-parameter trials. (e) Training curves (validation loss per

epoch) of 10 best hyper-parameter trials (transparent lines) and their average

(solid line)
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auPR increased by 0.036 (P ¼ 3:1� 10�8, paired Wilcoxon test)

and area under receiver operating characteristic curve (auROC) by

0.017 (P ¼ 9:3� 10�10). The auPR improved significantly for 24

out of 31 experiments and has not significantly decreased for any ex-

periment (Fig. 2d). This shows that the quantitative distances, and

not just binary indicators, are useful predictive features for RNA

binding sites. Moreover, this application demonstrates how spline

transformation modules can enhance existing deep learning models.

Altogether, these results demonstrate that relative distance to

genomic landmarks is an important feature for predicting in vivo

RBP binding events and show that our spline transformation module

provides a practical way to include this information in DNNs.

3.2 Spline transformation in a DNN improves state-of-

the-art branchpoint prediction
We then asked whether spline transformation in a DNN could im-

prove prediction accuracy for tasks where the effect of the distance

to genomic landmarks has already been exploited by non-deep

learning methods. To this end, we considered the prediction of splice

branchpoint. The first reaction of splicing is the attack of a 20 hy-

droxyl group of an intron adenosine on the 50 splice site phospho-

diester bond (Ruskin et al., 1985). This intron adenosine is located

typically between 18 and 44 nt 50 to the acceptor site (Mercer et al.,

2015). It is named branchpoint, because it is bound on its 20 hy-

droxyl group, leading to a lariat form of the spliced-out intron.

Mapping branchpoints experimentally has been difficult because of

the very short half-life of lariats. Computational predictions of

branchpoints have been also difficult because their sequence context

is degenerate (Gao et al., 2008).

Current state-of-the art model to predict human branchpoints is

branchpointer (Signal et al., 2016), an ensemble model of SVM and

gradient boosting machine trained on a set of 42 095 mapped high-

confidence branchpoints from Mercer et al. (2015). In addition to

the sequence context, branchpointer uses 11 different positional fea-

tures: distances to the first five downstream AG dinucleotides, dis-

tance to the PPT and its length, distance to the associated 30 and 50

exon (Fig. 3a, Section 2).

Using the provided code and some minor modifications (Section 2),

we were able to reproduce the results of branchpointer and obtained

very similar performance metrics as originally reported: auROC of

0.940 (paper: 0.941) and auPR of 0.640 (paper: 0.617) (Fig. 3c).

Training a DNN with spline transformation module for positional fea-

tures (Fig. 3b) significantly outperformed branchpointer with auROC

of 0.949 and auPR of 0.651 (P < 2:2� 10�16, Wilcoxon test, Fig.

3c). This result is consistent with general improved performance of

DNNs over alternative supervised learning models and shows the

strength of spline transformation. It also yields to the most accurate

predictor of human branchpoints to date.

3.3 Shallow architecture yields an interpretable

branchpoint model while still delivering good predictive

performance
When model interpretation rather than mere prediction is desired,

shallow neural networks are preferred over DNNs because their co-

efficients can be directly interpreted. To investigate such a use case,

we trained a shallow version of our neural network (NN w/ spline

transformation shallow, Section 2) for branchpoint prediction. As

expected, the shallow model is not able to compete with its deeper

version or branchpointer. Nevertheless, it performs well compared

to an elastic-net logistic regression (Fig. 3c).

Predicted positional effects in the shallow model (‘Predicted’ in

Fig. 3d, Supplementary Fig. S7) closely resembled the distributions

of branchpoint distances to all genomic landmarks (‘Data’ in Fig.

3d, Supplementary Fig. S7). In addition to the distances, the single

convolutional filter in our shallow model captured the expected se-

quence preference of branchpoints (Fig. 3e, Mercer et al., 2015).

Altogether, these analyses of branchpoint prediction demon-

strate the versatility of the spline transformation module. The spline

transformation module can be used to increase predictive power in

conjunction with DNN. It can also be employed in shallow and in-

terpretable models.

3.4 Spline transformation is more robust to hyper-

parameter choices, trains faster and yields better pre-

dictive performance than piecewise linear

transformation
The most widely used transformations in deep leaning currently are

compositions of linear transformation and ReLUs, defined as

ReLUðxÞ ¼ maxð0; xÞ. Composition of those lead to piecewise linear

transformations (Section 2). Although PL functions can approxi-

mate any function, this can be at the cost of introducing much more

parameters. Also PL functions are not smooth.

To inspect the benefit of spline transformation compared to the

default modeling choice in deep learning, we replaced the spline trans-

formation module with piecewise linear transformation (Section 2) in

all three studied tasks. As for the spline transformation, we used the

same number of single output units, equivalent number of hidden

units and the same hyper-parameter optimization strategy for each

task. The observed predictive performance of spline transformation

was consistently better across all three tasks (Fig. 4a–c): (i) for eCLIP

the auPR improved on average by 0.033 (P < 2:2� 10�16, paired

Wilcoxon test) and auROC by 0.018 (P < 2:2� 10�16); (ii) for the

iDeep CLIP benchmark dataset, the auPR improved on average by

0.032 (P ¼ 1:8� 10�8) and auROC by 0.017 (P ¼ 2:8� 10�9); (iii)

for branchpoint (deep model), the auPR improved by 0.006

(P < 2:2� 10�16, Wilcoxon test on 200 prediction bootstrap sam-

ples) and auROC by 0.001 (P < 2:2� 10�16).

Focusing on the branchpoint prediction task, we compared the

validation accuracies of all hyper-parameter trials between spline

transformation and piecewise linear transformation (Fig. 4d). Spline

transformation had fewer trials with poor performance and globally

smaller performance variation. This suggests that spline transforma-

tion is more robust to parameter initialization and hyper-parameter

choices like the learning-rate. Additionally, we inspected the training

curves of the top 10 hyper-parameter trials (Fig. 4e). While the

DNN with spline transformation on average trained in 20 epochs,

piecewise linear transformation required more than 50 epochs.

Moreover, spline transformation, which has fewer parameters,

required 4% less training time per epoch for the deep and 36% for

the shallow model on average (Supplementary Fig. S8). Altogether

these results show that spline transformations generalize better, are

more robust, are train in fewer steps than piecewise linear transfor-

mations for the class of problems we investigated.

3.5 Contribution of model components to the

investigated tasks
To delineate the contribution of DNNs, of distance features and of

the spline transformation, we summarized the test accuracy of mod-

els differing by only one of these components across all the investi-

gated tasks in Table 1. Overall, distance information always

substantially improved the performance of both, elastic-net logistic
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regression models and DNNs. Moreover, DNNs systematically out-

performed the elastic-net logistic regression models. For each task,

the best model was a DNN with distance information integrated by

spline transformation [DNNþdist(ST)].

4 Discussion

Here we have introduced spline transformations, a module for neural

networks, and demonstrated that it is an effective way to model relative

distance to genomic landmarks. Spline transformations allowed us to

improve the state-of-the-art prediction accuracy of splice branchpoint

and in vivo RBP binding affinity. On the latter task, the use of relative

distance to genomic landmarks in a neural network is novel. Moreover,

we have shown that spline transformation in a shallow network can un-

cover the positional effects of cis-regulatory elements.

We provide spline transformation as an open-source Keras com-

ponents. We have shown how to combine it with existing models

and improve their performance. Compared to a two-layer neural

network with ReLU activations—piecewise linear transformation,

spline transformation offers better prediction accuracy, is more ro-

bust to initialization and trains faster. This is not surprising as the

relative positional features tend to affect the response variable in a

smooth fashion, which is exactly the class of functions spline trans-

formation is able to represent with very few parameters.

In addition to external positions studied here, spline transforma-

tion can also be used to model internal positions, which are pos-

itions within the sequence. In that case, the array index i along the

spatial dimension of the 1D convolutional layer activation aij serves

as the relative distance feature. That way, weights in the recently

introduced weighted sum pooling layer (Shrikumar et al., 2017) can

be parametrized by spline transformation: wij ¼ fSðiÞ. Note that this

applies also to the separable fully connected layer (Alexandari et al.,

2017), which can be reformulated as 1D convolution with kernel

size of 1 followed by a weighted sum pooling layer. Altogether,

using spline transformation for modeling internal position reduces

the number of parameters in the network even further.

One limitation of spline transformation is that scale of the in-

put features (e.g. log or linear) remains important and has to be

chosen upfront, because spline knots are placed uniformly across

the whole range of feature values. We suggest users to perform

pre-processing investigations to identify the most appropriate

scales for the problem at hand. Moreover, the current implementa-

tion of spline transformation is not able to model the interaction

between variables directly. While this interaction is still captured

by the downstream fully connected layers, a more appropriate so-

lution might be to use multi-dimensional B-splines. A further re-

search direction is the estimation of confidence bands for the

inferred spline transformation function. Confidence bands for

spline estimates are available in the context of generalized additive

models (Hastie and Tibshirani, 1990). We have recently shown

how this can be used to perform differential occupancy analysis of

ChIP-seq data (Stricker et al., 2017). Confidence bands would

allow deriving statistically supported claims about the positional

effects of cis-regulatory elements.

We have demonstrated the power of using spline transformations for

modeling effects of distances to genomic landmarks. However, the spline

transformation module is more general. It could be used to transform

any other relevant scalar. Relevant scalars for cis-regulatory elements in-

clude conservation scores, modifications such as methylation rates, ex-

perimental measures such as occupancies by factors or nucleosomes.

Hence, we foresee spline transformations as a useful generic tool for

modeling of cis-regulatory elements with neural networks.
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