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Abstract

Purpose

To wavelet transform the electromyograms of the vastii muscles and generate wavelet

intensity patterns (WIP) of runners. Test the hypotheses: 1) The WIP of the vastus medialis

(VM) and vastus lateralis (VL) of one step are more similar than the WIPs of these two mus-

cles, offset by one step. 2) The WIPs within one muscle differ by having maximal intensities

in specific frequency bands and these intensities are not always occurring at the same time

after heel strike. 3) The WIPs that were recorded form one muscle for all steps while running

can be grouped into clusters with similar WIPs. It is expected that clusters might have dis-

tinctly different, cluster specific mean WIPs.

Methods

The EMG of the vastii muscles from at least 1000 steps from twelve runners were recorded

using a bipolar current amplifier and yielded WIPs. Based on the weights obtained after a

principal component analysis the dissimilarities (1-correlation) between the WIPs were com-

puted. The dissimilarities were submitted to a hierarchical cluster analysis to search for

groups of steps with similar WIPs. The clusters formed by random surrogate WIPs were

used to determine whether the groups were likely to be created in a non-random manner.

Results

The steps were grouped in clusters showing similar WIPs. The grouping was based on the

frequency bands and their timing showing that they represented defining parts of the WIPs.

The correlations between the WIPs of the vastii muscles that were recorded during the

same step were higher than the correlations of WPIs that were recorded during consecutive

steps, indicating the non-randomness of the WIPs.

Conclusions

The spectral power of EMGs while running varies during the stance phase in time and fre-

quency, therefore a time averaged power spectrum cannot reflect the timing of events that
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occur while running. It seems likely that there might be a set of predefined patterns that are

used upon demand to stabilize the movement.

Introduction

Relating electric muscle activity to muscle fiber contractile force generation

Walking and running require dynamic motor control to produce the movement and maintain

stability. Surface electromyograms (EMGs) allow only a limited insight in how the muscles

work but they are one of the best non-invasive signals to monitor neuromuscular control of

the motor task. With respect to timing of muscle activity events one always has to consider

that because of the electromechanical delay (86 ms [1] and 25.9 ms [2]) the actual force pro-

duction occurs much later than the observed peak intensity of an EMG. Although the reported

values for electromechanical delay vary substantially, differences in the time of occurrence in

peak EMG intensity will most likely be reflected in differences in the time when the force is

generated unless one has a very mixed set of fiber types [3].

How physiological properties relate to the EMG power spectrum

There are diverse physiological properties that affect the power spectra. The muscle fibre con-

tractile force is known to decay with fatigue because of the inability of a muscle to remain suffi-

ciently active. It is common practice to attribute the fall in mean power frequency of the EMG

during fatigue to a proportionate fall in conduction velocity of the motor unit (MU) action

potentials [4]. However it is still possible that other factors such as de- and recruitment of

fibres and change in motor unit firing rates contribute to the fall in mean power frequency

during fatigue. A critical alteration of the power spectrum at low frequencies seems to occur

because of synchronization of the MU firings [5] and publications that deal with mean and

median frequency as indicators of fatigue do not show the spectra and may therefore be

unaware of that low frequency modulation. During explosive contractions the concept of

mean frequency seems also to fail, for whatever reason [6]. Furthermore it is likely that differ-

ent populations of MUs can be recruited during dynamic and locomotor tasks. In previous

studies, it was hypothesised that the higher-threshold units would contribute higher-frequency

components to the EMG spectra due to their faster conduction velocities [7][8]. Morphological

variables (fibre proportions and fibre areas) influenced the short term mean frequency–force

relationship in vastus lateralis [9]. However, whether different fiber types would be detectable

because of their spectral differences was debated in point counterpoint articles [10] [11]. This

short introduction shows that it is essential to improve our understanding of the spectral prop-

erties of the surface EMG and their physiological causes.

Time frequency analysis of EMGs

It has been suggested that the time and frequency analysis can shed some light on these ques-

tions. The time frequency analysis based on nonlinearly scaled wavelet allows extracting the

power of the EMG resolved in time and frequency [12] [13]. Normally the square root of the

power, the intensity of the EMG is displayed in a wavelet intensity pattern (WIP). In these

WIPs one can observe at what time and at which frequency the intensity of the EMG occurs.

This wavelet transform is very flexible and allows to select time and frequency resolutions that

can optimally resolve the properties in the lower frequency range (10 to 250Hz). However, the
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WIPs are very variable and average patterns have often been used to show, for instance, spec-

tral changes that can be interpreted to determine the effort stage of runners [14] or motor

strategy patterns of diabetic neuropathic individuals while walking [15]. These promising

results showed that the relevant spectral information needs a time frequency analysis to be

resolved.

Assumptions and hypotheses

In the present study we are interested in how the individual WIPs change while running, and

our underlying assumption is that the WIPs are non-random. One can expect that during gait

the WIPs have some similarities, after all they should reflect the muscle activity that produces

and controls the limb movement of similar steps. However, the muscle activity also has to be

slightly modulated for each step to contribute to the stability of gait and the necessary varia-

tions may be the reason that WIPs recorded for various steps are highly variable. It is therefore

the purpose of this paper to study the properties of this variability and investigate whether the

wavelet based approach can be used to detect some regularity in the WIPs. Three hypotheses

are tested:

1. The correlation between the WIPs of the vastus medialis (VM) and the vastus lateralis (VL)

yields a measure of similarity. It is hypothesized that the WIPs obtained from VM and VL

that were recorded during the same step will be similar, whereas the WIP obtained from

VM and the WIP obtained from VL of the previous or consecutive step would be less simi-

lar. In other words, there is a synergistic activation of the vastii muscles during one step

that results in similar WIPs for the VM and VL.

2. The WIPs within one muscle differ by having maximal intensities in specific frequency

bands and these maximal intensities are not always occurring at the same time after foot

strike.

3. During running, WIPs obtained from each of the vastii muscles can be grouped into clus-

ters with steps that were controlled by similar WIPs. The grouping is based on both, the fre-

quency aspects and the timing of the EMG intensity. It is expected that clusters might have

distinctly different, cluster specific mean WIPs. It is hypothesised that the median cluster

size of the measured pattern is statistically significantly larger than the median cluster size

of randomly generated surrogate WIPs. In that case, a limited number of WIPs that were

obtained during the running trial are distributed in larger clusters whereas smaller clusters

are expected from randomly generated surrogate WIPs.

Hypothesis 1) might be a consequence of the clustering of individual MUs observed in our

previous work [16] and that substantial force can only be produced if MUs action potentials

cluster because of a common synaptic input to motor neurons [17]. Clustering means that the

motor unit action potentials (MUAP) arrive at almost the same time irrespective of the reason

for it. Clustering of MUAP can also happen for other reasons than a common synaptic input,

for instance because of synchronization of MU [18] a process more precisely defined as classi-

cal synchronization [17]. The power of the EMG is most likely averaging out fluctuations

caused by single MUs and thus represent a quantity that is related to force production and

therefore reflects part of the process that stabilizes the knee joint. If the higher similarity can be

proven then one can conclude that the variation of the WIP have a non-random, step specific

intensity distribution.

Hypothesis 2) is based on the assumption that there are specific frequency bands that can

be assigned to how the EMG is generated e.g. whether various fiber types are activated or if
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clustering of MUs generate low frequency components. If this hypothesis is correct then one

can no longer work with the concept that an EMG during a repetitive dynamic motor task has

a single characteristic power spectrum that can be represented by a mean or median frequency

only.

Hypothesis 3) might yield a first indication that the WIPs are not caused by random modu-

lations that lead to a mean WIP but its acceptance would rather suggest that humans select

from, or mix a set of predefined muscle activation patterns to stabilize the steps while running.

This should allow us, in the sense of a pilot project, to decide whether WIPs could, in the

future, be analyzed by a pattern recognition approach to study what alters the predefined pat-

terns and their correlations.

Methods

Participants and experimental procedure

Twelve healthy, recreationally active, male participants (age: 26 ± 3 years, height: 175 ± 7 cm,

weight: 71 ± 6 kg) volunteered and gave their written informed consent to participate in this

study. Ethical approval for this research study involving human participants was obtained

from the University of Calgary’s Conjoint Health Research Ethics Board, in spirit of the Hel-

sinki Declaration. The participants were asked to run on a treadmill (Quinton Q55, Mortara

Instrument Inc., Milwaukee, WI, USA) at a speed of 6.5 mph (10.5 km/h, 2.9 m/s) for a time of

15 minutes to obtain at least 1000 steps per participant.

EMG signal recording

In order to obtain EMG currents from VM and VL, the skin surface above the muscles was

shaved, slightly abraded with sand paper and cleaned with alcohol wipes to ensure high signal

conductivity. Bipolar Ag-AgCl electrodes (Norotrode Myotronics-Noromed Inc., US) were

placed over the muscle bellies of VM and VL according to electrode locations recommended

in SENIAM guidelines [19]. EMG currents were recorded using bipolar version of a previously

described monopolar current amplifier [20]. The study was duplicated using a traditional

potential amplifier but to keep the manuscript short, only the detailed results of the new cur-

rent amplifier were reported because the results with the potential amplifier deviated only mar-

ginally. The signals were then electronically band-pass filtered between cut-off frequencies of

10Hz (4th order Butterworth filter) and 1000Hz (2nd order Butterworth filter). The amplifica-

tion was set to optimally use most of the dynamic range of the A/D converter.

Signal processing and computation of WIPs

The following signal processing was automated and no parameters had to be set for individual

participants. All steps of a trial were used and no visual exclusions were made that could bias

the results. Foot strike was automatically detected from the accelerometer signal. EMG periods

were selected during time windows between 120ms prior to foot strike and 200ms after foot

strike, when the muscle was active. These EMGs were wavelet transformed using the equations

quoted in [12] [13]. There were 20 symmetric, non-orthogonal Cauchy wavelets with the fol-

lowing center frequencies (2.5, 5, 8.2, 13, 19, 25, 35, 44, 55, 65, 80, 94, 107, 125, 142, 160, 180,

202, 222, 247Hz). These wavelets are discrete in frequency using 20 distinct wavelets (discrete

wavelet transform in frequency). The wavelet transform was almost continuous in time using

fixed time intervals of dt = 6.67 ms. The wavelets were selected because of their symmetrical

shape, thus they do not introduce time shifts of the observed intensities. The intensities

obtained by the wavelet transform were resampled in time to yield 48 time points whereby
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foot strike was at point 18. The WIP thus represent the intensity at 20 frequencies and 48 time

points and are represented by a pattern-vector with a dimensionality of 960. Because the low

frequency part of the power spectrum might be strongly modulated by MUAP that cluster

there are suggestions that recommend to focus on higher frequency ranges [21]. All wavelet

patterns for each vastii muscle were normalized to a single normalization factor that was

obtained in the frequency range between 107Hz and 247Hz, where the clustering of MU is

expected to have a minimal effect. Specifically, the WIPs were averaged across all steps, the

intensities for each wavelet were averaged over time, and the sum of the mean intensities in

the frequency bands between 107Hz and 247Hz yielded the normalization factor.

To represent the WIP in a lower dimensional space, pattern-vectors from all steps

(N> 1000) from VM and VL were combined in one matrix (M_raw). The size of M-raw was

2N x 960. The mean of all patterns (M_mean) was subtracted and a principal component anal-

ysis was applied yielding PC-vectors. Only a subset of PC-vectors, those that explain 99% of

the variability were retained. The M_mean was then projected onto the subset of PC-vectors to

obtain the part of M_mean that can be reconstructed from these PC-vectors. The residual of

M_mean is the difference M_mean–M_mean_reconstructed. The residual vector (PC-resid-

ual) was normalized to 1 and added as the first vector to the subset of PC-vectors. Together

they form the base-vectors of the new, lower dimensional vector space that can represent all

WIPs inclusive the mean WIP. The dimensionality of this space is called new dimensionality

(nd). The weights (W_VM and W_VL) representing the WIP of the VM and VL muscle were

obtained projecting the pattern vectors of M_raw onto these base vectors. Each weight of

W_VM or W_VL has a mean (W_VM_mean, W_VL_mean) and a standard deviation

(W_VM_std, W_VL_std). This is called a weight distribution of the raw WIPs. Each WIP can

be reconstructed using a linear combination of the weights (wi) multiplied by the base-vectors

(PCi).

WIP ¼
Xnd

i¼1

wi � PCi

Surrogate WIPs were generated using the same base vectors combined with random weights

(wi) drawn randomly from the weight distribution that was obtained from the raw WIPs. If the

raw WIPs were represented by random mixtures of weights drawn from the weight distribution,

then the clustering of a set of surrogate patterns would yield almost the same result compared to

the clustering obtained for the raw WIPs. The surrogates were therefore used to test whether

the raw WIPs could be explained using a random superposition of weights.

Similarity of WIPs

To assess the similarity of WIPs the correlation between the weights representing the WIPs

was computed. First the correlation of WIPs of VM and VL that were obtained during the

same step were computed. Thereafter, the correlation between a WIP from VM and a WIP

from VL of the consecutive step was computed. The paired differences between the two corre-

lations were computed for all steps. The mean and the standard error of the paired differences

were computed. A student’s t-test was used to assess whether the paired differences were sig-

nificant (hypothesis 1).

Cluster analysis

The cluster analysis was performed individually for the VM and VL muscles. The correlations

between all WIPs of one muscle that were obtained for all steps were computed. For the
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purpose of finding clusters, it is advantageous to use a measure of dissimilarity, which was

defined as 1-correlation. The dissimilarity was used to form an agglomerative hierarchical

cluster tree by the Matlab linkage function using the furthest distance method, which returns a

matrix Z that encodes a tree of hierarchical clusters of the rows of the matrix containing the

dissimilarities. A dendrogram plot was used to display the tree of hierarchical clusters. To con-

struct agglomerative clusters from linkages the Matlab cluster function was used. The cut-off

value was the mean dissimilarity plus one standard deviation and the criterion required by the

Matlab function was “distance”. As a result, one obtains a number of clusters, each character-

ised by an index (k). The WIP of each step is then assigned to the clusterk. Thus, each cluster

contains the WIPs from multiple steps. The number of WIPs in a cluster is called the cluster

size. A histogram was constructed showing the number of clusters that had the same cluster

size. The median of the cluster size was computed for the raw WIPs. The higher the median

cluster size is, the more steps are in larger clusters. The median cluster size values of surrogate

WIPs were computed from twenty-five sets of N surrogate WIPs. A sufficiently large number

of sets was needed to accurately compute the average and standard deviation of median cluster

sizes. If the median cluster size of the raw WIPs is outside the 95% interval of the surrogate

WIP’s median cluster sizes, then one can conclude that there were non-random similarities

between the raw WIPs of the original steps in the clusters (hypothesis 3). From all raw WIPs of

clusters with cluster sizes above the median cluster size, the two that had the greatest dissimi-

larity were selected to discuss the main aspects causing the dissimilarity.

Results

Typical results of individual subjects will be shown first to illustrate the extraction of variables

reported in Table 1 and to reveal general properties of WIPs while running. The mean across

all subjects of the values in Table 1 obtained from the EMG potential amplifier deviated by less

than 4.5% from the values obtained with the current amplifier and details are therefore not

reported.

Between 1209 to1374 steps per participant were used to compute the WIPs representing the

muscle activity. The mean over all steps, of the WIPs of VM and VL, for 12 subjects show sub-

ject specific results indicating the probability that the muscle will be activated at a certain fre-

quency and time (Fig 1). Individual subjects show WIPs with specific characteristics. Most

subjects show a high intensity in a wide frequency band, however, subject 8, 11 and 12 show

distinctly higher frequencies for the VM muscle. There are two other frequency bands, one

around 40Hz and one at 25Hz or below that significantly contribute to the WIPs either at a dif-

ferent time or just forming a distinct separate maximal intensity at a lower frequency (subject

2 and 4). The WIP seem skewed at low frequencies towards times further away from foot

strike.

The dimensionality of a WIP is 960 and was reduced to a new dimensionality of, on average

113, by the principle component analysis. The WIP of the first five PC-vectors obtained from

both vastii muscles are shown for subject 1 together with the WIP of the PC-residual (Fig 2).

WIPs of PC-vectors show patterns that contribute as a whole to the final WIP of one step. The

contribution is indicated by the weight factor. For this subject the PC-vectors most distinctly

differentiate the frequency bands mentioned in Fig 1 above. The WIP of the first PC-vector

indicates a clear dominant band at about 80Hz it also shows a distinct sideband at 40Hz and a

very weak but distinct band at 200Hz. This WIP contributes most to the WIP of the step, it

gets modulated by the contributions (weights) of the WIPs of the higher order PC-vectors. The

PC-vector#2 shows that intensities at frequencies at 80Hz thus slightly above 65Hz represent a

trade-off for frequencies at around 25Hz. Finally the WIP of PC-vector#4 contributes to 4

EMG wavelet intensity patterns of runners, a cluster analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0195125 April 18, 2018 6 / 19

https://doi.org/10.1371/journal.pone.0195125


Table 1. Results of correlation analysis and hierarchical clustering.

subject# 1 2 3 4 5 6 7 8 9 10 11 12

new dimension of

PC_vector space 104 101 126 116 117 112 97 122 95 124 122 130

correlation VM/VL,

mean � 100 83 72 75 82 80 79 84 71 84 65 76 70

correlation VM/VL,

ste. � 100 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2

correlation VM/VL,

slope � 100000 1.0 3.6 0.0 -6.1 -0.4 1.8 0.7 -0.3 -2.0 7.3 3.7 -0.6

correlation VM/VL,

p of slope � 100 0.4 0.0 92 0.0 37 0.2 4 57 0.0 0.0 0.0 19

correlation paired

difference, mean �100 2.1 0.2 0.7 3.5 2.4 2.1 3.4 1 4.1 0.9 0.6 1.7

correlation paired

difference, ste. � 100 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

dissimilarity VM, mean

of all combinations�100 19 15 17 18 20 20 18 21 19 19 21 24

dissimilarity VM,

std. � 100 5 4.6 4.8 4.5 4.6 5.1 5.1 5.3 5.8 7.3 5.1 5.4

cut-off for hierarchical

clustering, VM � 100 24 19 22 22 25 25 23 26 24 26 26 29

number of clusters, VM 65 50 56 62 70 56 56 57 44 20 60 56

max. number of steps

in a cluster, VM 54 125 84 54 57 89 78 70 69 219 60 74

median of number of

clusters, VM 17 17 18 18 13 16 19 15 26 30 20 19

number of clusters,

VM surr 113 78 86 111 123 118 115 99 78 75 114 130

max. number of steps

in a cluster, VM surr 82 55 81 50 39 47 76 61 71 284 60 44

median of number of

clusters, VM surr 7 10 9 7 7 5 6 7 11 3 8 5

dissimilarity VL, mean

of all combinations�100 18 15 19 19 20 17 18 20 19 19 20 22

dissimilarity VL,

std.�100 5 4.3 4.4 5.8 5.2 5.2 5.2 4.8 5.7 4.3 5.1 5.1

cut-off for hierarchical

clustering, VL � 100 23 19 24 25 25 22 23 25 25 23 25 27

number of clusters, VL 59 60 70 42 54 53 58 61 53 76 62 57

max. number of steps

in a cluster, VL 81 61 40 101 76 70 95 43 116 39 72 50

median of number of

clusters, VL 17 17 16 20 20 17 16 14 18 15 17 18

number of clusters,

VL surr 107 85 116 74 102 76 110 99 105 114 102 119

max. number of steps

in a cluster, VL surr 69 47 51 89 87 67 92 38 136 50 79 73

median of number of

clusters, VL surr 6 9 7 9 6 9 7 7 6 8 9 5

https://doi.org/10.1371/journal.pone.0195125.t001
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Fig 1. Mean wavelet intensity patterns (WIPs). a) VM and b) VL for all steps from 12 subjects. The subject # is ascending from left to right and top to bottom. The

intensities were normalized to the mean intensity in the frequency range covered by the wavelets with center frequencies 107 to 247Hz.

https://doi.org/10.1371/journal.pone.0195125.g001
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Fig 2. WIPs of the PC vectors obtained from both vastii muscles. a) subject#1 and b) subject#4. Top left is the WIP of the PC-residual vector of the mean, it

is needed to be able to reconstruct the mean. The WIP of the residual vector is followed by the WIP of the first five PC-vectors. The maximal positive value is

indicated in bright yellow and the maximal negative value is indicated in dark blue. The norm is 1 for all vectors. All PC-vectors and the PC- residual vector are

orthogonal to one another. The number of PC-vectors that explain 99% of the variability together with the residual form the new base for the patterns and has

the new dimensionality, nd (Table 1).

https://doi.org/10.1371/journal.pone.0195125.g002
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frequency bands. Thus one can subdivide the frequencies into 4 frequency bands, one below

25Hz then the 40Hz band in the range (34Hz to 53Hz) followed by the 80Hz band in the range

(65Hz to 94Hz) and a high frequency band above 107Hz. The PC-vectors show that these fre-

quencies do not necessarily occur at the same time during gait. Of interest is also the WIP of

the residual-vector. Its contributing weight is small compared to the weights of the five first

PC-vectors (Fig 3). However, specifically in the 80Hz band and 120Hz range it reveals a peri-

odicity. Because it is the residual of the mean, it describes an aspect that is common to the

mean and thus to the WIP of all steps.

The first few WIPs of the PC-vectors reveal the dominant frequency bands that are contrib-

uting to the WIPs. The WIP of the PC-vector#1 contributes with positive weights and it con-

tributes the highest variability (about 20% of the total variance) (Fig 3). The weights of the PC-

vector#2 contributes about 10% to the total variance. Thus, it indicates a step to step variability

of the spectrum of the EMG. The step to step variability of the first 5 PC-vectors show that the

different frequency bands do not contribute equally to each step. On average about 110 PC-

vectors are needed to explain 99% of the variability of the WIPs whereby the first 5 explain

already about 50%. PC-vector#6 only contributes 3% and the higher order ones even less.

The mean weights over all steps for PC-vector#1 and #3 are 5.9 and 1.8 and they contribute

most to the mean WIP. For subject#4 the mean weights over all steps for PC-vector#2 and #4

are 8.2 and 3.6 and they contribute most to the mean WIP. These PC-vectors represent the fre-

quency bands that contribute most significantly and in a correlated way to the mean wavelet

spectrum. In the same way one can interpret the contributions of the higher order PC-vectors

either to the variability or to the mean WIP.

Fig 3. The weights from the PC analysis. The weights of subject#1 obtained by projecting the WIP pattern vectors of the steps onto the PC-vectors. The weights on the

PC-residual (Top left) are very small but significantly contribute to the WIPs. The trends of the weights, if present, show an adaption over time of that WIP.

https://doi.org/10.1371/journal.pone.0195125.g003
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The mean absolute correlations between the weights of all possible pairs of PC-vectors were

in 86% of the cases not significantly different from zero. The remaining 14% significant abso-

lute correlations were on average very small (0.002). Therefore, we considered the weights of

different PC-vectors as being independent, which is a necessary feature that is required for the

surrogate WIPs to be part of the same weight distribution than the measured WIPs.

The weight-vector contains the weights of the projections of the WIPs onto the PC-vectors

and thus has a length indicated by new dimension (Table 1). One such vector defines a WIP of

one muscle during one step. The correlation of two WIPs can thus be computed for WIP of

the VM muscle and WIP of the VL muscle (Fig 4 top). The correlations are normally fairly

constant showing either a slight positive (6 subjects) or slightly negative (3 subjects) trend,

however the trend for subject#10 was not linear. The result indicates that the correlation

between the vastii muscles can adapt while running but we did not observe a systematic varia-

tion. Irrespective of the trend, the correlation between the WIP of VM and the WIP of VL of

the consecutive step was significantly lower for all but one of the 12 participants than the corre-

lation between WIPs of the same step (Fig 4 bottom) (Table 1). However, the average differ-

ence, although highly significant, was on average only 0.019 correlation units and thus

sometimes less than the changes caused by the drifts mentioned above.

WIPs of all steps of one muscle look very similar and therefore will yield small dissimilari-

ties (1-correlation) among them. The dissimilarities of all possible combinations of WIP of

Fig 4. Stepwise correlations. Correlation analysis for subject#10: Top: The correlations where the WIPs were obtained

from the VM and VL muscles during the same step. These correlations occasionally show a significant change over

time. The computed trend line indicates that the correlation increased systematically while running. Bottom: The

paired differences in correlation between the WIPs that were obtained from the VM and VL muscles during the same

step and those obtained during consecutive steps. This eliminates the effect of the trend (the trend line shows no

significant slope) and allows measuring the small absolute paired differences reported in Table 1.

https://doi.org/10.1371/journal.pone.0195125.g004
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one muscles yielded an average value and a standard deviation (Table 1). About 85% of the dis-

similarities of all possible combinations have a dissimilarity value of less than the mean + one

standard deviation of all dissimilarities (Table 1). This value was used as a cut-off value for a

hierarchical clustering process, which resulted in a subject specific number of clusters between

20 and 70 (Fig 5 left side) (Table 1). The same cut-off value was used for surrogate WIPs and

the hierarchical clustering is shown on the right side of Fig 5. The result shows that surrogate

WIPs have larger maximal dissimilarity values which is an indication that the non-surrogates

have something in common. Each of these clusters contained a number of steps, which deter-

mine the cluster size. The numbers of clusters with an equal cluster size are shown as a histo-

gram for both vastii muscles and for their surrogate WIPs (Fig 6). The standard deviation of

the median cluster size was 0.87 for the surrogate WIP. According to this standard deviation,

the medians of the cluster size are significantly lower for the surrogate WIPs than for the raw

WIPs (Table 1). For all subjects the raw WIPs form clusters with more steps per cluster than

the surrogate WIPs thus the result is that they were not generated by random combinations of

weight factors.

One can inspect the mean of all steps in the two clusters that showed the highest dissimilar-

ity (Fig 7). The WIP show that the differences are basically caused by the activity in four rela-

tively distinct frequency bands that get activated individually in the WIPs of different clusters.

The high frequency band is located between 107 and 247Hz, the mid frequency band is located

around 80Hz (65 to 94Hz), there is a distinct band that centers around 40Hz (between 34Hz

and 53Hz) and finally there is a low frequency band that usually appears at 25Hz and below.

These frequency bands are the same ones resolved by the PCA analysis. The low frequency

band is timewise frequently shifted to the right, to a time range 100 to 200ms after foot strike

whereas the other bands are more likely to occur between 20 and 100ms after foot strike. The

Fig 5. Hierarchical clustering. Hierarchical clustering of the intensity patterns recorded from 1221 steps of subject#4. VM (Top left) and VL (Top right) and for the

clustering of surrogate WIPs of VM (Bottom left) and of VL (Bottom right). A high-resolution copy of this figure is provided in the supporting material (S1 Fig).

https://doi.org/10.1371/journal.pone.0195125.g005
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bands are, however, not necessarily all located at the same time showing that the EMG activity

occurs at different times in different frequency bands for different clusters of steps.

Discussion

The values for the paired difference of correlations between the WIP of the VM and VL for the

same step are significantly larger than the correlations between consecutive steps (Table 1).

The difference is on average 0.019 ± 0.002 and thus supports the hypothesis that there is syn-

chronization in the sense that the events occur at the same time and frequency in the two vastii

muscles at the level of their EMG intensity. This was expected because of the high coherence

observed previously for the vastii muscles during squatting [16]. The result is significant

although much lower than one would expect when considering how highly coherent the indi-

vidual MUs were between the vastii muscles. A possible reason might be that the common

mode rejection of the amplifier rejected exactly those parts of the signal that were coherent.

Therefore the coherence of the MUs will be investigated for running in a future study.

It was hypothesized that WIPs differ by having maximal intensities in specific frequency

bands. A first indication can already be seen in the WIPs that were averaged over all N steps

(Fig 1). The WIPs of subject 2 and 4 reveal these bands distinctively and one can conclude that

there is a low frequency band at 25Hz and below that occurs later in time than the main fre-

quency band that was centered around 80Hz. More distinctively the bands appear in the first

five PC-vectors (Fig 2). These PC-vectors represent areas of the pattern that contribute

together, thus in a correlated way to the final WIP. These PC-vectors show about four distinct

main frequency bands. It is the way how the EMG intensity in these frequency bands is

Fig 6. Histograms of cluster sizes. Histograms of subject#4 showing the number of clusters containing a certain number WIPs of steps per cluster. The top graphs show

the results for VM and VL whereas the bottom ones the results of the corresponding surrogate WIPs. The surrogate WIP show more clusters with a smaller cluster size

(Table 1).

https://doi.org/10.1371/journal.pone.0195125.g006
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distributed in the mean WIP of clusters of steps, and thus separates the WIPs of groups of

steps that further supports the second hypothesis of specific frequency bands (Fig 7). These

bands can only be resolved by using wavelets with higher resolution at low frequencies and

Fig 7. Reconstructed mean WIP. Reconstructed mean WIP of the two clusters (left and right) showing the highest dissimilarity for a) subject#2 b) subject#3. Top

for VM, bottom for VL.

https://doi.org/10.1371/journal.pone.0195125.g007
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would be smeared out when the wavelet center frequencies are more widely spaced [12]. The

low frequency band at 25Hz and below might be the one reported by van Boxtel for perform-

ing static contractions of the frontalis and corrugator muscles [5]. A similar low frequency

peak was derived theoretically for “high synchrony 100% excitation” by Yao et al. [22]. How-

ever, multiple peaks, as predicted by Pan [23], were not observed. All these models are based

on classical synchronization, thus on pulse trains and are therefore most likely not applicable

to the observed short bursts of muscle activity of runners. A more likely explanation could be

that a series of rapid firings, 2 to 4 pulses at about 15ms inter spike intervals or like-duplets

[24] [25] merge to a subject specific, low frequency action potential at the surface of the skin. If

the first pulse occurs at the same initialization time than the first pulse of other MUs then the

other pulses occur later and the resultant action potential is most likely shifted to later times as

observed in Fig 1 for subject 2, 3, 4, 10. This would indicate that the low frequency band would

be caused by the clustering of MUAP elicited by these few rapid firings. It may still be elicited

by a common synaptic input to motor-neurons [26] because a common synaptic input is nec-

essary to activate the muscle in time intervals as short as those shown in the WIPs.

The frequency band that contains the highest average power is located between 35Hz and

107Hz (Fig 1) and represents the frequency band already reported by Merletti & Lo Conte

[27]. It represents the power spectrum of the majority of MUAPs, which is, among other

effects, most significantly altered by peripheral fatigue and is sensitive to changes in muscle

fiber conduction velocity. However, the PC-vectors shown in Fig 2 indicate that there are at

least two frequency bands to be considered in that same range, one around 40Hz and the other

one between 60Hz and 107Hz. The 40Hz band was distinctively resolved in PC-vector#3 of

subject#1 and can also be seen in the PC-vectors of subject#4 (Fig 2). It was in the 40Hz band

where the raw EMG signal showed the highest coherence while squatting [16]. One might thus

interpret this band as the one that is caused by superimposed MUAP that widen the summed

MUAPs and thus lower the apparent frequency. This would be consistent with the frequency

shift of the instantaneous mean frequency, which dropped from about 72Hz to 60Hz during

an explosive motor task [6]. Thus, this is an additional effect to the one that caused the 25Hz

band. It is worth noticing that on one hand there are clusters of WIPs of steps that all show a

dominance of the 40Hz peak without a lot of intensity in the other bands, while on the other

hand, there are clusters of WIPs of steps that show practically no intensity at 40Hz (Fig 7). It is

not clear why MUAPs would superimpose in one set of steps but not in other sets. After all, it

was demonstrated that higher and lower frequency components in the myoelectric spectra can

be present when the faster or slower MUs are assumed to be active [7]. Thus part of the 40Hz

peak could also be caused by a subset of MUs.

Finally, there is a distinct frequency band between 107Hz and 250Hz (Fig 7). For subject#8,

this band becomes the dominant band (Fig 1). In other subjects, there are clusters of steps

where this band seems to dominate (Fig 7). The most likely interpretation is that this band rep-

resents the fast MUs described by Wakeling and Rozitis [7]. Very little is known about this fre-

quency band. It is always observable and parts of it could therefore also represent spectral

aspects of the fine structure of MUAPs. Such fine structures can be the result of the endplate

distributions of the MUs.

In summary, the power spectrum of an EMG during a dynamic motor task is a result of

multiple processes that each affect the spectrum in different frequency bands.

We already used the result of the hierarchical clustering analysis to discuss the various fre-

quency bands. The comparison of the median cluster size of the raw WIPs with the median

cluster size of the surrogate WIPs seem to indicate that the clusters of WIPs are not caused by

a random superposition of variable WIPs supporting the third hypothesis. The result rather

indicates that there are groups of steps that occur at different time points during the run and
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have similar WIPs. The mean WPI of the clusters, although numerically separated, looked very

similar and only subtle differences discriminates them. Distinctly different patterns can be

visualized looking at the most dissimilar ones only (Fig 7). One tentative interpretation could

be that the activation strategy of these steps is centrally predefined and that the strategies are

activated when needed. Even though, the patterns appear very variable, however, they are not

without a distinct structure (Fig 7). It is most likely that this variability is needed for specific

adjustments of the movement or the stability during gait. The main limitation of the unsuper-

vised classification of steps is caused by the decision how to set the cut-off value for the dissim-

ilarity. If the cut-off is set too low then the cluster sizes become small, if the cut-off is too high,

only a few groups will be isolated and they might not be meaningful. Thus the result cannot be

used to decide how many predefined WIPs are used by a certain individual. However, the

method clearly shows that there are repetitive WIPs that are distinctly different in various clus-

ters (Fig 7). The differences are located in characteristic frequency bands and thus, it is impor-

tant to further improve our knowledge of how the physiological properties that control the

motor task translate into these frequency bands.

In contrast to the distinct events that were visible in the WIPs of the PC-vectors the PC-

residual (Fig 2) could be interpreted as background noise. However, without using a base that

contains the PC-residual a correlation analysis was not revealing actual correlations between

patterns. Using the base including the PC-residual allows the representation of the actual

WIPs by the weights and thus takes care of the fact that each pattern does not have the same

contribution from the mean WIP. Subtracting the mean before the analysis corrupts the com-

putation of correlations and dissimilarities. The visual analysis of the details of the WIP of the

PC-residual (Fig 2) reveals frequency dependent periodic intensity fluctuations. According to

our previous work these periodic oscillations are in phase with the foot strike and start before

foot strike, which our current finding confirms. They reflect the Piper rhythm[28]. It seems

that it is this basic structure that changes when performing higher effort tasks and allowed clas-

sification of effort levels of runners [14].

We are well aware of all the discouraging limitations of surface EMG analysis that are regu-

larly published [29] [30] but tried to proceed in another direction. We also did not consider

firing rates and long pulse trains in our discussion, because our muscular events were too

short for longer pulse trains to develop. It should be mentioned that when motor unit action

potentials overlap part of the signal is removed and the power of the EMG signal drops. The

process is known as signal cancelling [31]. However, when motor units strongly overlap, signal

enhancements occur and the power increases because of the overlap. More recent models

compute the power including signal enhancement and cancellation [32]. Thus, intensities

caused by clusters may overshadow the ones from non-clustered MUAPs depending on the

degree of overlap. The use of PCA and hierarchical clustering is only one possible way for

detecting structures in the WIPs, independent component analysis and Kohonen maps would

be other possible choices. The present observations show that it is possible to isolate frequency

bands and compare relative intensities and their timing. Over time, one will be able to refine

the above interpretations and replications by other laboratories are necessary.

Supporting information

S1 Dataset. Raw EMG. Matlab-file with raw EMG of Vastus Medialis (1st column in each cell)

and Vastus Lateralis (2nd column in each cell) for all steps (n > 1000) and all subjects (n = 12).

(MAT)

S1 Fig. High-resolution version of Fig 5. Hierarchical clustering of the intensity patterns

recorded from 1221 steps of subject # 4. VM (Top left) and VL (Top right) and for 1221
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surrogate patterns of VM (Bottom left) and of VL (Bottom right).

(TIF)
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