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Regenerative Medicine Approaches for the Treatment
of Pediatric Physeal Injuries
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The physis, or growth plate, is a cartilaginous region at the end of children’s long bones that serves as the
primary center for longitudinal growth and characterizes the immature skeleton. Musculoskeletal injury, in-
cluding fracture, infection, malignancy, or iatrogenic damage, has risk of physeal damage. Physeal injuries
account for 30% of pediatric fractures and may result in impaired bone growth. Once damaged, cartilage tissue
within the physis is often replaced by unwanted bony tissue, forming a ‘‘bony bar’’ that can lead to compli-
cations such as complete growth arrest, angular or rotational deformities, and altered joint mechanics. Children
with a bony bar occupying <50% of the physis usually undergo bony bar resection and insertion of an
interpositional material, such as a fat graft, to prevent recurrence and allow the surrounding uninjured physeal
tissue to restore longitudinal bone growth. Clinical success for this procedure is <35% and often the bony bar
and associated growth impairments return. Children who are not candidates for bony bar resection due to a
physeal bar occupying >50% of their physis undergo corrective osteotomy or bone lengthening procedures.
These approaches are complex and have variable success rates. As such, there is a critical need for regenerative
approaches to not only prevent initial bony bar formation but also regenerate healthy physeal cartilage fol-
lowing injury. This review describes physeal anatomy, mechanisms of physeal injury, and current treatment
options with associated limitations. Furthermore, we provide an overview of the current research using cell-
based therapies, growth factors, and biomaterials in the different animal models of injury along with strategic
directions for modulating intrinsic injury pathways to inhibit bony bar formation and/or promote physeal tissue
formation. Pediatric physeal injuries constitute a unique niche within regenerative medicine for which there is a
critical need for research to decrease child morbidity related to this injurious process.
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Introduction

Injuries incurred by skeletally immature patients are
unique both in their causes and gravity of their conse-

quences. Physes, or growth plates, are cartilaginous regions
at the ends of children’s long bones that function as primary
sites of bone elongation. Physeal injury may result from
trauma, infection, metabolic abnormalities, or malignancy.

The major concern with physeal injury is that damaged
cartilage within the physis can be replaced by bony repair
tissue, forming a ‘‘bony bar’’ or ‘‘physeal bar’’. Depending on

the size and location of the injury within the physis, the bony
bar may cause asymmetric growth arrest with subsequent an-
gular deformity or complete cessation of longitudinal growth.
The latter is a devastating outcome for children that have not
yet reached their full height. Current treatment involves sur-
gical resection of the bar and replacement with an interposi-
tional material to preserve normal growth in the remaining
physis. Bar reformation and additional growth effects, how-
ever, remain major complications of bar excision.

A critical need exists for developing effective treatments
for children with physeal injuries, which not only prevent
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bony bar formation but also regenerate physiologic physeal
cartilage and restore normal bone elongation. This review
describes physeal anatomy, mechanisms of physeal injury,
and current surgical therapies to treat complications resulting
from physeal injuries. Furthermore, it discusses ongoing re-
search efforts for physeal injury repair, including stem cell-
and biomaterial-based tissue engineering strategies, as well
as potential new avenues for physeal cartilage regeneration.

Anatomy, Physiology, and Injury of the Physis

The physis is a complex cartilaginous structure composed
of peaks and valleys that lies between the epiphysis and
metaphysis at both proximal and distal ends of long bones
(Fig. 1). Longitudinal growth occurs in the physis through
endochondral ossification, beginning in utero and continu-
ing until the end of puberty.1 Chondrocyte proliferation then
slows until the entire physis has undergone ossification,
defined as skeletal maturity.2

Chondrocytes exist within three distinct zones in the
physis—the resting zone, the proliferating zone, and the hy-
pertrophic zone (Fig. 1). Closest to the epiphysis, resting zone
chondrocytes are hyaline cartilage cells, believed to be the
progenitor cell population for the growth plate. Proliferative
zone chondrocytes undergo rapid mitosis, forming vertical
stacks of chondrocytes which form the basis for longitudinal
growth.3 Hypertrophic zone chondrocytes exit the cell cycle,

swell in size, and overproduce glycogen to increase extra-
cellular matrix (ECM) volume. The hypertrophic state has
long been thought to be the endpoint of chondrocyte differ-
entiation.4

Following hypertrophy, chondrocytes undergo apoptosis
leaving a network of calcified matrix for osteoblasts to in-
vade and begin forming bone. Recent lineage-tracing ex-
periments provide evidence that transdifferentiation of
hypertrophic chondrocytes to osteoblasts also occurs in ad-
dition to apoptosis.5–7 The ECM is then mineralized to form
mature bone, a process called ossification, which contributes
to longitudinal expansion of the pediatric skeleton.

In addition to unique zonal cellular morphology, the
composition of the ECM and mechanical properties change
across the physis. For example, the resting zone is pre-
dominately made of horizontally aligned collagen II fibers
and a low cell:ECM ratio, the proliferative zone has verti-
cally aligned collagen II fibers and a moderate cell:ECM
ratio, and the hypertrophic zone is composed predominately
of collagen X and a high cell:ECM ratio. These structural
properties, as well as others, lead to varying mechanical
properties across the physis and have been reviewed else-
where.8 Briefly, the resting zone is stiffer and more imper-
meable than the other zones,9,10 and mechanical properties
are further influenced by loading, zonal height, and age.11

While both physeal and articular cartilages are variants of
hyaline cartilage, they differ in structure and function. These

FIG. 1. Anatomic location of the physis (or growth plate) in long bones. The physis is a cartilaginous region located
between the epiphysis and the metaphysis at each end of long bones. Marrow compartments serve as a source of nutrition
with vessels feeding the growth plate cartilage. The juxtaposition of hard cortical bone against relatively softer cartilage
forms a weak point in the pediatric skeleton. (Expanded section): Five cartilaginous zones of the physis. Resting zone
chondrocytes give way into rapidly proliferating chondrocytes that form vertical stacks in the proliferating zone. Cells in the
hypertrophic zone enlarge by producing glycogen. In the calcification zone, chondrocytes undergo apoptosis and the
extracellular matrix calcifies forming a network for osteoblasts to invade and form new bone in the ossification zone.
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differences are due, in part, to their differing developmental
origins: physeal cartilage arises from limb mesenchyme
condensations, while articular cartilage comes from the in-
terzone, a thin mesenchyme lining on the ends of future
limbs.12 Articular cartilage also has unique zonal organi-
zation similar in nature to the physis but with noticeable
differences; for example, superficial zone chondrocytes are
flattened and produce lubricin while deep zone chondrocytes
form columns with vertically aligned collagen fibers that
withstand compressive loading. The important difference
between these two cartilages is function: the physis is a
transient tissue that undergoes endochondral ossification to
elongate long bones, while articular cartilage is a permanent
tissue designed to protect joint surfaces. Articular cartilage
does not calcify, except under pathological conditions.

The physis is vulnerable to injury in that the juxtaposition
of relatively soft cartilage against hard bone serves as a
weak point in the pediatric skeleton. Complications of
physeal damage can range from inconsequential to the
generation of a bony bar. The latter occurs when layers of
physeal chondrocytes are damaged such that bony repair
tissue forms and connects metaphyseal to epiphyseal bone.

Lateral or medial physeal bony bar formation may result in
asymmetric growth arrest, generating angular limb defor-
mities.13 In severe cases, the bony bar results in complete
growth arrest. Classically, injuries resulting in bony bar
formation must undergo surgical correction to remove the
bony bar and minimize further effects on the limb’s growth
potential.

Physeal Fractures and the Salter–Harris
Classification System

Fractures are one of the most common pediatric traumas,
occurring in one in two males and one in three-to-four fe-
males.14,15 Of those, between 18% and 30% will involve the
physis.16,17 The Salter–Harris (SH) Classification System
classifies physeal fractures into five distinct patterns (types
I-V) of physeal involvement (Fig. 2A).18 Fracture prognosis
and predicting bony bar formation are somewhat dependent
on this classification. Compression type fractures (SH type
V) are the most likely fracture pattern to result in growth
arrest. In the upper extremity, these are followed by frac-
tures that cross the epiphyseal plate (SH types III, IV),

FIG. 2. The Salter–Harris classification of growth plate fractures. (A) Approximately 5% of physeal fractures are Type I
injuries and least likely to cause growth arrest. Type II injuries are the most common, 75% of physeal fractures, and have a
moderate potential for arrest. Type III and Type IV each occur in *10% of fractures and are more likely to lead to growth
arrest. Type V injuries are the least common, but the most likely to cause bony bar formation or growth arrest. (B)
Anteroposterior MRI of a 9-year-old female who suffered a SHIV fracture (dashed line) of her right proximal tibial physis
10-months prior. The bony bar (arrow) begins central and extends lateral in location, causing significant misalignment of
the knee with leg shortening.
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which are more likely to demonstrate physeal bar formation
(Fig. 2B).19 In the lower extremity, specifically distal fem-
oral physeal fractures, SH types II, III, and IV are the next
most common to result in growth disturbances, especially
when the fracture is displaced.20

The three most common fracture sites resulting in physeal
injury are the wrist, the ankle, and the distal femur. Wrist
fractures, specifically distal radius fractures, are one of the
most common pediatric fracture types, resulting from high-
energy sports trauma.21 Physeal arrest in distal radial frac-
tures have an estimated incidence of 1–7%.22 Complications
of physeal arrest in the distal radius include limb length
discrepancy between the injured and uninjured arms, an-
gular deformities of the radius leading to compromised
biomechanics, and the potential to develop subsequent wrist
arthritis.

Lower extremity physeal injuries occur primarily at the
distal femoral physis (knee) or the distal tibial physis (an-
kle).23 Distal femoral fractures for the preadolescent child
can be particularly devastating, as growth disturbance oc-
curs in 52–90% of these injuries.20,24 The distal femoral
physis accounts for up to 70% of longitudinal growth of the
femur and up to 40% of total longitudinal growth of the
lower extremity. Consequences of these injuries are dra-
matic, including significant leg length discrepancy and an-
gular deformities leading to significant gait disturbances,
low back pain, cosmetic deformity, and early-onset arthritis.
Complete or partial premature closure of the distal tibial
physis is the most common complication of SH types III and
IV distal tibial fractures. Resulting growth discrepancies are
less significant than those seen in distal femur fractures;
however, rotational disturbances and altered ankle joint
mechanics can also have long-term consequences for the
individual.25,26

Rare Etiologies of Physeal Damage

Although less common than fracture, the physis may be
damaged by infection, malignancy, or by iatrogenic damage,
an unintended surgical complication. Infectious etiologies of
physeal injury include hematogenous osteomyelitis of me-
taphyseal bone with extension into the growth plate. As
blood flows through the narrow capillaries within the mar-
row compartment of long bones, low fluid flow rates can
promote bacterial stasis and facilitate infection.27 In severe
cases, resulting chondronecrosis and abscess formation re-
sulting from infection lead to bony bar formation and its
complications as described above.28

Pediatric bone tumors, including osteosarcoma and Ew-
ing’s sarcoma, may also lead to physeal damage.29 Damage
may be secondary to the degree of tumor physeal involve-
ment or from tumor resection surgery.30–32 Radiation ther-
apy and chemotherapy regimens also may potentially cause
physeal damage by interfering with normal chondrocyte
physiology.33–37

During the treatment of pediatric musculoskeletal condi-
tions, unintended physeal damage may occur. Premature
physeal closure has occurred secondary to limb lengthening
procedures.38,39 In addition, anterior cruciate ligament re-
construction may result in unintended physeal damage to
either the distal femoral or proximal tibial physis, poten-
tially leading to growth arrest.40,41 To prevent this, surgical

techniques to avoid transphyseal instrumentation have been
developed to preserve the physis.42–45

Current Therapeutic Techniques Following
Physeal Arrest

Growth arrest, angular or rotational deformities, and
subsequent altered joint mechanics are feared consequences
of physeal injury in the immature skeleton and may develop
up to 2 years postinjury. As such, patients with physeal
injuries are followed for a longer duration than other mus-
culoskeletal injuries. Depending on injury characteristics,
physicians may choose nonoperative therapy, including
casting, to ensure anatomic alignment of the limb with close
radiologic follow-up for observation of bony bar forma-
tion.46 Severe injuries often require surgical intervention.

When bony bar formation occurs in patients with significant
potential growth disturbance, the current gold standard therapy
is bony bar resection.47–49 Typically, patients are younger and
have a significant (50–70%) portion of healthy uninvolved
physis.50 Following bony bar resection, the injury site is filled
with an interpositional material such as fat, muscle, or silicone
rubber to prevent reformation of bony tissue and allow the
uninjured physeal cartilage to restore normal growth. Un-
fortunately, clinical success for resection ranges from 18% to
35%.51 Avascular fat grafts do not integrate into host tissue.
Rather, they break down over time and fail to provide structural
stability, leading to collapse of the injured growth plate area
and either physeal closure or bony bar recurrence. Other graft
materials, such as silicone rubber, are not ideal biomaterials
because they do not incorporate within host tissues and may
migrate from the surgical site causing subsequent problems.
Current interpositional materials offer imperfect solutions and
ultimately the bony bar may return and affect growth.52

If pronounced angular limb deformities following bony
bar formation exist, corrective osteotomy to the affected limb
may be performed to improve limb length and joint biome-
chanics.53 Osteotomy involves creating a wedge-shaped bone
defect, then opening the wedge, lengthening, and correcting
the angular deformity.54 Complications include infection,
neurovascular injury, additional physeal damage, or recur-
rence of the angular deformity.55,56

In severe cases, ipsilateral epiphysiodesis, artificial closure
of the physis, may be performed following bony bar forma-
tion to prevent further limb angulation. Generally, this is
performed in cases with minimal residual growth potential, or
cases where the bony bar occupies more than 50% of the
physeal volume.57 Closing the injured physis limits the de-
gree of subsequent angular deformity that can occur. In cases
where several centimeters of limb growth is anticipated, but
the bony bar occupies more than 50% of physeal volume,
bilateral epiphysiodesis is performed, tethering both physes to
minimize limb length discrepancy.58 Complications include
unpredictable growth arrest leading to continued limb length
discrepancies or worsened angular deformities.59,60

Successful restoration of growth following bony bar for-
mation is limited with current therapeutic options. Existing
interpositional materials are insufficient in restoring longi-
tudinal growth in that they do not integrate into host tissues
and they rely on the uninjured physeal cartilage to preserve
growth. Surgical techniques are often limited by the extent
of physeal injury. Reformation of the bony bar following
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resection occurs in up to 15–38% of cases, leading to ad-
ditional growth disturbance or additional surgeries.51 The
unpredictable nature of surgery coupled with imperfect graft
materials results in high rates of bar reformation speaking to
the critical need for novel, regenerative treatment methods.

Regenerative Approaches to Treat Physeal Injury

The morbidity and unpredictable nature of physeal in-
juries coupled with current therapeutic limitations establish
a critical need to develop effective treatments for affected
children. Successful treatments should prevent bony bar
formation and simultaneously regenerate native physeal
cartilage, restoring normal bone elongation. Regenerative
approaches utilizing stem cells, growth factors, and bio-
materials have the potential to overcome the shortcomings
of current approaches by restoring physeal cartilage and,
thus, may play an important role in the treatment of physeal
injuries. An overview of the current animal models of
physeal injury and research using cell-based therapies,
growth factors, and biomaterials in the different animal
models of injury along with strategic directions for modu-
lating intrinsic injury pathways is presented below.

Animal models of physeal injury

To investigate the different regenerative medicine ap-
proaches, animal models of physeal injury have been de-
veloped where injury to the physis results in bony repair
tissue, mimicking the bony bar formation seen in pediatric
patients. In addition to bony bar formation, it has also been
shown that tethers can form in the surrounding uninjured
physis after injury and are another mechanism of growth
dysfunction that should be evaluated.61,62

In small animal models, such as mice and rats, thera-
peutics can be tested immediately after injury to determine
whether they prevent bony bar formation and restore bone
elongation. Thus, they are a good initial model to test novel
therapeutics. However, due to their small size, it is difficult
to resect the bony bar that forms and implant a therapeutic
material, as would be performed clinically.

Larger animal models such as the rabbit, miniature pig, or
sheep have been used for these types of interventions.63–69

In the larger models, an injury to the physis is created and
the bony bar allowed to form. A second intervention is then
performed to remove the bony bar and implant a therapeutic
material. The desired outcomes are prevention of bony bar
reformation, prevention of angular deformities, and resto-
ration of longitudinal growth.

In addition to providing a means to test novel therapeutic
strategies, animal models of physeal injury also offer the op-
portunity to study mechanisms of bony bar formation and
identify potential targets for modulation.61,70–74 The rat model
of physeal injury has been widely used to investigate patho-
physiology.61,62,70,71,74–80 A drill-hole defect in the proximal
tibial physis creates a bony bar in a predictable and reproducible
manner (Fig. 3A). This well-established model has contributed
to identifying four phases of injury repair: inflammatory, fi-
brogenic, osteogenic, and remodeling (Fig. 3B).70,71,74–81

During the 3 days following injury, inflammatory cells
infiltrate the injured area.75,78 From days 4 to 7, mesenchymal
stem cells (MSCs) migrate from surrounding marrow com-
partments and go on to express osteogenic markers such as
Runx2, alkaline phosphatase, and osteocalcin (Ocn).74,75,78

Evidence of angiogenesis and formation of mineralized tissue
occurs between days 8 and 14.74 Bony remodeling occurs
after 14 days, producing a bony bar by 28 days.74 Within each

FIG. 3. (A) mCT and Sa-
franinO/Fast Green images
of rat physes 28 days after
surgery. Both mCT and Sa-
franinO staining for cartilage
tissue (red) show an intact
growth plate in the No Sur-
gery rat, while the rat that
underwent surgery displays
bony tissue within the growth
plate. Arrows show growth
plate area. *Shows area of
bony bar. (B) Schematic of
repair phases after physeal
injury in the rat model.
MSCs, mesenchymal stem
cells.
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phase, specific cell signaling pathways play central roles,
offering opportunities to inhibit osteogenesis or promote
chondrogenesis. This injury model also suggests that endog-
enous MSCs play a central role in bony bar formation and are
a potential target for physeal injury therapeutics.

Cellular based therapies

In early studies, implantation of articular cartilage or
peripheral physeal cartilage as an interpositional material in
a sheep model of growth plate injury inhibited bony bar
formation.82 Despite correction of growth deformities, the
transplanted cartilage demonstrated variable levels of apo-
ptosis, and normal physeal cartilage was not regenerated.

To optimize integration of implanted chondrocytes into the
injured physis, other groups have isolated and embedded
chondrocytes within scaffolds. Rabbits treated with physeal
implants composed of cultured chondrocytes embedded
within agarose gels exhibited no growth arrest or angular
deformity compared to untreated animals.83 After 2–4 weeks,
implants formed columnar and prehypertrophic chondrocytes
similar to native physeal cartilage.83 In pig models, cartilage-
like discs generated from autologous articular chondrocytes
prevented bony bar formation and growth arrest.84 Cultured
epiphyseal cartilaginous disc implants containing epiphyseal
chondrocytes also prevented bony bar formation in a sheep
model.85 On further investigation, these discs integrated into
host growth plate cartilage, forming columnar and pre-
hypertrophic zones mimicking native physeal cartilage.86

These studies suggest that chondrocytes could be used to
promote native-like cartilaginous repair tissue. However,
using autologous chondrocytes clinically may be limited by
the need to isolate cells from healthy pediatric tissues, thus
creating secondary injury sites. This has led to the investi-
gation of alternative cell sources such as MSCs.

MSCs are an attractive cell source for tissue engineering
due to their availability, immune privilege, and multipotent
differentiation capacity, especially toward the bone and
cartilage lineages. MSCs originating from various tissue
sources have been investigated for physeal injury treatment.
MSCs derived from periosteum, bone marrow (BM-MSC),
and adipose tissue (AT-MSC) were compared for their ability
to treat partial growth arrest in a rabbit model.87 Periosteal
and BM-MSC implants corrected angular deformities and
growth arrest, while AT-MSCs did not. Furthermore, periosteal
MSCs and BM-MSCs yielded native-like repair tissue with
columnar chondrocyte arrangement and a prehypertrophic
zone, while AT-MSCs resulted in irregular arrangement, sug-
gesting that cell source may affect repair potential.87

Treatment of physeal injuries with MSCs has been suc-
cessful in rabbit models,64,65,87–92 as well as in pigs.66 In
addition, treatment of porcine physeal injuries with a co-
MSC/chondrocyte graft yielded favorable repair tissue and
prevented growth deformities.67 However, treatment of
physeal injuries in a sheep model with BM-MSCs yielded
dense, fibrous repair tissue.69 One possible explanation for
this discrepancy is the chondrogenic predifferentiation of
MSCs that occurred before implantation in the rabbit and
porcine studies, but did not occur in the ovine study. A
recent study further complicates these findings by reporting
that treatment of rat physeal injuries with unstimulated BM-
MSCs corrected growth arrest, while treatment with chon-

drogenically predifferentiated BM-MSCs did not.62 How-
ever, treatment with either cell type decreased tether
formation in the adjacent, uninjured growth plate, which
could reduce growth disturbance. Overall, these studies
suggest that while MSCs are a potential cell source for the
treatment of physeal injuries, further work is necessary to
identify the optimal MSC source and differentiation state.

In addition to the implantation of exogenous MSCs for
the treatment of physeal injuries, endogenous stem cells can
also participate in tissue repair. As demonstrated in Figure 3,
MSCs from adjacent marrow compartments migrate into the
injured growth plate, undergo osteogenesis, and form bony
repair tissue.74 However, MSCs are also capable of differ-
entiating into a wide variety of connective tissue cells, in-
cluding cartilage, and may be used to repair growth plate
cartilage given the appropriate cues.93–96

MSCs express multiple chemokine receptors, including
CXCR1, CXCR2, CCR2, and CXCR4,97–99 and can home to
these chemokines, as well as stromal cell-derived factor 1
(SDF-1), interleukin-8, platelet derived growth factors, and
transforming growth factor beta (TGF-b) isoforms.97,100–103

SDF-1 has been shown to recruit MSCs from the marrow
and improve articular cartilage regeneration following in-
jury, suggesting that SDF-1 may be a potential candidate for
treatment of growth plate injuries.104–106

A strategic approach for physeal tissue engineering could
include developing composite interpositional biomaterials
that provide chemokine factors to recruit endogenous MSCs
from nearby marrow compartments. Furthermore, they
could provide factors that promote cartilage differentiation,
encouraging endogenous MSCs to form cartilage rather than
bone, leading to restoration of longitudinal growth and
prevention of subsequent complications.

Enhancing chondrogenic potential with growth factors

Whether the cellular based approach for physeal cartilage
regeneration relies on exogenous cells or endogenous cells,
the cells will need to undergo chondrogenic differentiation
to form cartilage tissue successfully. Three of the most ex-
tensively studied chondrogenic factors for MSCs and other
progenitor cells are insulin like growth factor-1 (IGF-1),
TGF-b1 and TGF-b3. Two separate studies demonstrated
that treatment of physeal injuries with IGF-I encapsulated in
poly(lactic-co-glycolic) acid (PLGA) scaffolds promoted
cartilage regeneration and decreased bony repair tissue
compared to empty scaffolds.63,107 Bone morphogenetic
proteins (BMPs) also play a role in chondrogenesis. Dif-
ferentiation of human BM-MSCs into proliferative zonal
cartilage cells has been demonstrated using sequential ex-
posure of MSCs to TGF-b3 followed by BMP-2.108 In a
sheep model, treatment of physeal injuries with locally de-
livered BMP-7 resulted in an overall increase in growth
plate height.109,110 These studies demonstrate the efficacy of
growth factor induced reconstruction of growth plate carti-
lage when delivered in an appropriate manner.

Biomaterial-based approaches

For cells and chondrogenic molecules to have an effect at
the site of physeal injury, they must be delivered locally by a
material that can serve as a temporary scaffold while new
tissue forms. Materials used in the treatment of physeal
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injuries have included collagen I and II,86 fibrin glue,87

hyaluronate-collagen-fibrin composites,65,92,93 collagen-
chitin scaffolds,66,67,111 agarose,61,88 chitin,64 gelatin,69,90

and PLGA.63,107 The outcomes of the studies using these
materials are outlined in Table 1.

In all cases, treatment with MSC- or chondrocyte-laden
biomaterials produced better results than biomaterials alone.
Biomaterial constructs alone often delayed or prevented
bony bar formation but ultimately resulted in fibrous repair
tissue and mild growth abnormalities. This suggests that a
variety of biomaterials may be used to introduce cells, but
that cells are ultimately key to restoring physeal cartilage.
Thus, it is important to use biomaterials that can effectively
deliver biofactors and/or provide an environment that en-
courages cells to migrate into the material and that can
perhaps also direct these cells toward the chondrogenic
lineage and/or maintain their chondrogenic phenotype.
Longer term studies are also necessary to fully evaluate the
effect of biomaterials on skeletal growth.

Physiochemical cues from the microenvironment, such as
cell-ECM interactions, cell–cell interactions, and dynamic
mechanical forces, influence stem cell differentiation and
tissue-synthesizing capabilities.112–117 Recent technology
has allowed scientists to use biomaterials as building blocks
to incorporate tissue mimetics such as ECM molecules and
enzyme-sensitive cross-links for degradation. This can cre-
ate a cartilage biomimetic environment to promote chon-
drogenic differentiation of stem cells coming into contact
with the hydrogel and has led to promising in vivo results for
cartilage repair.118–121

In addition to chemical cues, intrinsic biomaterial stiff-
ness provides mechanical cues, further directing stem cell
differentiation. This is especially important when the me-
chanical properties of the biomaterial direct cells away from
the osteogenic lineage and toward the chondrogenic line-
age.122 Such cartilage-biomimetic systems warrant further
investigation as potential novel interpositional materials that
could lead to improved physeal tissue engineering.

A common problem with current materials used clini-
cally, such as fat grafts, is that they do not provide sufficient
mechanical support to prevent collapse of the injury site. A
scaffolding construct with a load-bearing structural com-
ponent could minimize force differentials observed within
the surrounding physeal cartilage. Recently, groups have
investigated the use of three-dimensional (3D) printing to
create scaffolding structures, as well as cell-laden hydrogels
for use within scaffolds.123–125

Biomaterial constructs that offer a cartilage promoting
environment through the presentation of physiochemical
cues and a load-bearing structural component may be the
future of interpositional materials used after bony bar re-
section as they would allow for improved physeal repair and
restoration of longitudinal growth. These constructs may be
ideal for children that are candidates for bony bar resection,
as it may be sufficient to form a cartilage-like tissue that
would prevent bony bar reformation and allow the uninjured
physeal tissue to continue bone elongation. However, for
children that are not candidates for resection because they
have more than half their physis injured, and therefore in-
sufficient uninjured physeal tissue to continue growth, the
treatment strategy would need to be more robust. In these
cases, it may be necessary to recapitulate the complex zonal

microarchitecture and cellular organization of the physis to
restore growth.

Three-dimensional printing technology offers the oppor-
tunity to design multiple layers and heterogenous structures
within a biomaterial construct to mimic the different zones
of the physis with increased accuracy, which would be
difficult to achieve with conventional fabrication meth-
ods.126 Moreover, cells can be incorporated within the dif-
ferent layers and/or structures. Thus, combining cells,
biomaterials, and 3D printing may ultimately be necessary
to develop successful physeal tissue engineering approaches
that can benefit all patients suffering from physeal injuries.

Modulating intrinsic injury pathways
to prevent osteogenesis

Although promoting cartilage repair tissue after physeal
injury is of utmost importance, preventing osteogenesis and
bony bar formation is also a research avenue that should be
pursued. Small animal models, including the rat model of
physeal injury, have elucidated critical targets for modula-
tion in physeal injury pathophysiology. In rat growth plate
injuries, vascular endothelial growth factor (VEGF) and its
receptors are detected during the first 28 days postinjury.80

Systemic delivery of bevacizumab, a humanized anti-VEGF
antibody, demonstrated a reduction in osteogenic gene ex-
pression, fewer blood vessels, and decreased bony bar for-
mation within the injury site.71 Systemic delivery also led to
a reduction in bone growth in the contralateral limb, sug-
gesting adverse effects of systemic delivery.71 Thus, VEGF
inhibition warrants further investigation in preventing bony
bar formation after physeal injury, specifically, localized
antibody delivery to the injury may reduce adverse events. It
is important to release the antibody during the repair process
to prevent bony bar formation. However, since angiogenesis
is necessary for normal bone elongation, the antibody should
not remain in the area long term.127 Local, controlled, and
timed delivery of antiangiogenic factors can be achieved
with drug delivery systems and warrant further investigation
in the treatment of growth plate injuries.

In addition to VEGF, other molecular pathways have
been implicated in bony bar formation, including those re-
lated to Wnt/b-catenin signaling and BMP signaling.72

During late inflammatory and early fibrogenic phases, the
Wnt/b-catenin pathway is a key regulator of the osteogenic
differentiation of endogenous MSCs at the injury site.72,128

Inhibiting the Wnt/b-catenin pathway after physeal injury in
rats by an orally administered inhibitor led to decreased
expression of Wnt target genes, decreased osteogenesis and
bony bar formation, and also led to increased cartilage tissue
in the repair area.128 This suggests that the Wnt/b-catenin
signaling pathway is another potential target for preventing
bone formation after physeal injury, and this can also be
achieved through localized biomaterial-based drug delivery
systems.

Modulating pathways involved in ossification could also
be achieved using short interfering RNA (siRNA), where
key genes responsible for osteogenesis can be silenced,
potentially inhibiting bony bar formation. Localized and sus-
tained siRNA delivery has been shown to be possible through
biomaterial-based delivery systems.129–131 siRNA mole-
cules have been successfully encapsulated within degradable
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hydrogels demonstrating sustained release of siRNA mole-
cules. Furthermore, successful integration of siRNA molecules
into nanoparticle delivery systems and biodegradable solid
polymers show promise for localized gene silencing.131,132

Localized, targeted, gene silencing through siRNA molecules
may have a role in modulating intrinsic growth plate patho-
genesis and warrant further investigation for correcting and
preventing bony bar formation.

MicroRNA (miR) has recently become another target that
can be modulated to affect tissue repair. Inhibiting miR-222
expression in vitro improved osteogenic differentiation of
human MSCs as demonstrated by increased expression of
Runx2, COL1A1, and BGLAP.133 These results translated
into improved fracture healing in a rat fracture model when
miR-222 inhibitor was administered.133 Since upregulation
or inhibition of various miRNA expression patterns has the
potential to promote or inhibit osteogenic and chondrogenic
differentiation of MSCs,134–136 localized and controlled
delivery of miRNA modulators to physeal injury sites may
prove important to prohibiting the initial formation of a
bony bar and promote physeal cartilage regeneration. Suc-
cesses in identifying and manipulating key genes in fracture
healing using miRNA offer insight into the possibilities of
modulating pathways involved in physeal pathogenesis.
These successes warrant additional investigation in eluci-
dating and subsequently modulating patterns of miRNA
expression in physeal injury.

Conclusion

Physeal injury remains a significant cause of morbidity
among the pediatric population. The most significant com-
plication of physeal injury is bony bar formation, either
leading to angular limb deformities or complete growth
arrest. Current management, surgical or otherwise, has sig-
nificant limitations and may result in further morbidity in
the form of additional surgeries, further development of
growth arrest, or progression of angular limb deformities.
As such, there is a critical need to develop new treatment
strategies for physeal injury that not only prevent bony bar
formation but also lead to regeneration of healthy growth
plate cartilage, thus restoring normal bone elongation.

Methods under investigation include modulating intrinsic
injury pathways to prevent osteogenesis, as well as recruiting
or adding stem cells for regenerating damaged physeal car-
tilage. Additional methods include modulating cellular mi-
croenvironments of the injury site and creating interpositional
materials with the structural support necessary to prevent
collapse of the resection site. Development of an interposi-
tional material with structural support has immediate trans-
lational potential as current materials used after bony bar
resection, such as fat grafts, lead to poor outcomes. Further
developing these interpositional materials using biomaterials
that promote cartilage tissue will also be of great benefit to
treat children undergoing bony bar resection.

In severe cases, where children are currently not candi-
dates for bony bar resection due to a large physeal injury, it
will likely be necessary to engineer a construct that mimics
the complex zonal structural and cellular organization of the
physis to ensure bone elongation. This will be more chal-
lenging, as proper signals will need to be available to the cells
to progress from a resting state chondrocyte to a mineralizing

cell. It may also be necessary to incorporate exogenous cells,
which will increase the regulatory oversight needed to reach
clinical trials. However, advances in cell-instructive bioma-
terials, delivery of cell signaling molecules, and 3D printing
technology will allow progress to be made in the develop-
ment of complex structures, ultimately allowing their clinical
translation. Together, these will have important implications
in preventing significant morbidity in the pediatric population
affected by physeal injuries.
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