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Abstract: A whole slide imaging (WSI) system has recently been approved for primary 
diagnostic use in the US. The image quality and system throughput of WSI is largely 
determined by the autofocusing process. Traditional approaches acquire multiple images 
along the optical axis and maximize a figure of merit for autofocusing. Here we explore the 
use of deep convolution neural networks (CNNs) to predict the focal position of the acquired 
image without axial scanning. We investigate the autofocusing performance with three 
illumination settings: incoherent Kohler illumination, partially coherent illumination with two 
plane waves, and one-plane-wave illumination. We acquire ~130,000 images with different 
defocus distances as the training data set. Different defocus distances lead to different spatial 
features of the captured images. However, solely relying on the spatial information leads to a 
relatively bad performance of the autofocusing process. It is better to extract defocus features 
from transform domains of the acquired image. For incoherent illumination, the Fourier cutoff 
frequency is directly related to the defocus distance. Similarly, autocorrelation peaks are 
directly related to the defocus distance for two-plane-wave illumination. In our 
implementation, we use the spatial image, the Fourier spectrum, the autocorrelation of the 
spatial image, and combinations thereof as the inputs for the CNNs. We show that the 
information from the transform domains can improve the performance and robustness of the 
autofocusing process. The resulting focusing error is ~0.5 µm, which is within the 0.8-µm 
depth-of-field range. The reported approach requires little hardware modification for 
conventional WSI systems and the images can be captured on the fly without focus map 
surveying. It may find applications in WSI and time-lapse microscopy. The transform- and 
multi-domain approaches may also provide new insights for developing microscopy-related 
deep-learning networks. We have made our training and testing data set (~12 GB) open-
source for the broad research community. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction

High-density solid-state detector technology, coupled with affordable, terabyte-scale data 
storage, has greatly facilitated the development of whole slide imaging (WSI) instruments. In 
the biological realm, high-throughput digital imaging has undergone a period of exponential 
growth catalyzed by changes in imaging hardware and the need for big-data-driven analysis. 
In the medical realm, there has been an upsurge in worldwide attention on digital pathology 
[1], which converts tissue sections into digital slides that can be viewed, managed, and 
analyzed on computer screens. A major milestone was accomplished in 2017 when the US 
Food and Drug Administration approved Philips’ WSI system for the primary diagnostic use 
in the US [2]. Converting microscope slide into digital images also enable teleconsultations 
and adoption of artificial intelligence technologies for disease diagnosis. The new generation 
of pathologists trained on WSI systems and the emergence of artificial intelligence in medical 
diagnosis promises further growth of this field in the coming decades. 

A typical WSI system uses a 0.75 numerical aperture (NA), 20X objective lens to acquire 
high-resolution images of the sample. The acquired images (tiles) are then aligned and 
stitched together to produce a complete and seamless image of the entire slide. The depth of 
field of such a high NA objective lens is less than 1 µm, and thus, it is challenging to acquire 
in-focus images of different tiles of a sample with uneven topography. Autofocusing issue has 
been often cited as the culprit for poor image quality in digital pathology [5, 6]. This is not 
because autofocusing is difficult to do, but rather because of the need to perform accurate 
autofocusing at high speed and on the fly with the acquisition process. 

Conventional reflection based autofocusing methods cannot handle tissue slides with 
topography variation above the reference glass interface [4]. In current WSI systems, 
autofocusing solutions include focus map surveying, dual camera setups, optical coherent 
tomography (OCT) for depth sensing, among others. The focus map surveying approach 
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creates a focus map prior to scanning. For each point in the map, it typically moves the 
sample to different focal positions and acquires a z-stack. The best focal position is recovered 
by maximizing the image contrast of the acquired z-stack. This process is then repeated for 
other tiles and it is common to skip every 3-5 tiles to save time. Recently, we have 
demonstrated an implementation with two LEDs for focus map surveying without axial 
scanning [3]. The dual camera approach employs a secondary camera to acquire images for 
the autofocusing purpose [4–6]. It requires no focus map surveying and the images can be 
captured on the fly without axial scanning. However, the use of an additional camera and its 
alignment to the microscope may not be compatible with most existing WSI platforms. The 
OCT approach performs depth scan of the sample in high speed. However, it requires 
expensive and complicated Fourier-domain OCT hardware. 

Here we explore the use of deep convolution neural networks (CNNs) to predict the focal 
position of the acquired image without axial scanning. We compare the autofocusing 
performance with three illumination settings: 1) incoherent Kohler illumination, 2) partially 
coherent illumination with two plane waves, and 3) partially coherent illumination with one 
plane wave. We acquire ~130,000 images with different defocus distances as the training data 
set. Different defocus distances lead to different spatial features in the captured images. 
However, solely relying on the spatial information leads to a relatively bad performance of 
the autofocusing process. It is better to extract defocus features from transform domains of 
the acquired image. For incoherent illumination, Fourier cutoff frequency is directly related to 
the defocus distance. Similarly, autocorrelation peaks are directly related to the defocus 
distance for two-plane-wave illumination. In our implementation, we use the spatial image, 
the Fourier spectrum, the autocorrelation of the spatial image, and combinations thereof as the 
inputs for the CNNs. We show that the information from the transform domains can improve 
the performance and robustness of the autofocusing process. The resulting focusing error is 
~0.5 µm, which is within the 0.8-µm depth-of-field range. The reported approach requires 
little hardware modification for conventional WSI systems and the images can be captured on 
the fly without focus map surveying. It may find applications in WSI and time-lapse 
microscopy. The transform- and multi-domain approaches may also provide new insights for 
developing microscopy-related deep-learning networks. We have made our training and 
testing data set (~12 GB) open-source for the broad research community. 

The contribution of this paper is in threefold. First, we demonstrate the use of deep CNNs 
for single-frame rapid autofocusing in WSI. Different from the previous implementations, our 
approach requires neither a secondary camera nor focus map surveying. Second, we employ 
the transform- and multi-domain approaches to improve the accuracy and robustness of the 
proposed approach. The use of transform-domain information leads to a better autofocusing 
performance. To the best of our knowledge, this strategy is new for microscopy applications 
and may provide new insights for developing microscopy-related deep-learning networks. 
Third, we have made our ~12 GB training and testing data set open-source for the broad 
research community. The interested reader can explore better strategies for rapid 
autofocusing. 

This paper is structured as follows: in Section 2, we discuss the deep neural network 
model we employ in this work. We also discuss the three different illumination conditions 
under investigation. In Section 3, we compare the performances with spatial-only inputs, 
transform-domain-only inputs, and multi-domain inputs. We also test the trained CNNs for 
acquiring whole slide images of different types of samples. Finally, we summarize the results 
and discuss future directions in Section 4. 

2. Methods

The employed deep residual network architecture is shown in Fig. 1. It has been shown that 
deep residual networks achieve state-of-the-art performance in many image classification and 
processing applications [7–10]. In Fig. 1, the input to the network is a sample image captured 
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at a defocus position. This input image first passes through a convolution layer labeled as 
‘Conv1’ in Fig. 1, which contains 64 filters and each filter is of 7 by 7 pixels with a stride of 2 
and padding of 3 (‘64_7_2_3′ in ‘Conv 1’). After transmitting through a maximum pooling 
layer with a stride of 2, it successively passes through 4 residual blocks [8] labeled as 
‘Conv2’, ‘Conv3′, ‘Conv4’, and ‘Conv5′ in Fig. 1. The label ‘ × 3′ on top of ‘Conv 2’ block 
means repeating the block for three times. The signal then passes through a 7 by 7 average 
pooling layer with a stride of 7 and a fully connected layer. The output of the network is a 
regression layer and it predicts the defocus distance of the sample. 

The training data was acquired using a Nikon Eclipse motorized microscope with a 0.75 
NA, 20X objective lens. The samples for training are 35 research-grade human pathology 
slides with Hematoxylin and eosin stains (Omano OMSK-HP50). The images were acquired 
using a 5-megapixel color camera with 3.45 µm pixel size (Pointgrey BFS-U3-51S5C-C). We 
have tested three different illumination conditions for the autofocusing process: 1) regular 
incoherent Kolner illumination condition with the illumination NA matching to the detection 
NA, 2) partially coherent illumination with two plane waves (dual-LED), and 3) partially 
coherent illumination with one plane wave (one-LED). Kolner illumination is employed in 
most existing WSI systems. Dual-LED illumination has been recently demonstrated for 
single-frame focus map surveying with an offset distance [3]. For dual-LED illumination, the 
captured image contains two copies of the sample and the separation of the two copies is 
directly related to the defocus distance. Single-LED illumination is similar to that of regular 
holographic imaging settings. Autofocusing for holographic imaging is also an active research 
topic [11, 12]. In our implementation, we placed two spatially-confined LEDs at the back 
focal plane of the condenser lens for partially coherent illuminations. As such, we can switch 
between 3 different illumination conditions without modifying the setup. 

Fig. 1. The architecture of the deep residual network employed in this work. The input for the 
network is the captured image with an unknown defocus distance. The output of the network is 
the predicted defocus distance. 

In the acquisition process, we acquire a z-stack by moving the sample to 41 different 
defocus positions in the range from −10 µm to + 10 µm with a 0.5-µm step size. In most 
cases, the range from −10 µm to + 10 µm is sufficient to cover the possible focus drift of 
adjacent tiles. This range is also similar to the image-contrast-based methods. We recover the 
in-focus ground truth by maximizing the Brenner gradient of the z-stack images [13, 14]. For 
each z-position, we acquire three images with the three illumination conditions discussed 
above (i.e., three z-stacks for each location of the sample). Figure 2 shows an example of the 
three z-stacks we captured for the training data set. For the incoherent illumination condition 
in Fig. 2(a), we can see that the image contrast is higher for the positive defocus direction and 
this may be due to the asymmetry property of the axial point spread function. For the other 
two illumination conditions in Fig. 2(b) and 2(c), we take the green channels of the color 
images to get monochromatic intensity images (the employed LEDs are in green color). 

In the training process, we divide the acquired 5-megapixel images into 224 by 224 
smaller segments and minimize the difference between the network prediction and the 
ground-truth defocus position of the training data set. The spatial features of the acquired 
images are related to the defocus positions of the sample, and this can be seen in Fig. 2. 
However, solely relying on the spatial features may not be optimal for the autofocusing 
process. We propose to use or add Fourier spectrum and autocorrelation information as inputs 
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for the networks. The intuition behind this approach can be explained as follows. For 
incoherent illumination, the cutoff frequency of the Fourier spectrum is directly related to the 
defocus distance. For coherent illumination with two LEDs, the Fourier power spectrum 
contains a fringe pattern whose period is related to the defocus distance, and the image 
autocorrelation contains two first-order peaks whose locations are related to the defocus 
distance. 

Fig. 2. The three z-stacks for three illumination conditions. 

Fig. 3. Comparison between spatial-domain-only input ((a)-(c)), transform-domain-only input 
((d)-(e)), and multi-domain input ((f)-(g)) for the networks. (a) The red, green, and blue spatial 
inputs for the incoherent illumination condition. (b) The single green channel input for the 
dual-LED illumination condition. (c) The single green channel input for the single-LED 
illumination condition. (d) The Fourier-domain-only input for the incoherent illumination 
condition with a Fourier magnitude channel (d1), and Fourier angle channel (d2). (e) The 
autocorrelation-only input for the dual-LED illumination condition. (f) The two-domain input 
for the incoherent illumination condition with a spatial intensity channel (f1), a Fourier 
magnitude channel (f2), and a Fourier angle channel (f3). (g) The three-domain input for the 
dual-LED illumination condition with a spatial intensity channel (g1), a Fourier magnitude 
channel (g2), and an autocorrelation channel (g3). All data can be downloaded from Dataset 1 
[17]. 
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Figure 3 shows different inputs for the 7 networks. It can be divided into three groups: 
spatial-domain only inputs (Fig. 3(a)-3(c)), transform-domain-only inputs (Fig. 3(d)-3(e)), 
and multi-domain inputs (Fig. 3(f)-3(g)). In Fig. 3(a), the input is red, green, and blue spatial 
channels for the captured incoherent color image. Figure 3(b) shows the single green spatial 
input for the dual-LED case and Fig. 3(c) shows the single green spatial input for the single-
LED case. Figure 3(d) shows the Fourier-domain-only input for the incoherent illumination 
condition with a Fourier magnitude channel (Fig. 3(d1)) and a Fourier angle channel (Fig. 
3(d2)). Figure 3(e) shows the autocorrelation-only input for the dual-LED illumination 
condition. Figure 3(f) shows the input for the two-domain incoherent illumination case and 
the channels in Fig. 3(f1)-3(f3) are spatial intensity, Fourier magnitude, and Fourier angle 
respectively. Figure 3(g) shows the input for the dual-LED illumination case and the channels 
in Fig. 3(g1)-3(g3) are spatial intensity, Fourier magnitude, and autocorrelation respectively. 

In Fig. 3, we did not include the cases of the transform- and multi-domain inputs for the 
single-LED illumination. The reason is that, the Fourier spectrum and autocorrelation has 
little correlation with the defocus distance for the single-LED illumination case (the cutoff 
frequency remains the same for different defocus distances and there is no specific feature in 
the autocorrelation plot for the defocus distance). As we will discuss later, the deep residual 
networks with inputs shown in Fig. 3(e)-3(g) give us the best autofocusing performance. 

3. Autofocusing performance

With the 7 different inputs shown in Fig. 3, we have trained 7 networks for predicting the 
defocus distance. The entire training data set contains ~130,000 images (Dataset 1) [17]. The 
training process is run on a desktop computer with dual Nvidia GTX 1080 Ti graphic cards, 
an Intel i7-7700k CPU, and 64 GB memory. The networks’ weights are learned by using 
stochastic gradient descent with momentum (SGDM) to minimize the network prediction of 
the training data set and the ground-truth defocus distance. We empirically set an initial 
learning rate of 10−4 and reduce it 10 times for every 10 epochs. The mini-batch size is set to 
be 40 images. The training process is terminated when the error for the validation data set 
starts to increase. The training time ranges from 10 - 30 hours for each of the 7 networks. 

To evaluate the performance, we choose two types of samples for testing. The first type of 
samples is the stained tissue slides from the same vendor (Omano OMSK-HP50) as those 
used in the training data set (these slides have not been used in the training process). The 
second type of samples is de-identified H&E skin-tissue slides prepared by an independent 
clinical lab (the Dermatology Department of the UConn Health Center). In Figs. 4-6, we term 
the first type of samples as “different samples, same protocol” and the second type of samples 
as “different samples, different protocol”. 

In the testing process, we divide one acquired image into 224 by 224 smaller segments. 
These segments pass through the trained networks. We then discard 10 outliners from the 
segment predictions and the remaining predictions (from the small segments) are averaged to 
give the final defocus distance of the one input image. The reason for discarding outliners is 
some segments contain mostly empty regions and the predictions from these segments are not 
reliable. The choice of 10 outliners is based on the assumption that at most 10 segments are 
empty for each captured image. This assumption is true in most cases we have seen so far. 

The strategy of getting rid of outliners is similar to perform teaching evaluation of a 
course. All students (224 by 224 segments) in the class will give evaluations for the teacher. 
However, some students (segments with empty regions) are not responsible and always give 
‘0’. Therefore, the final evaluation score is typically based on the median of all evaluation 
scores (getting rid of outliners) instead of the average. In the left panels of Figs. 4-6, each data 
point represents the focusing error (y-axis) at a certain ground-truth defocus distance (x-axis). 

In Fig. 4, we show the autofocusing performance for three networks with spatial-domain 
only inputs, corresponding to the cases in Fig. 3(a)-(c)). The focusing errors are summarized 
in the table on the right. There are several observations from Fig. 4. First, the dual-LED 
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illumination case achieves the best performance for both the type 1 and type 2 samples. The 
intuition behind this is the separation between the two copies provides direct information for 
the defocus distance. Second, the performance of type 2 sample is worse than type 1 sample. 
The reason may be the spatial features of the type 2 samples are new to the networks. It may 
also justify the need of adding spatially independent features for the networks, such as the 
Fourier cutoff frequency and autocorrelation peaks. Third, the overall performance of the 
incoherent network with three color channels is the worst among the three. 

 

Fig. 4. The autofocusing performance for three networks with spatial-domain only inputs. (a) 
Test on different slides from the same set of samples (slides here have not been used in the 
training process). (b) Test on different slides prepared by a different clinical lab. 

In Fig. 5, we show the autofocusing performance for the two networks with transform-
domain-only inputs, corresponding to the cases in Fig. 3(d) and 3(e)). We can see that the 
dual-LED autocorrelation network has a very good overall performance on the two types of 
the samples. The focusing error is at least 3 times less than that of the spatial-domain only 
networks in Fig. 4. In particular, the average focusing errors are within the depth of field of 
the objective lens. 

In Fig. 6, we show the autofocusing performance for the two networks with multi-domain 
inputs, corresponding to the cases in Fig. 3(f) and 3(g)). We can see that the dual-LED three-
domain network has a similar performance compared to that of the dual-LED autocorrelation 
network. The incoherent 2-domain network has the best performance for the incoherent 
illumination condition. 

Based on Figs. 4-6, we can draw the three conclusions: 1) For incoherent illumination 
condition, the two-domain network has the best performance. 2) For dual-LED illumination 
condition, the autocorrelation network and the 3-domain network have similar performance. 
The autocorrelation network performs better on type 2 samples. 3) The networks for dual-
LED illumination, in general, perform better than the networks for the incoherent 
illumination. We also note that, if the defocus value is larger than 10 µm, the networks will 
predict a relatively large value in the range from −10 µm to 10 µm. The time for getting the 
predicted focus position from the networks is ~0.04 seconds. For transform-domain and 
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multi-domain networks, another 0.04-0.06 seconds are needed to perform the transform(s). 
We did not optimize the time in our implementation code. 

We have tested the cases of changing illumination NA and changing the objective lens. 
When we reduce the illumination NA by half, the focusing error using the trained networks 
increase by 2-3 folds. When we use a new 10X, 0.3 NA objective lens, the network gives a 
relatively constant prediction. These suggest that if we change the optical configuration, we 
may need to retrain the network via transferring learning. 

 

Fig. 5. The autofocusing performance for two networks with transform-domain-only inputs. (a) 
Test on different slides from the same set of samples (slides here have not been used in the 
training process). (b) Test on different slides prepared by a different clinical lab. 
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Fig. 6. The autofocusing performance for two networks with multi-domain inputs. (a) Test on 
different slides from the same set of samples (slides here have not been used in the training 
process). (b) Test on different slides prepared by a different clinical lab. 

In Fig. 7, we compare the performance between the spatial-domain only incoherent 
network and the spatial-Fourier domain incoherent network. Since the spatial features are new 
to the network (Fig. 7(a)), the spatial-domain network fails to predict the defocus distance in 
the orange curve in Fig. 7(c). The spatial-Fourier domain network, on the other hand, uses 
additional Fourier spectrum feature in Fig. 7(b), in which the cutoff frequency is directly 
related to the defocus distance. The performance of the 2-domain network is shown in the 
pink curve in Fig. 7(c) and it is more robust for new spatial features it has not seen before. 

 

Fig. 7. Comparison between the spatial-domain only incoherent network and two-domain 
incoherent network. (a) Spatial features at different defocus distances. (b) Fourier-spectrum 
features at different defocus distance. (c) The predictions of the two networks. 
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Fig. 8. Comparison between the spatial-domain only dual-LED network and the three-domain 
dual-LED network. Spatial, Fourier and autocorrelation features at (a) z = 6.6 µm and (b) z = 
9.6 µm. (c) The predictions of the two networks. 

Likewise, we show an example in Fig. 8 to compare the performance between the spatial-
domain only dual-LED network (orange curve in Fig. 8(c)) and the three-domain dual-LED 
network (pink curve in Fig. 8(c)). For dual-LED illumination, the autocorrelation channel 
contains two first-order peaks and the distance between these two peaks is directly related to 
the defocus distance, as shown in Fig. 8(a3) and 8(b3). However, if the defocus distance is too 
small, the first order peaks cannot be separated from the central peak. The employed three-
domain network is able to combine the information from different domains and make the best 
prediction of the defocus distance, as shown in the pink curve in Fig. 8(c). 

In Fig. 9, we tested the use of the two-domain incoherent network to perform whole slide 
imaging. Figure 9(a) shows the whole-slide image of a type 1 sample and the focus error map 
is shown in Fig. 9(c1). Figure 9(b) shows the whole-slide image of a type 2 sample and the 
focus error map is shown in Fig. 9(c2). For both cases, 99% of the focus errors are less than 
the depth of field of the employed objective lens. The proposed networks may provide a new 
solution for WSI with neither focus map surveying nor a secondary camera. 
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Fig. 9. Test of the two-domain incoherent network for whole slide imaging. (a) The captured 
whole-slide images of a type 1 sample (a) and type 2 sample (b). (c1) The focus error map for 
(a). (c2) The focus error map for (b). 

4. Discussion 

In summary, we report the use of deep residual networks to predict the focus position of the 
acquired image. Different from conventional CNN implementation which relies on the spatial 
features of the input images, we explore the use of Fourier spectrum and image 
autocorrelation as the input channels for the networks. We discuss and compare the 
performance with three different illumination conditions. For incoherent illumination 
condition, the two-domain network has the best performance. For dual-LED illumination 
condition, the autocorrelation network and the 3-domain network have similar performance. 
For the best networks, the average focusing error is about two times smaller than the depth of 
field of the employed objective lens. Different from the previous autofocusing approaches, 
the reported approach requires little hardware modification for existing WSI systems and the 
images can be captured on the fly with neither a secondary camera nor focus map surveying. 
The strategy of using transform- and multi-domain information for microscopy imaging, to 
the best of our knowledge, is new and may provide new insights for developing microscopy-
related deep-learning networks. 

Some of the findings in our work are counterintuitive. For example, one may think that 
even we know the sample is defocused by 1 µm, it is difficult to tell it is in the positive or 
negative direction. This difficulty leads to the use of a sample offset distance in the previous 
implementation [3], and as such, a focus map surveying process is needed. In this work, we 
show that the deep learning network is able to recognize the subtle spatial-feature difference 
under different defocus directions in Fig. 2(a) (due to the asymmetric axial point spread 
function of the objective lens). 
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The reported approach may also find applications in focus drift correction in time-lapse 
experiments. The existing solution is based on laser reflection method which requires the user 
to choose an offset distance to a reference surface (for dry objectives, the reference surface is 
the air-dish interface). The offset distance may vary for different locations because the 
thickness of the dish is not uniform. With proper training, the reported dual-LED networks 
may be able to automatically pick the best focus position based on the transform- or multi-
domain information input. This may be useful for long-term time-lapse cell culture imaging 
since one can generate coherent contrast of transparent samples using oblique illumination 
from the two LEDs. The wavelength of the LED can be chosen based on the passband of the 
emission filter. 

We also note that, for some specific applications, the samples have very similar spatial 
features across the entire slide (blood smear and Pap smear samples). In this case, we can 
capture a small amount of training data and perform transfer learning of the reported 
networks. 

We envision several future directions of our work. First, other network architectures can 
be used for better autofocusing performance. Dilated convolution can be used to expand the 
receptive field. An optimal neural network architecture can also be designed by the 
reinforcement learning approach [15]. Second, a better strategy can be used in predicting the 
focus position of the captured image. In the current implementation, we predict the focus 
position based on the captured image. One improvement is to use the previous focus positions 
of other segments to better predict current focus position. Another neural network can be used 
for this purpose. The input of this new neural network is the previous and current predictions 
from the reported networks in this work. The output of this new neural network is a new 
prediction of the focus position of the current segment based on all information around this 
segment. Third, the reported approach can be implemented on an embedded GPU integrated 
system [16]. Fourth, the gap between the same protocol and the different protocol samples 
stems from the domain adaptation problem in deep learning. How to minimize this gap is an 
important future direction. 

Appendix 

We provide the training and testing dataset for the 7 networks: Dataset 1 (~130,000 images in 
total and ~12 GB in size) [17]. The name of the folder provides the information of the 
illumination condition and the input channels. For example, ‘train_dualLED_3domains’ 
means it is training data for dual-LED illumination condition with 3-domain inputs. The name 
of the image file provides the information of the ground-truth defocus distance. For example, 
‘Seg1_defocus-650.jpg’ means it is from segment 1 and the ground-truth defocus distance is 
−650 nm. 
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