Table 3. Comparison of the performance of Artificial Neural Networks (ANN) classifier with gradient descent back-propagation using hidden units {1, 2, 4, 8} and the momentum {0,0.2, 0.5} using 10-fold cross validation using SMOTE.
H = 1 | H = 2 | H = 4 | H = 8 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M = 0 | M = 0.2 | M = 0.5 | M = 0 | M = 0.2 | M = 0.5 | M = 0 | M = 0.2 | M = 0.5 | M = 0 | M = 0.2 | M = 0.5 | |
Sensitivity | 59.30 | 50.06 | 51.44 | 49.77 | 51.33 | 42.21 | 30.06 | 32.29 | 62.05 | 51.38 | 56.41 | 37.49 |
Specificity | 64.34 | 73.22 | 71.68 | 72.45 | 71.52 | 79.07 | 88.00 | 85.04 | 57.74 | 73.50 | 66.83 | 82.34 |
Precision | 47.24 | 50.16 | 49.44 | 49.30 | 49.25 | 52.05 | 57.43 | 53.75 | 44.15 | 51.07 | 47.79 | 53.33 |
F-score | 52.59 | 50.11 | 50.42 | 49.53 | 50.27 | 46.61 | 39.46 | 40.34 | 51.59 | 51.22 | 51.74 | 44.03 |
AUC | 0.66 | 0.66 | 0.65 | 0.66 | 0.66 | 0.67 | 0.67 | 0.67 | 0.66 | 0.67 | 0.67 | 0.67 |
RMSE | 0.47 | 0.47 | 0.47 | 0.47 | 0.47 | 0.46 | 0.46 | 0.46 | 0.47 | 0.47 | 0.47 | 0.47 |