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Abstract: Single molecule localisation (SML) microscopy is a fundamental tool for biological
discoveries; it provides sub-diffraction spatial resolution images by detecting and localizing
"all" the fluorescent molecules labeling the structure of interest. For this reason, the effective
resolution of SML microscopy strictly depends on the algorithm used to detect and localize
the single molecules from the series of microscopy frames. To adapt to the different imaging
conditions that can occur in a SML experiment, all current localisation algorithms request, from
the microscopy users, the choice of different parameters. This choice is not always easy and their
wrong selection can lead to poor performance. Here we overcome this weakness with the use
of machine learning. We propose a parameter-free pipeline for SML learning based on support
vector machine (SVM). This strategy requires a short supervised training that consists in selecting
by the user few fluorescent molecules (∼ 10-20) from the frames under analysis. The algorithm
has been extensively tested on both synthetic and real acquisitions. Results are qualitatively and
quantitatively consistent with the state of the art in SML microscopy and demonstrate that the
introduction of machine learning can lead to a new class of algorithms competitive and conceived
from the user point of view.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
OCIS codes: (180.2520) Fluorescence microscopy; (100.0100) Image processing; (100.5010) Pattern recognition.
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13. M. Ovesnỳ, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “Thunderstorm: a comprehensive imagej plug-in
for palm and storm data analysis and super-resolution imaging,” Bioinformatics 30, 2389–2390 (2014).

14. D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. Unser, “Quantitative evaluation of software
packages for single-molecule localization microscopy,” Nat. Methods 12, 717–724 (2015).

15. S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and
R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods 9, 195–200
(2012).

16. Y. S. Hu, X. Nan, P. Sengupta, J. Lippincott-Schwartz, and H. Cang, “Accelerating 3b single-molecule super-resolution
microscopy with cloud computing,” Nat. Methods 10, 96–97 (2013).

17. Y. Tang, J. Hendriks, T. Gensch, L. Dai, and J. Li, “Automatic bayesian single molecule identification for localization
microscopy,” Scientific Reports 6, 33521 (2016).

18. U. Köthe, F. Herrmannsdörfer, I. Kats, and F. A. Hamprecht, “SimpleSTORM: A fast, self-calibrating reconstruction
algorithm for localization microscopy,” Histochem. Cell Biol. 141, 613–627 (2014).

19. S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge university press, 2004).
20. R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “Liblinear: A library for large linear classification,”

J. Mach. Learn. Res. 9, 1871–1874 (2008).
21. C. S. Smith, N. Joseph, B. Rieger, and K. A. Lidke, “Fast, single-molecule localization that achieves theoretically

minimum uncertainty,” Nat. Methods 7, 373–375 (2010).
22. “2013 isbi grand challenge localization microscopy,” http://bigwww.epfl.ch/smlm/challenge2013/

index.html. Accessed: 12-12-2016.
23. N. Banterle, K. H. Bui, E. A. Lemke, andM.Beck, “Fourier ring correlation as a resolution criterion for super-resolution

microscopy,” J. Struct. Biol. 183, 363–367 (2013).
24. R. Nieuwenhuizen, K. Lidke, M. Bates, D. Puig, D. GrÃĳnwald, S. Stallinga, and B. Rieger, “Measuring image

resolution in optical nanoscopy,” Nat. Methods 10, 557–562 (2013).
25. S. Colabrese, “SVM for Single Molecule Localisation Microscopy,” figshare (2018) [retrieved 14 March 2018],

http://doi.org/10.6084/m9.figshare.5977453.

1. Introduction

Single molecule localisation (SML) microscopy is an invaluable tool for biological discoveries
[1, 2], however its success in obtaining a super-resolved (or nanoscopy) image depends on the
optimization of several parameters, both from the experimental and image processing sides [3, 4].
With SML microscopy (e.g. PALM [5] and STORM [6]) fluorescent molecules are not active
all together, they are activated at random space and time, with the aim to gather a stack of
low resolution images made of few separated molecules each. A processing pipeline is then
fundamental in order to obtain a super-resolved final image, circumventing the Abbe diffraction
limit [7]. Generally, a SML algorithm achieved super-resolution in two main steps: a first phase
of detection, or segmentation, where fluorescent molecules are localised at a pixel level, and a
subsequent position refinement through fitting algorithms or faster and less accurate techniques,
like centroids. These two phases are typically preceded by low-pass or band-pass filters in order
to lower spurious signals contribution.
Despite such consolidated pipeline, the detection step is often made of heuristics e.g. the

user is asked to select a threshold to discriminate active molecules based on image intensity,
signal-to-noise ratio or the number of collected photons. The two extrema of a bad threshold
selection are: an under-sampling of the biological structure, that cannot thus be recovered, or the
presence of artefacts. The first effect has been experimentally demonstrated by [8] and it is in
agreement with the Nyquist sampling theorem [9]; the second is due to background mistaken for
active molecule, whenever the threshold is locally too low.

From amachine learning perspective, we can set the detection as a binary classification problem
that can be addressed with a plethora of algorithms not yet exploited in SML microscopy. Among
those we choose support vector machine (SVM) [10] because is able to obtain a spatial filter
directly modelled on part of the acquired data, thus ideally being more robust to the acquisition
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variability that naturally characterize these images. Moreover, to finally localise the molecules
with the required accuracy, we suggest the use of a linear and recursive formulation of non-linear
Least Squares fitting, similarly to what originally proposed in [11].

This work is based on the learning framework investigated in [12]. Here, the proof of concept
is extended and the pipeline of [12] is embedded within a GUI in order to be usable for the
community. The efficacy of the approach is proved on real datasets and performance are compared
with ThunderSTORM [13], the best proposal on SML low density images according to [14].
Though ThunderSTORM requires the user to select some parameters, it has also a default setting
for non-experts.

There are other works aiming at the automation of the parameters selection, they rely mainly on
Bayesian framework (like [15], [16], [17]), or statistical significance, as in SimpleSTORM, [18].
The proposed approach is more intuitive and it is not based on any assumption on noise statistics:
our hypothesis is that each frame can be divided in smaller pieces, each one having or not an
active molecule inside. We claim, and experimentally verify, that these two groups, or classes,
are linearly separable and the separation line can be computed directly on the first frames of each
acquisition.
The paper is organized as follows: Section 2 presents the methodological tools we used and

their implementation details, Section 3 shows results on synthetic and real datasets comparing
them with ThunderSTORM, conclusions are drawn in Section 4.

2. Methods

2.1. Support vector machines for detection of candidate regions

Support vector machine (SVM) [10] belongs to the max-margin supervised machine learning
family and has demonstrated good performance in several applications. The idea behind our
SVM-based algorithm is that activations and background are linearly separable and the separation
among them is the hyperplane below:

wTx + b = 0, (1)

where x is each vectorized image patch lying on the hyperplane represented by the parameters w
and b. The way to find w and b values is to formulate an optimization problem like in:

min
w

1
2

wTw + C
M∑
i=1

ψ ( f (xi, {w, b}), yi) , (2)

where the first part of the objective function is a margin defined as the minimum distance among
the closest examples of the two classes, the support vectors, and the hyperplane that separate them,
while the second part is a regularization term, here ψ is the hinge loss function. The optimization
is performed over a training dataset made of representatives of both classes. Each data object xi
has an associated label yi ∈ {−1,+1} that is used to minimize the miss-classification error.

From Eq. (2) we can see how the optimization problem is convex thus algorithms to solve it are
particularly efficient [19]. In any case, the learning is performed off-line at the beginning of the
acquisition session, with a very limited computational burden. For the SVM implementation, we
used liblinear [20], which implements the SVM with linear kernel and the value of the constant C
(see Eq. (2)) is chosen with a k-fold cross-validation step, k = 5, before the training. As detailed
in [12], the best patches dimension is 7× 7 and its representation in Eq. (2), xi , is obtained with a
simple vectorisation, which means that patch intensities are used as features.
By producing a spatial filter, the SVM algorithm both encloses pre-processing and detection.

At inference, when a new image is given, a linear transformation is applied on each frame. Such
transformation, formalised by a convolution of the image with a filter (the so-called SVM model),
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has the peculiarity of being learned from the dataset that has to be analysed. Thus, the framework
provides a custom filter with the property of being discriminative given the possible sensor noise
and aberrations of the instrument. Specifically, the filter is a patch of 7×7 made of the hyperplane
coefficients of Eq. (1), normalised to have ‖w‖ = 1.

The normalisation is fundamental because the obtained model is not affected by the absolute
intensity of the frames used for training and this is crucial in order to be consistent with a dropping
in background intensity over time which affects real experiments.
The SVM model computed over a given dataset is thus an ad hoc spatial filter that is used

in the pipeline to detect the activated molecules. Its output is a binary value for the assigned
class, 1 if a patch has a molecule and −1 otherwise. We consider as candidates for a subsequent
localisation refinement only patches labelled with 1.

2.2. Localisation at subpixel scale

Each emitting molecule is typically represented as a bivariate Gaussian function. This function
is considered to be a good approximation of the point spread function of a microscope, thus
localising an emitting molecule has the meaning of estimating the Gaussian peak. Two are the
approaches generally proposed: Maximum Likelihood Estimation or Least Square fitting. We
suggest [3] for an extensive comparison of the two methods. Based on [3], [14] and [4], we opted
for a Least Squares fitting that does not need any camera noise model. However, the SVD-based
detection approach proposed above is valid with any fitting methods. We do not detach from the
literature for the subpixel estimation but, rather than applying a non-linear Least Squares fitting
of a Gaussian, a parametrized Gaussian is linearised as proposed by [11].
In particular, each molecule is represented by:

G(x, y) = k
2πσxσy

· e
− (x−µx )

2

2σ2
x
− (y−µy )

2

2σ2
y , k ∈ <+ (3)

where σx , σy , µx , and µy are the x, y variances and mean values of the Gaussian, respectively,
while k is proportional to the number of photons.

Taking the logarithm of Eq. (3) is a convenient step because the solution of the Least Squares
can be obtained from the inversion of a linear system in {A, B,C,D, E}, defined as in Eq. (4) and
(5):

Ĝ(x, y) = ln
{

k
2πσxσy

}
− (x − µx)

2

2σ2
x

−
(y − µy)2

2σ2
y

= A + Bx + Cy + Dx2 + E y2,

(4)



A � ln
{

k
2πσxσy

}
− µ2

x

2σ2
x
− µ2

y

2σ2
y

B � µx

σ2
x

C � µy

σ2
y

D � − 1
2σ2

x

E � − 1
2σ2

y

. (5)

The quadratic function under consideration represents a bi-dimensional Gaussian if and only if
the following constraints are met: 

∀A ∈ <,
B >= 0
C >= 0
D < 0
E < 0

. (6)
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The implemented algorithm verifies that these conditions hold, if not the patches are discarded.
Each single patch is composed by the tuples (xi, yi, Ii) with xi, yi representing the position and
Ii the grey scale intensity of the i pixel. All the elements in the tuple are positive integers, Ii
because a negative value has no physical meaning, xi and yi because they are indexes. For a patch
with N pixels, our goal is to minimize:

N∑
i=1

ε2
i =

N∑
i=1

[
Îi − Ĝ(xi, yi)

]2
, (7)

where Îi is the logarithm of Ii , so that the sum of squared differences between the model and the
data is minimum.
Computing the derivative of the residual sum of squares with respect to each parameter and

setting it to zero, we obtain the linear system:

M ·

©­­­­­«
A
B
C
D
E

ª®®®®®¬
=

©­­­­­«

∑
ln zi∑

xi ln zi∑
yi ln zi∑
x2
i ln zi∑
y2
i ln zi

ª®®®®®¬
, (8)

where

M =

©­­­­­«
N − 1

∑
xi

∑
yi

∑
x2
i

∑
y2
i∑

xi
∑

x2
i

∑
xiyi

∑
x3
i

∑
xiy2

i∑
yi

∑
xiyi

∑
y2
i

∑
x2
i yi

∑
y3
i∑

x2
i

∑
x3
i

∑
x2
i yi

∑
x4
i

∑
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i y

2
i∑

y2
i

∑
xiy2

i

∑
y3
i

∑
x2
i y

2
i

∑
y4
i

ª®®®®®¬
. (9)

A good strategy is to weigh the data, since in logarithmic scale a larger error is associated with
small values of Ii . Our goal (at each iteration) is now to minimize the following expression:

N∑
i=1

w2
i ε

2
i =

N∑
i=1

w2
i

[
Îi − Ĝk(xi, yi)

]2

=

N∑
i=1
|Gk−1(xi, yi)|4

[
Îi − Ĝk(xi, yi)

]2
,

if k > 1

(10)

where the weight wi is the squared predicted value of the model obtained in the previous iteration.
This leads to the following linear system:

M̂ ·

©­­­­­«
A
B
C
D
E

ª®®®®®¬
=

©­­­­­«

∑
wi ln Ii∑
wi xi ln Ii∑
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wiy

2
i ln Ii

ª®®®®®¬
, (11)

where:

M̂ =
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Fig. 1. Pipeline for SML. The standard solution is presented on top (red arrows) while our
proposal is at the bottom, underlined with green arrows. The Support Vector Machine block
aims at substituting the red blocks of Pre-Processing and Detection, localisation is a common
step instead.

and
wi =

{
|Gk−1(xi, yi)|2 if k > 1
|G0(xi, yi)|2 if k = 1,

(13)

with k being the current iteration number; G0(xi, yi) is an initial guess, a Gaussian centered in
the origin of the detected patch under analysis. The outcome of this step is a list of points for
which the iterative procedure has converged. The number of iterations that states the convergence
is N = 20, regardless the dataset. A check on the convergence allows the algorithm to discard
points for which this condition is not reached.

2.3. 2D localisation pipeline and GUI

Our proposal is sketched in Fig. 1 where it is compared with the schematic of the most common
pipelines in the literature. The first green block, called Support Vector Machine aims at substituting
the red blocks of Pre-Processing and Detection. Localisation, instead, is a common operation
even if the suggested approach has some novelties with respect to what is proposed in the literature
of SML microscopy [4] and [21].
The pipeline is embedded within a GUI that, together with the main functions like loading

datasets or exporting results, guides the user in the training of the algorithm. The user is asked to
select some active molecules while examples from the background are selected automatically.
Few selections are enough to have good performance, as detailed in Section 3.

2.4. Datasets

In order to evaluate the performance of our proposal, both synthetic and real datasets are
used. While synthetic datasets ease a quantitative evaluation of the algorithm, real datasets are
fundamental to check the behaviour in case of real acquisition scenario.

Synthetic datasets are taken from the 2013 SML microscopy challenge described in [22]. They
have various levels of difficulty, depending on the amount and kind of simulated noise while the
biological structure to be imaged is mainly a bundle of Tubulin protein. Each dataset provides a
collection of frames in uncompressed 16-bits TIFF format; Table 1 shows more details about
them with Tubulin II being the dataset with the highest auto-fluorescent noise.

The proposed pipeline is then tested also on real datasets, not just to be sure that the algorithm
is able to face real acquisitions, but also to test if the SVM, though a supervised algorithm, is
applicable to real conditions in which the training dataset has to be created without ground truth.
The 2013 Challenge website provides access also to four experimental datasets, courtesy of

the Laboratory of Experimental Biophysics in EPFL, Switzerland. We have used the acquisitions
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Table 1. Properties of the synthetic datasets in use, for detailed informations on the acquisition
settings refer to [22].

DATASET # of molecules # of frames Resolution (nm/pixel) Dimension
Bundled 81049 12000 100 64 × 64
TubulinI 100000 2401 150 256 × 256
TubulinII 100000 2401 150 256 × 256

Table 2. Properties of the real datasets in use, for other information (frame rate, laser
wavelength, etc.) refer to [22].

DATASET NA # of frames Resolution (nm/pixel) Dimension
TubulinsLS 1.3 15000 100 64 × 64
TubulinAF647 1.46 9990 100 128 × 128

named TubulinsLS and TubulinAF647. The first one is taken imaging Tubulin filaments, the
other one is a fixed cell, stained with mouse anti-alpha-tubulin primary antibody and Alexa647
secondary antibody, Tab. 2 summarizes the images acquisition conditions.

2.5. Evaluation metrics

In the SML evaluation protocol, having a true positive (TP) means that a localisation is matched
with a point of the Ground Truth (GT) and this implies that it must be spatially close enough to it.
Following [14], we select a radius equal to the full-width half-maximum (FWHM) of the PSF, in
our case around 250 nm. The remaining localised molecules farthest from the radius, unpaired,
are categorized as false positives (FP). Finally, GT molecules that are not associated are called
false negatives (FN).

Detection rate and localisation accuracy are the performance indexes commonly used in SML
community, together with Fourier Ring Correlation [23,24] which is useful in the case of real
datasets when ground truth is not available. The Jaccard index (JAC) is used for monitoring the
detection, while the root mean square error (RMSE) is used for the accuracy. Only the detections
matched with the GT contribute to the equation 14 as:

a2 =
1
N

N∑
n=1
(xTest

n − xRef
n )2 + (yTest

n − y
Ref
n )2, (14)

where N = TP and a =accuracy.
For the sake of completeness we present the results also in terms of Precision and Recall

indexes, with formulas as follow: Jaccard J = TP/(FN+FP+TP), Precision p = TP/(TP+FP)
and Recall r = TP/(TP + FN).

3. Results

3.1. Synthetic data analysis

Preliminary results of the proposed method was presented in [12]. The evaluation was purely
quantitative and it was performed on the synthetic datasets of 2013 SML microscopy Challenge
[22]. The obtained results were compared with the best performing software of the Challenge,
namely ThunderSTORM [13], revealing a good detection ability of our pipeline. Results was
close or at the level of ThunderSTORM and the proposal stands out with better performance in
two of the three datasets.

However, in order to obtain the spatial filter (SVM model) for the detection task, the classifier
needs to be trained. To this end, in [12] each dataset was divided exactly in two non-overlapping
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stacks of frames; from the first, samples of positive and negative classes are extracted based on
GT information while the other frames were used as test set, to evaluate the performance of the
pipeline and reconstruct the super-resolved image.

Such way of building the training set is typical in classification problems but it is not realistic
for SML microscopy acquisition, questioning the usability of the approach. Here we demonstrate
that there is no need for a big amount of data by explicitly characterize the behavior of the pipeline
as the cardinality of the training set changes. We embed the algorithm proposed in [12] in a wider
framework made of a GUI and a simpler yet effective way to create a training set. Besides being
easier to use, this system allows a quick selection of few positive samples and the generation of
the training dataset from them.

A drawback in not having the GT information is the need to assume the highest local maxima
within a patch as the pixel location of an activation, which is not always the case due to the
presence of shot noise. This workaround has an impact on the detection ability if we compare the
results shown in [12] with the column named SVM-half of Table 3. In particular, such a training
set composition lead to a more selective identification of activations, as the Jaccard index reflects.

Table 3. Performance comparison among ThunderSTORM (TS), our SVM-based approach
with half of the acquired stack used for the training (SVM-half) and the same SVM approach
using for training only 20 activations (SVM-few).

Dataset Jacc (%) Acc (nm) Prec (%) Rec (%)
TS SVM SVM TS SVM SVM TS SVM SVM TS SVM SVM

half few half few half few half few
Bundled 93 81.7 87.2 14.5 14 14.3 99.8 100 99.9 93.2 81.7 87.2
TubulinI 74.4 47.3 64.5 22.2 17.2 18 96.2 100 99.9 76.7 47.3 64.5
TubulinII 67.3 42.3 48.8 27.7 22.2 23.8 98.4 100 79.9 68.1 42.3 55.6

Fig. 2. Quantitative results over the synthetic dataset Tubulin I. The measurements taken
into account are, clock wise starting from top-left: Jaccard, Accuracy, Precision and Recall.
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Table 3 shows the performance of ThunderSTORM and the SVM-based approach with two
different sizes of the training set. Namely, SVM-half means that half of the images are used to
build the SVM while SVM-few referred to a manual selection, through the GUI, of 20 activations.
Comparing the two kinds of training, we can say that all the performance that we can obtain
with few activations are in line with what we have using half of the dataset, looking at indexes
like Accuracy and Precision, and are much better in terms of Jaccard and Recall. A possible
explanation is that with too much data the algorithm tends to be driven by the activation patches
that are more common. Instead, the reason of the drop in Precision we have on TubulinII dataset
is that the dataset has more variability, being the noisiest, and the use of only 20 points penalizes
the performance.

Fig. 3. Results over the synthetic datasets Bundled Of Tubulin (top), Tubulin I (centre) and
Tubulin II (bottom). Our software is run neglecting the ground truth. Column wise, detail of
super-resolved images obtained by ThunderSTORM, by the SVM with half of the available
images for the training and by the SVM with 20 selections. The scale bar values are 0.3 µm
for Bundled Of Tubulin (top), and 1.2 µm for Tubulin I and Tubulin II.

We remark that the manual selection does not need to be precise because the algorithm
automatically shift the selection on the closest pixel with a local maxima intensity. Looking at
this selection from a different perspective, the user is only asked to select few areas within one
or more frames where to find positive activations, its selection will be refined by the algorithm
prior to be used. For each new selected pixel, also the number of background samples increases,
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so that the training set is equally divided into activations and background (i.e. it is balanced).
Whenever the manual selection is completed, the SVM is trained and the processing can start
on the remaining frames. Regarding the number of activations needed, Fig. 2 represents the
performance of the whole pipeline when the SVM of the detection step is trained increasing the
number of positive samples from 10 to 80, with a step of 10. We can see how on TubulinI with
the selection of few points, the Jaccard measurement is not as favourable as in ThunderSTORM
and the reason is a poor recall, while there is an improvement of Precision and Accuracy with
respect to the competitor; these results are in agreement with what we observe in all the analysed
datasets.
We can conclude that there is no need for the user to select a large amount of activations:

decreasing their number, the performance remains stable until a value between 10-20 selections,
for which there is a drop. The user can select a reasonable yet arbitrary amount of activations
without impairing the processing outcome. In this context, it is important to highlight that for a
not-expert user the selection of few activations is more intuitive than to chose arbitrary thresholds.
Fig. 3 shows the super-resolved images obtained by our algorithm, second and third column,

and the ones reconstructed by ThunderSTORM. Images underline the strength and limit of our
pipeline: the reconstruction is less noisy with respect to ThunderSTORM outputs, however not
all the TPs are detected, resulting in a structure made of fewer molecules in some regions. This
prudential approach is quantitative measurable and it clearly emerges observing the behaviour
of Precision and Recall measurements, see Fig. 2 as example on Tubulin I dataset. However,
comparison of the proposed method and ThunderSTORM via the FRC analysis does not show
significant differences, as it is possible to see from Fig. 4.

Fig. 4. Quantitative comparison of our algorithmwith ThunderSTORM. The FRC is computed
for the synthetic datasets, clock-wise starting from top-left: Bundled Of Tubulin, Tubulin I
and Tubulin II.

3.2. Real data analysis

In the previous Section we have seen how it is possible to achieve performance in line with a state
of the art algorithm, such as ThunderSTORM, without the need of a time-consuming training and
without the definition of arbitrary thresholds – now replaced by an intuitive labelling procedure
for the user.
We are proposing a pipeline without mentioning any hypothesis on noise or background

statistical behaviour. In fact, the detection task is based on the only assumption that the two
classes, activation and background, are linearly separable. In order to verify the benefits of the
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approach with real acquisitions, thus real background, we run the algorithm on several Tubulin
datasets.

Figure 5 presents the qualitative evaluation of our approach on TubulinAF647 and TubulinsLS
datasets [22], comparing it with ThunderSTORM. While on ThunderSTORM we use the default
set-up, on our pipeline we manually select 20 activations within the first frames. As it is evident
from the FRC, Fig. 6, the performance are exactly the same on TubulinAF647 while there is a
loss of few nm on TubulinLS. However, the final super-resolved images present sensibly less
artefacts with respect to ThunderSTORM reconstructions. This observation is valid on both
datasets as shown in Fig. 5, where a magnification underlines how ThunderSTORM detected
spurious activations and some big spots that our algorithm is more robust to discard. This later
difference, explain also the drop in correlation at low spatial frequencies in TubulinAF647 in the
FRC curve for our method with respect to ThunderSTORM.

Fig. 5. Results over the real datasets TubulinAF647 (top) and TubulinsLS (bottom). Column
wise, from left to righ: super-resolved images obtained by ThunderSTORM, upper left
corner, and our SVM-based algorithm, scale bar 1 µm (top) and 0.7 µm (bottom); a detail of
ThunderSTORM reconstruction and a detail of our SVM-based algorithm, scale bar 0.6 µm
(top) and 0.3 µm (bottom).

Fig. 6. Quantitative results (FRC) over the real datasets TubulinAF647 and TubulinsLS.
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4. Conclusions

Within SML microscopy, processing after image acquisition is fundamental to obtain a super-
resolved image. Unfortunately, state of the art algorithms rely on thresholds heuristically chosen
by the user to accomplish molecules detection.
We experimentally demonstrate that it is possible to formulate the detection step as a

classification problem, resulting in the building of a custom filter for each dataset to analyse.
Such training step is not always necessary, filters are saved and can be reused but we advice the
retraining in case the acquisition conditions differs too much. In particular, the same filters can
be used to analyses a long series of experiments where microscope and sample conditions does
not change, which is a typical scenario in SML microscopy.
The SVM filter has performances in line with the state of the art but it is conceived to be

threshold free, learning directly from the dataset the division between molecules and background.
The supply of few molecules to the algorithm prevents also the use of a pre-processing step,
reducing the introduction of artefacts and the computational load of the algorithm; this is further
reduced adopting the linearisation of a LS fitting, which eventually is a very accurate tool.
As future work, we plan to test our algorithm on a broader range of samples (with different

signal-to-noise/background ratios) and to extend our method to 3D by accounting for PSF with
distortions related to their position in depth. The detector has to be extended to encode such
distortions, for instance by designing appropriate kernels. Moreover, our fitting algorithm can
be possibly extended without strong modifications the algorithmic structure, especially if the
PSF model is still an exponential function. Another significant challenge in the context of SML
microscopy, which is not currently addressed by our SVM approach, is the ability to work under
high-density molecular conditions, i.e., low sparsity. Solution to this problem can still be searched
in the field of machine learning, but within other approaches, such as neural networks. The
complete MATLAB source code for our SVM-based localisation approach is available from
Code 1 [25].
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