Skip to main content
. 2018 Apr 18;13(4):e0195344. doi: 10.1371/journal.pone.0195344

Table 6. The performance of the Different Machine Learning Models evaluated using the Hold Out method (70/30) using SMOTE.

The RTF model achieve the highest AUC (0.88), Sensitivity (74.30%), Precision (73.50%) and F-Score (73.90%).

ANN LB LWB RTF BN SVM
Sensitivity 39.50% 31.40% 40.80% 74.30% 48.80% 26.30%
Specificity 86.50% 88.60% 81.80% 85.60% 79.30% 88.60%
Precision 61.20% 59.80% 54.60% 73.50% 55.90% 55.50%
F-score 48% 41.20% 46.64% 73.90% 52.10% 35.70%
AUC 0.72 0.70 0.70 0.88 0.71 0.58
RMSE 0.54 0.451 0.46 0.36 0.47 0.58