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Abstract

Motivation: Mapping bias causes preferential alignment to the reference allele, forming a major

obstacle in allele-specific expression (ASE) analysis. The existing methods, such as simulation and

SNP-aware alignment, are either inaccurate or relatively slow. To fast and accurately count allelic

reads for ASE analysis, we developed a novel approach, ASElux, which utilizes the personal SNP

information and counts allelic reads directly from unmapped RNA-sequence (RNA-seq) data.

ASElux significantly reduces runtime by disregarding reads outside single nucleotide polymor-

phisms (SNPs) during the alignment.

Results: When compared to other tools on simulated and experimental data, ASElux achieves a

higher accuracy on ASE estimation than non-SNP-aware aligners and requires a much shorter time

than the benchmark SNP-aware aligner, GSNAP with just a slight loss in performance. ASElux can

process 40 million read-pairs from an RNA-sequence (RNA-seq) sample and count allelic reads

within 10 min, which is comparable to directly counting the allelic reads from alignments based on

other tools. Furthermore, processing an RNA-seq sample using ASElux in conjunction with a gen-

eral aligner, such as STAR, is more accurate and still �4� faster than STARþWASP, and �33�
faster than the lead SNP-aware aligner, GSNAP, making ASElux ideal for ASE analysis of large-

scale transcriptomic studies. We applied ASElux to 273 lung RNA-seq samples from GTEx and

identified a splice-QTL rs11078928 in lung which explains the mechanism underlying an asthma

GWAS SNP rs11078927. Thus, our analysis demonstrated ASE as a highly powerful complemen-

tary tool to cis-expression quantitative trait locus (eQTL) analysis.

Availability and implementation: The software can be downloaded from https://github.com/

abl0719/ASElux.

Contact: zmiao@ucla.edu or a5ko@ucla.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Allele specific expression (ASE) denotes the preferential allelic

expression of a gene in the diploid genome. Integrating ASE with

expression quantitative trait locus (eQTL) analysis improves fine-

mapping accuracy and sensitivity (Kumasaka et al., 2015), thus

helping identify biologically meaningful regulatory signals such as

imprinting and cis regulation. Although several methods have been

developed to identify ASE events from RNA-sequencing (RNA-seq)

data (Castel et al., 2015; León-novelo et al., 2014; Liu et al., 2014;

Li et al, 2012), mapping bias remains a major obstacle in ASE analy-

sis (Degner et al., 2009; Panousis et al., 2014; Stevenson et al.,

2013). Therefore, there is an important scientific knowledge gap

that motivates the development of fast and accurate allelic expres-

sion analysis tools.

Previously, simulations have been used to identify variant sites

showing bias towards one allele (Buil et al., 2015). However,
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simulations perform sub-optimally in practice since they are largely

based on single-end reads whereas most RNA-seq data are now

paired-end reads. There are also methods that utilize available geno-

type information and build personal allelic reference genomes for an

allele-aware alignment that are implemented in programs such as

SNP-o-matic (Manske and Kwiatkowski, 2009) and GSNAP (Wu

and Nacu, 2010). In these approaches, the aligners are aware of sin-

gle nucleotide polymorphisms (SNP) and align reads against both

alleles. Even though the SNP-aware methods are more accurate than

simulation-based approaches, they are more time consuming and

computationally intensive, which makes them impractical for large

RNA-seq datasets. A recently developed allele-specific analysis

method (WASP) (van de Geijn et al., 2015) substitutes the SNP base

with the alternative genotype in allelic reads and re-aligns those

reads to correct for the reference bias. By excluding the allelic reads

that are affected by different genotypes, WASP obtains extremely

low false positive rate when identifying ASE SNPs. However, the

process of generating reads with alternative genotypes in WASP

takes a relatively long time (�3.5 h) and many reads are excluded

due to its stringent requirements.

To this end, we developed a new and more efficient approach,

ASElux, which focuses on SNP-overlapping reads and combines the

alignment and estimation of allelic expression into one step. Since

accurate genotyping is essential for ASE analysis, the genotype infor-

mation is usually obtained separately from the RNA-seq data using

SNP array or genome/exome sequencing (Lonsdale et al., 2013).

ASElux builds a personal allelic reference genome by using the indi-

vidual’s existing genotype information to generate all possible ASE

reads and pre-screen the RNA-seq data. This allows us to perform

SNP-aware alignment and to efficiently identify only the reads that

cover the unique set of SNPs present in each individual. Compared

to all of the tested tools, ASElux is ultra-fast while achieving the

closest allelic mapping accuracy to the benchmark SNP-aware

aligner, GSNAP. Adding the time consumption to analyze an RNA-

seq sample using a general-purpose aligner, such as STAR, the over-

all runtime of ASE analysis using ASElux is still �4 times faster than

STAR (Dobin et al., 2013) followed by WASP (STARþWASP),

which re-aligns the reads with SNPs to decrease the reference bias

(van de Geijn et al., 2015). We applied ASElux to 273 lung tran-

scriptomes from the Genotype-Tissue Expression Project (GTEx)

(Lonsdale et al., 2013) to demonstrate the increased power of ASE

analysis in detecting local gene regulation. The high speed and accu-

racy of this novel ASE software makes it possible to analyze ASE in

large datasets, helping efficient transformative interrogation of

variants.

2 Materials and methods

2.1 Workflow of ASElux
Since only �10% of sequencing reads can be identified as SNP-

overlapping, ASElux saves time by focusing on aligning reads that

overlap with an individual’s SNPs obtained either from a genotype

array, imputed SNPs based on a reference panel, or DNA sequenc-

ing. To implement this new alignment, we designed a hybrid index

system that performs both genome-wide alignment and personal

SNP-aware alignment (Supplementary Fig. S1A). The hybrid index

system contains a static index that is built once for each reference

genome. ASElux aggregates the genic regions in the reference

genome to form a trimmed genome and uses a suffix array (Nong

et al., 2009; Manber and Myers, 1990) as the static index for a fast

alignment. The other part of our hybrid index system is the dynamic

index. We extract the flanking sequence on both sides of the exonic

SNP and store that in the dynamic index. The dynamic index is gen-

erated before alignment and it takes only �3 min to build it for each

individual. Supplementary Figure S1B shows the workflow of align-

ing paired-end reads. For a pair of reads, we follow the workflow

twice to treat each read first as the main read and then as the mate

read. To accommodate sequencing errors, ASElux by default allows

up to two mismatches elsewhere than at the SNP site. The user can

set the number of allowed mismatches to fit various read lengths.

We first use the dynamic index to identify the allelic reads during

the alignment. Only the reads that match the dynamic index would

be mapped to the genome with the static index to locate their multi-

alignment loci. Then we try to align the other read, known as the

mate read, near the identified multi-alignment loci. Thus, we only

align the mate read if the main read matches the dynamic index. If

both reads are uniquely aligned to one gene, we count the reads for

the allele they originated from.

2.2 Filtering candidate SNPs
Since exonic reads can provide the best estimation of gene expres-

sion, ASElux disregards non-exonic SNPs and alignments for ASE

analysis. Within ASElux, we provide a fast and useful tool to select

exonic SNPs using genome annotation. A standard genome annota-

tion contains overlapped exons and transcripts due to alternative

splicing, and the overlapping information is redundant for pruning

SNPs. To facilitate the pruning process, we merge all overlapping

exons from different transcripts within the same gene into one.

Small indels are another mechanism of allelic expression, but they

tend to cause an alignment error leading to bias in ASE estimation

(Heap et al., 2010; Stevenson et al., 2013). Thus, most ASE analyses

focus on SNPs alone rather than the combination of SNPs and indels

for the better accuracy (David et al., 2017). Therefore, we load the

SNP and indel information from the vcf file and disregard all SNPs

within one read length of an indel. The distance allowed between

SNPs and indels varies according to the read length of the particular

set of RNA-seq data. For example, if the read length is 50 bp, all

SNPs within 50 bp of any indels in each individual would be disre-

garded from the further alignment. As shown in the 20 GTEx sam-

ples, only �0.9% of the SNPs were excluded by this process

(Supplementary Table S1).

2.3 Hybrid index system
To perform a personalized SNP-aware alignment and maintain a

high speed, we designed a hybrid index system that contains both

static and dynamic indices. The static indices are built only once for

each reference genome. Since only a small proportion of RNA-seq

reads consist of intergenic reads (Mortazavi et al., 2008), ASElux

uses the genic regions as the reference genome to achieve the least

compromised balance between the alignment accuracy and speed

and relatively low memory usage. We locate the start and the end of

each gene so that the sequence between them covers all the compo-

nents of a gene (exons, introns, UTRs etc.). Then we aggregate the

sequences of all genes to form a trimmed genome. In the human

genome (hg19), ASElux generates a new genome that contains �1.5

billion bp out of the �3 billion bp. For a genome that contains N

genes, we construct N suffix arrays for the N genes and 1 more gen-

eral suffix array for the trimmed genome as the static index using

the sais algorithm (Nong et al., 2011). Although in theory searching

globally in one suffix array is faster than using N suffix arrays for N

genes, in practice combining local and global indices is faster due to

the low-level memory management strategy in a modern computer
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(Kim et al., 2015). Briefly, the static index is built based on the

trimmed reference genome and accordingly, the global alignment is

not allele-specific. The suffix array indices of the trimmed genome

and genes costs �30 GB of RAM (10 bytes for each base). We only

use �15 GB with the trimmed genome, thus keeping our overall

RAM usage at � 20GB.

For each individual, we build a personalized dynamic index for

SNP-aware alignment. We first prune the non-exonic SNPs to make

sure that ASElux focuses on aligning only the expression-related

reads. For each exonic SNP, we extract N-1 bp flanking sequence on

both sides of the exonic SNP from the reference transcripts, where N

is the read length, and replace the allele at the SNP location to gener-

ate reference sequences for all possible exonic reads that overlap

with the SNP. To cover the SNPs adjacent to various splicing junc-

tions, we extract the SNP flanking regions from all transcripts in

each gene. Thus, each SNP has two 2N-1 bp long sequences for the

reference and alternative alleles from each transcript. If the individ-

ual has additional known SNPs within the flanking sequence, we

generate all possible haplotypes with alternative alleles of these adja-

cent SNPs to avoid misaligning reads with multiple variants. As

there are regions with extremely high SNP density, ASElux only

counts the first 10 heterozygous SNPs in each read. Noteworthy, as

most indices are unique, we do not expect ambiguous indices to sub-

stantially bias the alignment of the ASE reads. To quickly locate

SNP-overlapping reads, we aggregate all of the generated sequences

as the dynamic index and build a suffix array for it. Then we save

the generated sequences, SNPs and gene names for the dynamic

index to query.

2.4 Alignment
Aligning only to the SNP-overlapping regions of the genome to iden-

tify the allelic reads is the key to the high speed of ASElux. For

paired-end reads, we treat one read as the main read and the other

as the mate read to help alignment. As shown in Supplementary

Figure S1B and Algorithm 1 of Supplementary Methods, we check if

the main read can be identified as an allelic read and use the mate

read to properly align the whole read fragment. Only the ASE reads

that are aligned to the dynamic index with up to two mismatches by

default (not counting the SNP locus) will be aligned against the

static index built on the trimmed genome (global alignment) to iden-

tify all of the multi-alignment loci. During the local alignment step,

ASElux tries to locally align each main read’s mate read to the static

index of the same gene. Thus, both the global alignment and the

local alignment are against the static index. Since the read fragment

should come from the same gene, we require the read mates to be

aligned to the same gene. In the case where the major read is multi-

aligned, we count the major read towards the ASE estimate only if

both the main and mate reads are aligned to the same gene and at

least one of them is uniquely aligned. Finally, we exchange the roles

of the main and mate read and align the main read again to identify

all possible alignments for the read pair. Thus, each read is treated

once as the main read of the paired end reads.

2.4.1 Alignment against the dynamic index

Similarly to STAR, ASElux uses a binary search strategy to identify

the Maximal Mappable Prefix (MMP) of a read in a suffix array

index. The alignment of the main read starts from the left end of the

read and identifies the longest common sequence with the dynamic

index. Since the suffix array is built in the forward genome direc-

tion, we also align the reverse complement of the read to cover both

directions. Algorithm 2 in the Supplementary Methods shows the

process of aligning reads against the dynamic index. For the reads

with mismatches, the alignment process stops at the mismatched

locus and restarts at the base after the mismatched locus. Thus, sev-

eral regions divided by the mismatched loci in the main reads are

aligned to different loci in the dynamic index. For the regions

aligned by no less than 20 bp, ASElux compares the whole read

against the sequence around the mapped loci to check if the main

read can be aligned to the locus with no more than 2 mismatches

(using the ASElux default setting) while not counting indels

(Supplementary Fig. S2). Since ASElux aligns the main read while

being aware of the individual’s SNP loci, the mismatches are mainly

caused by sequencing errors or unknown adjacent variants.

Furthermore, we calculated that for a 100-bp read, allowing for up

to 2 mismatches (using the default setting) covers 99.985% of the

reads with the typical sequencing error rate of 0.1% per base

expected for the Illumina platform (Schirmer et al., 2016). Although

ASElux allows 2 mismatches for ASE reads by default, users can

adjust the number of allowed mismatches to fit for the various read

lengths.

2.4.2 Local alignment

Using the static index, ASElux aligns the mate read against the same

gene region that the main read aligns to. Therefore, the reads with-

out mismatches, indels, or splice junctions are perfectly mapped to

the reference genome in this step. Supplementary Figure S3 shows

an example of aligning a junction read. For reads that are not identi-

cal to the reference genome, the MMP is a substring of the read that

stops before a variant or splice site. As shown in Algorithm 3 of the

Supplementary Methods, we skip eight bases to avoid mapping

indels or SNPs and search the MMP again for the unmapped part of

the read. We chose to skip 8 bp in line with STAR because in prac-

tice most indels would safely be skipped with this set-up and it still

allows us to utilize the remaining read for alignment. Separate

MMPs of a read indicate that mismatches or splicing occurs between

MMPs. We repeatedly search for the MMP until all parts of the read

are mapped or we have searched more than the default of four times,

indicating that the read should not be mapped to the reference due

to too many mismatches or splicing loci. We selected the default of

four times since it provided the best balance between the alignment

accuracy and speed. After identifying all MMPs, we reassemble the

read and only accept the read alignment if the read was properly

reconstructed such that the MMPs are in the same order in the query

read and the reference.

2.4.3 Global alignment

The global alignment is similar to the local alignment but extends to

the trimmed genome in the static index. Hence, the MMP can origi-

nate from multiple local indices, indicating that the read is aligned

to multiple genes. Since the lengths of the perfectly aligned prefixes

in multi-aligned reads vary and searching for the MMP requires a

perfect alignment, the multi-aligned reads will only be aligned to the

locus that has the longest prefix shared with the reference genome.

Thus, if we only align a read once to the trimmed genome, the

multi-aligned loci that have the shorter perfectly aligned prefixes

would be missed. Since it is crucial to find all possible multi-

alignment targets for the ASE reads, we developed a masked binary

search strategy to align the read to additional possible loci by mask-

ing off the known alignment results (Algorithm 4 of the

Supplementary Methods). To globally fast align the ASE read, we

utilize the fact that the information about the one perfectly mapped

locus is available for the ASE reads. To find all possible genes where
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the read may be mapped to, we skip the locus that the read is

already aligned to when searching for the MMP for the read. Since

smaller MMPs have too many matches to the trimmed genome by

chance alone, we only use MMPs longer than 20 bases and record

the genes they reside in. Then we locally align the main read and the

mate read in those genes to finish the alignment. ASElux can repeat-

edly align the reads with more and more masked genes. Therefore,

the loci with smaller MMPs will not be missed due to the existence

of the other loci with longer MMPs. In more detail, to find all

MMPs within the read, we will start from the beginning of the read

and search for the longest shared sequence between the particular

read and the trimmed genome. We move along the read to find all

MMPs longer than 20 bp in the read. Accordingly, there can be sev-

eral MMPs which all must be longer than 21 bp. After the global

alignment, we still locally align the mate read (Supplementary Fig.

S1B), which ensures that a locus with only 20 bp match will not be

identified as a properly aligned locus. As the next step, since the

static index contains no SNP information, we align not only the ASE

read but also the read that resides in the same locus with a different

genotype. ASElux combines the alignment results of the two reads

to make sure that we have the most comprehensive multi-alignment

result.

The details of alignment with existing methods as well as the

simulation data are described in the Supplementary Methods.

2.5 ASE and splice-QTL analyses in the GTEx project
We processed 273 RNA-seq samples from the GTEx project

(Lonsdale et al., 2013) with ASElux. We downloaded the RNA-seq

data and the imputed genotype data from the dbGaP accession

phs000424.v6.p1. We randomly selected 20 samples for the com-

parisons in this study. The samples have on average 40 million 50-

bp paired-end reads. Reads were aligned to the human genome

(hg19) with the four tested aligners. We used the default alignment

parameters of all the tested methods. The uniquely aligned reads

were then kept for the subsequent analyses.

The results of the cis-eQTL analysis (version 6) were obtained

from the GTEx portal (Ardlie et al., 2015). For each individual, we

pruned out all SNPs aligned with less than 30 reads or less than 6

reads from one allele. To identify ASE SNPs across the population,

we picked all SNPs that were heterozygous and passed the read count

threshold in at least 30 individuals. We performed a paired t-test with

the read counts of the reference allele and alternative allele from all

individuals. The SNPs with Bonferroni corrected P-values less than

0.05 were identified as ASE SNPs. The GWAS SNPs (P�5 � 10�8,

two-sided) were obtained from the NHGRI GWAS Catalog (Welter

et al., 2014). We calculated the linkage disequilibrium (LD) between

the ASE SNPs and GWAS SNPs within 1 Mb distance and obtained

all of the SNPs in LD (R2�0.8) with the ASE SNPs using PLINK

(Purcell et al., 2007). Then we annotated the SNPs in LD with the

ASE SNPs using ANNOVAR (Wang et al., 2010).

For the splice-QTL analysis, we aligned the 273 GTEx lung sam-

ples with STAR and identified all the splice events using LeafCutter.

Following the analytical guideline of LeafCutter, we then used

MatrixeQTL (Shabalin, 2012) to identify whether rs11078928 is a

significant splice-QTL of GSDMB. For the isoform level eQTL anal-

ysis, we used RSEM (Li and Dewey, 2011) to estimate the isoform

expression of the 273 GTEx lung samples and calculated the propor-

tional transcript expression as the transcript expression level over

the total gene expression as the phenotype in the eQTL analysis per-

formed by MatrixeQTL (Shabalin, 2012).

3 Results

3.1 Test on simulated RNA-seq dataset
We first tested ASElux and other alignment methods on a simulated

RNA-seq dataset with �180 M 2� 50 bp paired-end reads (see

Supplementary Methods). Since comprehensively testing the align-

ment bias is important, we generated a high coverage simulated

dataset. SNPs and junction reads were introduced to mimic real

RNA-seq data. We added alternative alleles to the simulated reads

based on imputed genotypes from a random GTEx sample and set

both alleles to be equally expressed, which allowed us to accurately

calculate the mapping bias of all methods. Besides ASElux, we also

tested STAR 2.4.2a (Dobin et al., 2013), GSNAP 2015-6-23 (Wu

and Nacu, 2010), HISAT2 2.0.4 (Kim et al., 2015) and WASP (van

de Geijn et al., 2015) on the simulated dataset using the default

parameters during the alignment (see Supplementary Methods).

Since we focus on the alignment bias, we only tested the mapping

function of WASP. We used the reference genome hg19 for all align-

ers and the GENCODE v19 annotation if the gene annotation could

be supplied. To utilize the power of SNP-aware alignment, we used

GSNAP to build a SNP-integrated alignment index for GSNAP. The

HISAT2 alignment index was downloaded from its website along

with the SNPs and transcript information. We used the default

parameters for each aligner.

Using the genome-wide SNP data (genotyped and imputed) from

GTEx (Lonsdale et al., 2013), we calculated read counts of each

allele at exonic SNP sites to estimate ASE. The proportion of refer-

ence allele read counts when compared to the total read counts indi-

cates the imbalance of allelic expression. Since the two alleles were

equally expressed in the simulated dataset, the expected RACR of

each SNP is 0.5. Accordingly, we measured the reference bias as the

deviation of RACR from 0.5. Since each method aligns allelic reads

differently, we performed the reference bias analysis using SNPs

with enough aligned reads in all methods. ASElux, GSNAP, STAR

and HISAT2 uniquely aligned �10 M allelic reads whereas WASP

aligned �24% less reads than the other tested methods using the

same simulated dataset (Supplementary Table S2). Figure 1 shows

the proportion of SNPs in different bias categories. Although the

majority of the SNPs displayed a bias less than 5% using all meth-

ods, ASElux achieved the highest accuracy by properly accounting

for allele imbalance for �90% of the SNPs. Among the biased SNPs

identified by each method, ASElux and the SNP-aware GSNAP

showed substantially fewer SNPs with reference allele bias (�70%)

when compared to HISAT2 and STAR (�99%). Even though

STARþWASP identified the fewest SNPs with a bias more than

5%, still the majority (88%) of the SNPs identified by WASP

showed a bias in the range of more than 0% but less than 5%

(Fig. 1). STAR alone performed worst since no SNP information

was used during the alignment. Even though HISAT2 considers all

common SNPs (MAF>1%), it performs better than STAR but not

as well as WASP, GSNAP and ASElux.

To test the ability of identifying ASE SNPs by ASElux and other

methods, we generated another simulated dataset with 20% of genes

exhibiting imbalanced allelic expression. These imbalanced genes

were randomly selected and one random allele from the selected

genes was overexpressed. Compared to the less expressed allele, we

generated 1.5–3.5� more reads from the overexpressed allele. To

mimic real RNA-seq data, we introduced sequencing error in addi-

tion to SNPs and junction reads. To ensure a 50� coverage for each

allele, we overexpress one allele by generating more reads when sim-

ulating the imbalanced allelic expression. Using the binomial test,

we identified a SNP as an ASE SNP if the Bonferroni corrected
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P-value is less than 0.05. To ensure that the tested methods are fairly

compared, we used the intersection of the SNPs identified by all of

the tested methods. The receiver operating characteristic (ROC)

curve (Fig. 2) indicates that ASElux outperforms HISAT2 and STAR

alone on identifying ASE SNPs. Since GSNAP and ASElux both uti-

lize personal SNP information, they identified all of the ASE SNPs

(true positive rate¼100%) while maintaining a low false positive

rate of �5%. Although ASElux performed better than GSNAP in

the first simulation test (Fig. 1), ASElux and GSNAP showed a com-

parable number of SNPs showing more than 5% bias. Thus, GSNAP

and ASElux performed similarly based on the ROC curve (Fig. 2).

The false positive rate of WASP is the lowest among all the tested

methods while the true positive is below 92%. In the first simulation

test under the null condition (Fig. 1), WASP showed the smallest

number of SNPs that have bias more than 5%, suggesting that

WASP tends to be highly conservative in order to achieve a low false

positive rate. However, since WASP filters out potentially falsely

aligned reads by STAR, some SNPs might have insufficient coverage

to pass a stringent threshold, which may contribute to the low posi-

tive rate of WASP.

3.2 Speed benchmarks
We performed the speed benchmark on a server with 64-bit Intel

CPUs @2.66 GHz with �95GB RAM. Figure 3A shows the common

workflow of ASE analysis using different methods. Researchers can

first map reads using a RNA-seq aligner (STAR/HISAT2) and then

count allelic reads with specialized tools, such as ASElux or WASP,

or alternatively use a SNP-aware aligner (GSNAP) and count allelic

reads directly based on the alignment. Figure 3B shows the average

time consumption of a single thread to perform ASE analysis on

10 samples from the GTEx project using STARþASElux,

STARþWASP and GSNAP, respectively. Among the tested meth-

ods, GSNAP used �12 GB RAM, HISAT2 �8 GB RAM and

ASElux �22 GB of RAM, respectively. WASP itself requires no

more than 1GB of RAM but the actual RAM requirement of WASP

depends on the alignment tool it uses, e.g. STAR would need

additional �30 GB RAM. Counting allelic reads with ASElux is,

however, ultra-fast since it only takes �20 min to process a GTEx

RNA-seq sample. Therefore, STARþASElux can has a �33� faster

processing speed than GSNAP. WASP requires �4 CPU hours for

each GTEx sample, which makes STARþWASP �4� slower than

STARþASElux. The tests shown in Figure 3 were based on single

thread mode. ASElux, HISAT2, STAR and GSNAP all have a multi-

thread mode, however, WASP does not support multi-thread com-

puting. Thus, we also tested the multithread mode of each tool

except for WASP (Supplementary Fig. S4), which resulted in similar

relative alignment speeds across the tools as in the single thread

mode. As I/O often plays a significant factor in runtime, the system

cache was cleared before each alignment run to avoid any bias due

to pre-loaded reference index in the memory during the benchmark-

ing. On average, index loading contributes up to 25% of the overall

runtime of ASElux without caching.

3.3 Comparing GSNAP, ASElux, HISAT2 and STAR on

20 experimental samples
To evaluate the performance of ASElux, GSNAP, STAR, HISAT2

and WASP on real RNA-seq data, we processed 20 lung RNA-seq

samples from the GTEx (Lonsdale et al., 2013) cohort with the five

methods. Each sample contains �40 million pairs of 76 bp reads.

The genotype data of each sample consists of the imputed and

genome-wide SNP array data from the GTEx study. For each sam-

ple, �120 000 exonic SNPs were obtained from the VCF file. We
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built a personalized index for each sample for ASElux (see methods)

and GSNAP, and provided the same indices as in the simulated anal-

ysis to STAR and HISAT2. After alignment, we extracted the allelic

read counts on each heterozygous SNP for further analyses.

The level of imbalanced allelic expression represented by the

RACR provides more information on ASE than the statistics by the

binomial test. In an ASE analysis, the proportion of reference allelic

reads closer to 0 or 1 often indicates stronger allele-specific gene

expression. Therefore, we compared the allelic imbalance (AIB),

which is the difference between 0.5 and RACR, derived by ASElux

to AIBs by the other methods. Under the null hypothesis that most

SNPs will not have an ASE effect, we expect equal expression from

both the reference and alternative haplotypes. Consequently, the

theoretical distribution of AIB should be centered at zero with a few

outliers towards the two tails. If the reference bias hampers the

alignment, the mean and median of AIB of all SNPs would shift up

from 0, which is shown in Figure 4. GSNAP shows a minimal refer-

ence bias in the test. Although ASElux shows a higher average AIB

when compared to GSNAP (Fig. 4), its average AIB is significantly

lower than the AIBs obtained using WASP, HISAT2 and STAR.

WASP, HISAT2 and STAR aligned significantly more reads to the

reference allele, indicating a higher reference bias. Although WASP

showed the lowest false positive rate in the simulation test, the

majority of the WASP SNPs still had a bias more than 0% and less

than 5%, which is similar to HISAT2 (Fig. 1). The AIBs derived

from the 20 GTEx samples confirmed this similarity between WASP

and HISAT2.

ASElux uniquely aligned �1.3 M allelic reads for each sample;

whereas WASP aligned �1.5 M allelic reads; GSNAP and

HISAT2�1.7 M allelic reads; and STAR �2.8 M allelic reads for

each sample, respectively (Supplementary Fig. S5a, Table S2).

ASElux identified �15% fewer SNPs than GSNAP but �37% more

than WASP (Supplementary Fig. S5b). It is worth noting, however,

that not all SNPs identified by STAR and HISAT2 are suitable for

downstream ASE analysis. Previous studies show that more than

10% of the heterozygous SNPs would be excluded when employing

a simulation procedure to correct for the reference alignment bias,

(Kukurba et al., 2014; Panousis et al., 2014) while using a general

purpose aligner. Thus, overall ASElux would identify a similar

number of heterozygous SNPs that are suitable for the downstream

ASE analysis when compared to STAR, and HISAT2.

Although STAR uniquely aligned more reads than the other

tested tools, it identified a similar number of SNPs with a coverage

of �30 reads when compared to HISAT2 and GSNAP

(Supplementary Table S3, Fig. S4b). The extra allelic reads aligned

by STAR mainly overlap with the low coverage SNPs that do not

contribute to the ASE analysis (Supplementary Fig. S6). Since WASP

depends on STAR for the alignment, a large amount of reads in

WASP also overlap with the low coverage SNPs (Supplementary Fig.

S6). Thus, WASP identified less SNPs than the other tested tools

with similar number of reads aligned (Supplementary Fig. S5).

3.4 ASE analysis strengthens cis-eQTL analysis in iden-

tifying local regulation of gene expression
Utilizing the ultra-fast speed of ASElux, we applied ASElux to a

dataset of 273 lung RNA-seq samples and imputed SNP array data

from the GTEx study. Figure 5 shows that ASElux has significantly

less reference bias when compared to the allelic read counts reported

by GTEx using their ASE analysis pipeline (Ardlie et al., 2015) (P-

value<2.2 � 10�16, two-sided t-test). The distribution of RACR

from ASElux is centered at 0.5 whereas the distribution reported by

GTEx displays an upward bias. To verify whether ASElux has iden-

tified enough heterozygous SNPs for the ASE analysis, we compared

the number of SNPs identified by ASElux and the GTEx study. In

both analysis by ASElux and the GTEx study a heterozygous SNP

must be covered by �30 reads to be counted for the downstream

ASE analysis. A median of 6385 SNPs passed the simulation correc-

tion in the GTEx study (Panousis et al., 2014) for each sample which

is �20% less than the median SNP number identified by ASElux in

the 273 GTEx lung samples, indicating that ASElux can identify

more ASE SNPs than the GTEx ASE protocol.

In addition to ASE analysis, a cis-eQTL analysis is also widely

used to detect allele-specific regulation of gene expression. We com-

pared the ASE results from ASElux to the cis-eQTL results on the

same set of SNPs publicly available at the GTEx website. Among the

273 lung samples we aligned with ASElux, we identified 21 550 het-

erozygous exonic SNPs covered by at least 30 reads in no less than

30 samples. Using a paired t-test, we identified 2765 SNPs residing

in 1790 genes that showed ASE (P<2.32 � 10-6, two-sided).

Although not all ASE events are caused by exonic SNPs, the paired
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t-test of the exonic SNPs should identify either the causal exonic

ASE SNPs or the exonic SNPs tagged by non-coding causal variants.

Next, we investigated whether these 2765 ASE SNPs were also iden-

tified as cis-eQTLs by GTEx. Using the gene-specific permutation

threshold used by GTEx (Ardlie et al., 2015), 1421 of the ASE SNPs

were significant cis-eQTLs in lung for the genes they are located in.

Overall, 1344 (48.61%) of the ASE SNPs were missed by the cis-

eQTL analysis, and 965 (53.91%) of the ASE genes were not identi-

fied as cis-eQTL genes. Accordingly, the combination of ASE and

cis-eQTL analysis increased the power to identify variants associ-

ated with local regulation of gene expression when compared to cis-

eQTL analysis alone.

To further investigate the association between ASE and lung dis-

orders, we calculated the linkage disequilibrium (LD) between ASE

SNPs and 67 GWAS SNPs (Ardlie et al., 2015) of lung disorders,

such as smoking; asthma; lung cancer; chronic obstructive pulmo-

nary disease (COPD); and pulmonary hypertension. There are 11

ASE SNPs in strong LD (r2>0.8) with the GWAS SNPs

(Supplementary Table S4). Of the 11 ASE SNPs, 10 are identified as

cis-eQTLs of the genes in which they reside. Both the cis-eQTL and

ASE analysis indicate that the alternative genotype of the 10 ASE

SNPs is associated with a lower gene expression. It is worth noting,

however, that the ASE SNP rs2305480 located in Gasdermin B

(GSDMB) is in LD (R2¼1) with a GWAS SNP rs11078927 which

is associated with the increased risk of asthma (Bouzigon et al.,

2008; Bønnelykke et al., 2014). This SNP rs11078927 has never

been identified as a significant cis-eQTL of GSDMB in the lung tis-

sue before. Moreover, rs2305480 has also been identified as a

GWAS SNP of another inflammatory disorder, ulcerative colitis

(McGovern et al., 2010), supporting the role of the GSDMB gene in

several disorders with a known inflammatory component.

We further investigated the potential mechanism of the GWAS

SNP rs11078927 and discovered rs11078928, which is a splice

donor site variant previously identified in the whole blood and sug-

gested to be involved in asthma (Morrison et al., 2013). It is in tight

LD (R2¼0.99) with two asthma GWAS hits, rs2305480 (the ASE

SNP) and rs11078927. To examine the splicing effect in a human

tissue highly relevant for asthma, we performed a splice-QTL analy-

sis in 273 GTEx lung RNA-seq samples using LeafCutter and identi-

fied rs11078928 as a significant splice-QTL of GSDMB in the lung

(Fig. 6). The genotype of rs11078928 is significantly associated

(P-value¼4.63 � 10�35, two-sided) with the proportional expres-

sion level of the junction reads overlapping exon 5 and exon 6 of

GSDMB, which is consistent with the splicing event identified previ-

ously in the whole blood (Morrison et al., 2013).

To determine which isoform expression of GSDMB is impacted

by the splice variant, we used RSEM (Li and Dewey, 2011) to esti-

mate the expression of isoforms in 273 GTEx lung samples and used

the proportional transcript expression as the phenotype for an iso-

form eQTL analysis. The relative expression of four transcripts

GSDMB-003, GSDMB-201, GSDMB-011 and GSDMB-002 are sig-

nificantly associated with the genotype of the splice-QTL

rs11078928 [P-value<9.43 � 10�4 using linear regression via

MatrixeQTL (Shabalin, 2012) with Bonferroni correction] (Fig. 6,

Supplementary Table S5). Thus, the biological mechanism underly-

ing the asthma risk SNPs, rs2305480 and rs11078927, is likely

mediated by the SNP rs11078928 via splicing regulation on

GSDMB in the human lungs.

We further functionally annotated the 52 460 SNPs (R2>0.8)

tagged by the ASE SNPs, identified by ASElux, using ANNOVAR

(Wang et al., 2010) (Supplementary Fig. S7). There are 19 additional

SNPs identified as splice variants by ANNOVAR and 7 of them

were missed by the GTEx cis-eQTL analysis. Taken together, an

ASE analysis provides substantially more power for analysis of local

gene expression, complementing the regular cis-eQTL analysis.

4 Discussion

With growing interest in ASE analysis, mapping bias remains a crit-

ical barrier that hinders the accuracy of ASE analysis in RNA-seq.

We provide a novel approach, ASElux that focuses solely on SNP-

overlapping reads, allowing a fast and accurate SNP-aware align-

ment for ASE analysis. To ensure a high alignment accuracy, we

used the whole gene body (50% of the reference genome) to build

the alignment index. It is worth noting that this speed gain is largely

due to the fact that ASElux first aligns all reads to the very small

dynamic index to identify the allelic reads and then only aligns them

to the large static index. The size of the static index will not affect

the speed substantially because the time complexity of searching

through suffix array is O(mlog(n)), where the n is the size of the

reference and m is the size of the pattern. In addition, ASElux shows

a minimal reference bias when compared with other methods based

on both simulated and experimental RNA-seq data. ASElux aligns

against both alleles by employing personal dynamic indices to mini-

mize the reference bias. We demonstrated that ASElux works opti-

mally with short reads currently generated by most RNA-seq

studies.

Due to the complexity of RNA-seq alignment and variable

expression of genes across tissues, SNP-calling from RNA-seq is

often less accurate than from DNA-sequencing data (Quinn et al.,

2013). Thus, external genotype information from whole exome

sequencing (WES), whole genome sequencing (WGS), or SNP-arrays

are preferred for ASE or eQTL analysis (Ardlie et al., 2015). ASElux

and all of the tools tested here do not directly identify SNPs from

RNA-seq reads and are therefore only applicable to RNA-seq

cohorts that have genotype data available. Simultaneously calling

SNPs and ASE from RNA-seq data will enable ASE analyses in addi-

tional RNA-seq cohorts, but it will require development of new

methods in the future.

Multi-alignment also presents a serious challenge in ASE analy-

sis. Reads generated from different regions might be falsely identi-

fied as ASE reads due to their similar sequences. ASElux tries to find

all possible multi-alignment loci in addition to the optimal align-

ment even if the read has the best alignment quality as an ASE read

to stringently remove possible false ASE reads. As ambiguously

aligned reads are more stringently excluded, ASElux tends to align

The expression of four transcripts are significantly associated with the splice-QTL rs11078928

< GSDMB-003
protein coding

< GSDMB-201
protein coding

< GSDMB-011
nonsense mediated decay

< GSDMB-002
protein coding

exon 6 exon 5

Reverse strand 14.00 kb

ASE SNP: rs2304580 sQTL rs11078928; p=4.63 x 10-35

GWAS SNP: rs11078927

Fig. 6. Using the proportional transcript expression as the phenotype, four

transcripts GSDMB-003, GSDMB-201, GSDMB-011 and GSDMB-002 are sig-

nificantly associated with the genotype of the splice-QTL SNP, rs11078928 (P-

value<9.43 � 10�4, two-sided). The stars indicate that genotypes of

rs11078928 are significantly associated with the splice junction reads

between the exon 5 and exon 6 of GSDMB (P-value¼4.63 � 10�35, two-sided)
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less allelic reads than the other tested tools. However, not all SNPs

are reliable for the ASE analysis due to the reference alignment bias

when using a general-purpose aligner such as STAR and HISAT2,

and in fact, the previous studies show a �10% loss in the number of

SNPs during the simulation correction (Kukurba et al., 2014;

Panousis et al., 2014). We have shown here that the high accuracy

of ASElux has provided more reliable SNPs for the downstream ASE

analysis than STAR did in the analyzed GTEx lung samples.

As an alignment tool exclusively designed for ASE analysis,

ASElux outperforms most existing methods in speed and provides a

better accuracy than the existing non-SNP-aware aligners for correct-

ing the reference bias in alignment while also achieving the closest

accuracy to GSNAP. ASElux is ultra-fast: it is able to process 40 mil-

lion 2� 50 bp reads in 16 min. Combined with a general purpose

aligner, such as STAR, STARþASElux is �33 times faster than the

golden standard SNP-aware aligner GSNAP, and �4 times faster than

the popular combination of STARþWASP. The high speed and accu-

racy make ASElux an ideal tool to perform ASE analysis in large-scale

RNA-seq studies. We demonstrated the usefulness of ASElux by per-

forming the ASE analysis in lung RNA-seq data from 273 individuals

of the GTEx project in two days (�70 CPU hours using multi-CPU).

By comparing the ASE SNPs and eQTLs from the same dataset, we

also demonstrated that the combination of ASE and cis-eQTL analysis

provides more power to detect local regulation of gene expression.
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