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Abstract

Networks in nature rarely function in isolation but instead interact with one another with a

form of a network of networks (NoN). A network of networks with interdependency between

distinct networks contains instability of abrupt collapse related to the global rule of activation.

As a remedy of the collapse instability, here we investigate a model of correlated NoN. We

find that the collapse instability can be removed when hubs provide the majority of intercon-

nections and interconnections are convergent between hubs. Thus, our study identifies a

stable structure of correlated NoN against catastrophic failures. Our result further suggests

a plausible way to enhance network robustness by manipulating connection patterns, along

with other methods such as controlling the state of node based on a local rule.

Introduction

Real-world complex systems ranging from critical infrastructure [1–3] and transportation net-

works [4, 5] to living organisms [6–8] are rarely formed by an isolated network but by a net-

work of networks (NoN) [3, 8–30]. For instance, different kinds of critical infrastructures such

as a power grid and the Internet are coupled and interact with one another [1, 2]. In addition,

many living systems including brain networks [8, 31] and cellular networks [7] consist of dif-

ferent modules strongly connected and interconnections between them.

Several models of a system of networks have been proposed with the role of interconnec-

tions that are links across different networks [3, 9, 30]. Models of NoN may fall into three clas-

ses according to the functionality of interconnections: Modular NoN (M-NoN), Catastrophic

NoN (C-NoN), and Robust NoN (R-NoN). A primitive model of NoN is Modular NoN in

which intraconnections within a network and interconnections between different networks

have no difference in function [9]. Since nodes connected by an interconnection do not con-

trol each other, this model corresponds to a single modular network with a different density of

intraconnections and interconnections.

However, considering distinct nature of intraconnections and interconnections in NoN, a

different role for different types of connections may be required. For example, when different

networks function interdependently, interconnections should not play the same role as intra-

connection but control the state of a connected node in the other networks [3, 30]. And, the
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state of a node in C-NoN model is determined by the global characteristics of a network [3,

32]. To be specific, a node can be active only if any interconnected nodes in different networks

belong to the global giant component. Such global rule results in an extreme instability of a sys-

tem of networks since a small perturbation can trigger catastrophic collapse.

In order to resolve the conflict between the extreme fragility and robust systems of networks

observed widely in reality such as the brain, R-NoN model in which the state of a node is con-

trolled by local property of interconnected nodes have been proposed [29, 30]. For R-NoN,

nodes connected by an interconnection still control each other. But, a node in R-NoN model

can be active even though interconnected nodes in a different network do not belong to the

global giant component. With this modification, R-NoN model becomes robust but still main-

tains the functionality across different networks.

Beside R-NoN, it is of interest how to produce a more robust C-NoN system because there

are some examples to follow the global rule such as a power grid. Catastrophic NoN model

involves vulnerability related to the global rule leading to the potential danger of abrupt col-

lapse. Here, we investigate a modified model taking into account a correlation in the connec-

tivity patterns of NoN as a remedy of the collapse instabilities. So far, the majority of research

about networks of networks have studied NoN with uncorrelated and one-to-one interconnec-

tions [3, 32]. In contrast, a system of coupled networks in reality are composed with one-to-

many interconnections and a degree-degree correlation between nodes in distinct networks

[4, 8, 33–35]. For instance, for the case of the brain networks, non-trivial patterns of connec-

tions have been reported for resting state and in task [8]. Correlated coupling was also

observed in several different types of complex systems such as transportation networks [35],

social networks [33], and critical infrastructure networks [2, 34].

In this study we find that the collapse instabilities in C-NoN can be removed, and the

model becomes stable by introducing correlated NoN. Specifically, we investigate the effect of

a degree-degree correlation on network robustness under random removal of nodes by

extending a previous analysis [8]. We find that when hubs are major source of outgoing links

and the interconnections are convergent between hubs, NoN becomes stable to function prop-

erly. Our study provides an optimal design of correlated NoN against an external perturbation

and a possible reason for stable functioning of correlated NoN in reality.

Model and theory

We consider a network of networks composed of two networks, A and B, with interconnec-

tions between the networks, for the sake of simplicity. Each node in NoN can have two differ-

ent types of links, inlinks and outlinks. Inlink refers connections inside the same network

while outlink is connections between nodes in different networks.

Here, we examine two different modes of interactions of out-links [8]: Catastrophic NoN

and Modular NoN. C-NoN represents that a node in network A operates properly only when

one of the reciprocal nodes in network B connected by outlinks also functions properly. Thus,

a node in network A cannot be active when it does not belong to the giant component on net-

work A or it loses all connectivity to network B. On the other hand, for M-NoN, a node in net-

work A can be active if it belongs to the giant component through either inlink or outlink.

Thus, even though a node in network A is completely decoupled from network B, such node

can be active as long as it still belongs to the giant component of A. Therefore, for M-NoN

mode of interactions, there is no cascading failure after the initial removal of nodes.

An example of C-NoN and M-NoN is depicted in Fig 1. For M-NoN model, a fraction of

nodes are targeted to be removed. Then all targeted nodes and their connections are removed

from the original network. Finally we identify the largest connected component linked by
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either intraconnections or interconnections. For C-NoN model, after the removal of initially

targeted nodes, we further remove nodes that do not have any interconnections. In addition,

we remove all nodes that do not belong to the largest connected component. So, we remove

iteratively nodes that do not belong to the giant component or do not have any interconnec-

tions. These removal processes lead to cascading failure.

In order to assess the robustness of a system against random removal, we measure the size

of giant component after initial node removal. We also identify the percolation threshold pc at

which the giant component disappears, to measure stability of NoN. NoN with low threshold

corresponds to stable structures because many nodes need to be removed to break it down,

whereas high percolation threshold represents vulnerable structures.

Catastrophic network of networks

In this section, we introduce a theory for C-NoN mode of interactions to find the size of giant

component and percolation threshold. Initially, all nodes in both networks A and B are active.

A fraction pA and pB of nodes randomly chosen are removed from the networks A and B,

respectively. Then, a node is active only if it belongs to the giant component in its network via

in-links and at the same time connects to the giant component on the other network via one of

its out-links. Nodes that do not satisfy the survival condition are removed from NoN itera-

tively. Note that nodes that do not have any out-links at the beginning can be active as long as

they remain to connect with the giant component via in-links.

To obtain the percolation threshold pc, we introduce a joint degree distributions of indegree

and outdegree as Pð~kÞ where~k ¼ ðkA
in; k

B
in; k

A
out; k

B
outÞ. We also introduce a conditional degree

distribution for a pair of connected nodes in different networks to take into account a degree-

degree correlation, PABðkA
injk

B
inÞ and PBAðkB

injk
A
inÞ. Next, we develop a theoretical framework for

the robustness of NoN on a locally tree-like structure with an arbitrary joint degree distribu-

tion and a conditional degree distribution [8].

We define uA and uB respectively as the probability that a node in networks A and B reached

by a randomly chosen in-link does not belong to a mutually connected giant component. uA

Fig 1. An example of C-NoN and M-NoN. In this example, initially a single node is removed by an external perturbation. For M-NoN, this node and all of its links are

removed. For C-NoN, we further remove nodes and their connections if they do not have any interconnections. These removing processes proceed iteratively until there

are no more nodes to be removed.

https://doi.org/10.1371/journal.pone.0195539.g001

Correlated network of networks enhances robustness against catastrophic failures

PLOS ONE | https://doi.org/10.1371/journal.pone.0195539 April 18, 2018 3 / 13

https://doi.org/10.1371/journal.pone.0195539.g001
https://doi.org/10.1371/journal.pone.0195539


and uB can be expressed by the following self-consistency equation

1 � ui ¼ pi

X

~k

ki
inPð~kÞ
hki

ini
ð1 � uki

in � 1

i Þðdki
out ;0
þ 1 � wki

out
ki

in
Þ

" #

; ð1Þ

where i 2 {A, B} and δi,j is the Kronecker delta. Here, wki
in

is the probability that a node reached

by a randomly chosen out-link from a node in network i with indegree ki
in does not belong to

the giant component of the opposite network. The first term ð1 � uki
in � 1

i Þ represents the proba-

bility that a node with ki
in belongs to the giant component in network i, and the second term

represents that the probability that a node with ki
in connects with the giant component of the

opposite network through an outlink. By the term dki
out ;0

in Eq (1), a node without out-links

(ki
out ¼ 0) can be treated differently with other nodes (ki

out 6¼ 0). Then, the probability wki
in

can

be expressed as

1 � wki
in
¼ pi 1 �

X

ki
in

Pðkj
injki

inÞu
kj

in
j

2

4

3

5: ð2Þ

Obtaining ui and wki
in

by solving these equations, the size Gi of the mutually connected giant

component of C-NoN is given by

Gi ¼ pi

X

~k

Pð~kÞð1 � uki
in

i Þðdki
out ;0
þ 1 � wki

out
ki

in
Þ

" #

: ð3Þ

Modular network of networks

For M-NoN, a node can survive if it belongs to the giant component a whole network. Given

degree distributions, the probability νi that a node reached by a randomly chosen inlink of net-

work i does not belong to the giant component of M-NoN is given by

1 � ni ¼ pi

X

~k

ki
inPð~kÞ
hki

ini
ð1 � n

ki
in � 1

i m
ki

out
ki

in
Þ

" #

: ð4Þ

Here, mki
in

is the probability that a node reached by a randomly chosen outlink from a node in

network i with indegree ki
in does not belong to the giant component of the opposite network.

And, the probability mki
in

can be obtained by following,

1 � mki
in
¼ pi 1 �

X

ki
in

Pðkj
injki

inÞn
kj

in
j

2

4

3

5: ð5Þ

For M-NoN, a node in network i can survive if it belongs to the giant component in network i
or the giant component in a different network by an interconnection. Once we obtain νi and

mki
in

, the size Gi of the giant component of M-NoN is

Gi ¼ pi

X

~k

Pð~kÞð1 � n
ki

in
i m

ki
out

ki
in
Þ

" #

: ð6Þ
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Correlation in network of networks

In real-world complex systems, NoN are not made randomly but with a certain degree-degree

correlation. Correlated coupling is observed in several different kinds of complex systems such

as transportation networks [35], social networks [33], and critical infrastructure networks

[2, 34], and crucial for structural and dynamical properties of networks [36–38]. For instance,

functional brain networks of the human show a peculiar correlation pattern [8]. In this paper,

we consider a degree-degree correlation using two scaling parameters, α and β (Fig 2) as

observed in functional networks of the human brain [8]. The parameter α is defined as

kout � ka
in: ð7Þ

Fig 2. Diagram of a correlated network of networks according to parameters α and β. Hubs (red nodes) and non-hubs nodes (blue nodes) can have

inlinks (solid lines) and outlinks (dotted lines). When α> 0, hubs are more likely to have many outlinks whereas when α< 0, non-hub nodes are more

likely to have outlinks. When β> 0, hubs prefer to connect with other hubs in a different network but when β< 0, hubs in one network prefer to connect to

non-hub nodes in a different network.

https://doi.org/10.1371/journal.pone.0195539.g002
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Thus, for α> 0 hubs of each network also have many outlinks, whereas for α< 0 nodes with

low degree have many outlinks (Fig 2). The other parameter β is defined as

knn
in � kb

in; ð8Þ

where knn
in is the average indegree of the nearest neighbors in the other network. Therefore, β

quantifies indegree-indegree correlation between two connected nodes by interconnections.

For β> 0, hubs connect with other hubs in the different network. Instead for β< 0, hubs in a

network connect with nodes with less degree in the other network (Fig 2). Note that uncorre-

lated NoN corresponds to α = 0 and β = 0.

Results

Effect of the density of out-links

We first examine the robustness of NoN by changing the density of links in order to check the

effect of outlinks. As an instructive example, we consider a coupled Erdös-Rényi (ER) network.

For ER NoN with no degree correlation, a joint degree distribution can be factorized as

Pð~kÞ ¼ Pinð
~kinÞPoutð

~koutÞ and a conditional degree distribution can be simply expressed as

Pðkj
injki

inÞ ¼ PinðkinÞ. We assume that two networks have the same average in-degree,

hkA
ini ¼ hk

B
ini ¼ hkini, and the fraction of removed nodes are the same for both networks, pA =

pB = p. Then, Eqs (1) and (2) can be simply reduced into a single equation:

u ¼ 1 � p½1 � ehkiniðu� 1Þ�½e� hkout i þ 1 � ephkout iðehkiniðu� 1Þ� 1Þ�: ð9Þ

where hkouti is the average outdegree. Once we define the function

f ðuÞ ¼ u � 1þ p½1 � ehkiniðu� 1Þ�½e� hkout i þ 1 � ephkoutiðehkiniðu� 1Þ� 1Þ�; ð10Þ

one can obtain the percolation threshold pc by imposing the conditions f(u) = f0(u) = 0. In addi-

tion, a tricritical line (hkini, hkouti, p) between continuous and discontinuous transitions can be

computed by the conditions f(u) = f0(u) = f00(u) = 0.

For M-NoN, the self-consistency equation is similarly given by

1 � n ¼ p½1 � ehkiniðn� 1Þehkoutipðehkiniðn� 1Þ� 1Þ�: ð11Þ

Then, one can obtain the percolation threshold with the conditions g(ν) = g0(ν) = 0, if we

define

gðnÞ ¼ n � 1þ p½1 � ehkiniðn� 1Þehkout ipðehkiniðn� 1Þ� 1Þ�: ð12Þ

Note that the percolation transition of M-NoN is always second-order and hence a tricritical

point does not exist.

Increasing the density of out-links, NoN with catastrophic interactions becomes getting

vulnerable as depicted in Fig 3(a). In addition, the transition between percolating and non per-

colating phases becomes discontinuous above a tricritical line and the size of discontinuous

jump at the transition increases with increasing hkouti [Fig 3(b)]. For C-NoN, outlinks force

interconnected systems to be more vulnerable and prone to abrupt collapse due to cascading

failure. On the other hand, inlinks preserve the connectivity and produce more robust struc-

tures. In conclusion, NoN with high hkini and low hkouti shows a stable structure for C-NoN.

For M-NoN, however, outlinks play the opposite role. High density of outlinks enhances

network robustness by adding a potential detour for connectivity [Fig 3(c)]. Outlinks contrib-

ute to maintain the robustness of networks for M-NoN but they can cause the opposite effect

Correlated network of networks enhances robustness against catastrophic failures
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Fig 3. (a) Percolation threshold pc of C-NoN for two coupled ER networks with no correlation predicted by theory. For high hkouti and low hkini, NoN is stable to

maintain mutual connectivity under the random removal of nodes. (b) The size of jump at the percolation threshold of C-NoN. The size of jump shows undergoes a

second-order phase transition for small hkouti, but the transition becomes discontinuous as hkouti increases. (c) Percolation threshold pc of M-NoN for ER NoN with no

degree correlation. NoN becomes more stable with increasing either hkini or hkouti. (d) The size of giant component for both C-NoN (open symbol) and M-NoN (filled

symbol) modes of interactions as a function p of a fraction of removed nodes. Analytic calculation (line) and numerical simulation (symbols) are shown together.

https://doi.org/10.1371/journal.pone.0195539.g003
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for C-NoN. Thus, the optimal design of interconnections between networks is called for main-

taining stable functioning for both M-NoN and C-NoN.

Generating correlated networks of networks

In order to examine the effect of a degree-degree correlation, we first construct NoN with a

correlation (α, β). We construct a network drawn from an indegree distribution Pi(kin), by fol-

lowing configuration model. Next, stubs of outgoing links are assigned to each node with the

probability proportional to ka
in. Connecting two nodes in different networks with a relationship

knn
in � kb

in is non-trivial. We cannot simply assign a set of connections for outlinks from a joint

distribution Pð~kÞ since such a set almost certainly fails to satisfy the topological constraint

because of the reciprocal relation between knn
in � kb

in and knn
in � k1=b

in , except for β = 0 and β = 1.

Instead, we use the following way as in [8] to construct NoN with a degree-degree correla-

tion β. We choose randomly node i in network A if it has available outlinks. Next, we connect

node i with node j with degree kB
in in network B with the probability that follows a Poisson dis-

tribution Pðkj
inÞ with a mean value l ¼ hCbkb

ini where Cb ¼ kð1� bÞ=2
max . This processes repeat until

there are no more out-links left. This algorithm cannot make NoN with exactly corresponding

β for most sets of (α, β), but it can guarantee that numerically generated βgen increases or

decreases in a monotonic manner with changing β [Figs 4(d) and 5(d)].

Robustness of correlated networks of networks

To search robust structures of correlated NoN, we generate NoN with the above algorithm and

obtain joint and conditional degree distributions from the realized networks with (α, β). Next,

we identify the critical fraction pc of nodes removal by imposing the condition G(pc) = 0, show-

ing network robustness with a given correlation. In order to examine the effect of the corre-

lated structure of NoN, we calculate pc(α, β) for the both modes of C-NoN and M-NoN with

ER networks and scale-free (SF) networks. The small pc(α, β) represents robust structures

against an external perturbation.

For ER NoN, when α� −1, low pc is observed regardless of β, indicating stable NoN [Fig 4

(a)]. In this region, hubs are isolated in a single network and maintain effectively the giant

component. As a result, the extensive size of jump at pc vanishes [Fig 4(b)]. Another stable

region is located at α> 0.5 and β> 0. High α and β guarantees that many hub-hub intercon-

nections, so that hubs are more likely protected from cascading failure. When −0.5< α< 0.5

and β< 0, a system of networks is highly vulnerable to catastrophic cascading failure. With

these parameters, hubs connect to nodes with less degree nodes in the other network, leading

to that hubs can be easily attacked by interdependency. For M-NoN, the network robustness

enhances with increasing α and βmonotonically [Fig 4(c)]. When α> 0 and β> 0, both

inlinks and outlinks converge toward hubs and the giant component can be preserved with

only a few hubs. Therefore, high α and β region is robust against random failure for M-NoN.

The impact of the correlation is more clear in SF networks because of a key role of hubs

with an inhomogeneous degree distribution. When α< 0, a networked system is stable (low

pc) because hubs are protected from cascading failure for N-NoN [Fig 5(a)]. When α> 0.5 and

β> 0, networks are also stable since hubs are more likely active due to a lot of interconnections

between them. However, for intermediate α (0 < α< 0.5) and divergent interconnections (β
< 0), hubs are easily exposed to cascading failure since they connect to non-hub nodes in the

other network. In this region, C-NoN is fragile to random attack and results in abrupt collapse

as shown in Fig 5(b). For M-NoN, a coupled SF network is more vulnerable when α< 0

because hubs have only few outlinks as in ER NoN [Fig 5(c)].
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Fig 4. (a) Percolation threshold and (b) size of jump of C-NoN in correlated ER NoN with N = 104, hkini = 2, and hkouti = 1 for different α and β. When α� −1 or α> 0.5

and β> 0, NoN becomes stable against random failure. In contrast, when −0.5< α< 0.5 and β< 0, NoN is vulnerable to catastrophic collapse. (c) percolation threshold

of M-NoN with correlated ER NoN with the same parameters as C-NoN. High α and β region is robust against random failure for M-NoN. (d) βgen observed from realized

networks at a given (α, β). The value βgen is obtained by a linear regression.

https://doi.org/10.1371/journal.pone.0195539.g004

Correlated network of networks enhances robustness against catastrophic failures

PLOS ONE | https://doi.org/10.1371/journal.pone.0195539 April 18, 2018 9 / 13

https://doi.org/10.1371/journal.pone.0195539.g004
https://doi.org/10.1371/journal.pone.0195539


Fig 5. (a) Percolation threshold, (b) size of jump for C-NoN, and (c) percolation threshold for M-NoN with two coupled SF networks with N = 104, hkouti = 1, the degree

exponent γ = 2.5, and kmax = 100 for different α and β. High α and β region is robust against random failure for both C-NoN and M-NoN. When α< 0 or α> 0.5 and β>
0, NoN becomes stable against random failure. In contrast, when −0.5< α< 0.5 and β< 0, NoN is vulnerable to catastrophic collapse. (d) βgen obtained by a linear

regression from realized networks at a given (α, β).

https://doi.org/10.1371/journal.pone.0195539.g005

Correlated network of networks enhances robustness against catastrophic failures

PLOS ONE | https://doi.org/10.1371/journal.pone.0195539 April 18, 2018 10 / 13

https://doi.org/10.1371/journal.pone.0195539.g005
https://doi.org/10.1371/journal.pone.0195539


In conclusion, the degree-degree correlation in NoN allows us to find a stable structure for

functioning of NoN. When hubs have many interconnections (α� 1) and hub-hub intercon-

nections are abundant (β> 0), NoN can maintain a robust structure for both C-NoN and

M-NoN. And, M-NoN is vulnerable when α< 0 and C-NoN is at risk of catastrophic collapse

when β< 0.

Discussion

We study the robustness of a system of networks with degree-degree correlations and one-to-

many interconnections between distinct networks. We investigate the effect of degree-degree

correlations on the network robustness with different modes of interconnections. For uncorre-

lated NoN, outlinks reduce the robustness for C-NoN while they enhance the robustness for

M-NoN. However, taking into account the degree correlation, we find stable structures in cor-

related networks of networks for both C-NoN and M-NoN. Specifically, when hubs provide

most interconnections and the interconnections are convergent, networks of networks become

more robust for both modes of interconnections. Our study of correlated NoN can shed light

on finding the origin of reliable functioning of interconnected networks in reality. In addition,

it can provide an economical method of designing robust multilayered systems such as inter-

connected infrastructures or financial systems. In addition to correlated NoN, robust NoN

model which is recently proposed [29, 30] can be another plausible solution of stable function-

ing of NoN and also allow us to find the core areas in NoN [30, 39–45].
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