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Abstract

Detection of nuclei is an important step in phenotypic profiling of (a) histology sections imaged in 

bright field; and (b) colony formation of the 3D cell culture models that are imaged using confocal 

microscopy. It is shown that feature-based representation of the original image improves color 

decomposition and subsequent nuclear detection using convolutional neural networks (CNN)s 

independent of the imaging modality. The feature-based representation utilizes the Laplacian of 

Gaussian (LoG) filter, which accentuates blob-shape objects. Moreover, in the case of samples 

imaged in bright field, the LoG response also provides the necessary initial statistics for color 

decomposition (CD) usings non-negative matrix factorization (NMF). Several permutations of 

input data representations and network architectures are evaluated to show that by coupling 

improved color decomposition and the LoG response of this representation, detection of nuclei is 

advanced. In particular, the frequencies of detection of nuclei with the vesicular- or necrotic-

phenotypes, or poor staining are improved. The overall system has been evaluated against 

manually annotated images, and the F-scores for alternative representations and architectures are 

reported.

Index Terms

Color decomposition; convolutional neural networks; fluorescence microscopy; histology sections; 
3D imaging

I. Introduction

Cellular organization is an important index for profiling diseased regions of microanatomy 

and aberrant colony formation in 3D cell culture models. In histology sections, the normal 

cellular organization is often lost as a result of rapid cellular proliferation in tumors. For 

example, the degree of cellularity is one of the indices for (i) diagnosis of Glioblastoma 

Multiforme (GBM) as a result of increased proliferation of glial cells, (ii) evaluating the 

efficacy of a neoadjuvant chemotherapy of breast carcinoma [1], (iii) characterizing 

pleomorphic nuclear phenotypes in breast cancer [2], and (iv) grading prostate cancer-based 

Gleason score [3]. In the 3D cell culture model of malignant human mammary epithelial 

cells, normal spherical colony formation is often transformed to sheet-like structures with 

increased cellularity. Furthermore, regardless of 2D or 3D sample preparation and imaging, 

cellularity can also be heterogeneous, which is potentially the result of cellular plasticity. 

The goal of this paper is to develop validated computational tools for detection of nuclei that 
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enable quantification of cellularity either from a large cohort of hematoxylin and eosin 

(H&E) stained histology sections, imaged in bright field, or 3D colony formation assays are 

imaged with confocal microscopy. However, a large cohort of H&E stained histology 

sections often suffers from technical and biological variations where a number of methods 

have been proposed in the context of nuclear segmentation [4], [5]. Here, technical 

variations refer to variations in fixation and staining, and biological heterogeneity refers to 

the fact that no two patients are alike and that local and global patterns of diseased tissues 

vary widely. The novelty of this paper is two folds with the common thread that the LoG 

response can improve color decomposition (CD) and nuclear detection. In the first case, the 

LoG filter provides the necessary initial statistics for color decomposition using non-

negative matrix factorization (NMF). In the second case, the LoG filter enhances significant 

spatial distribution of the underlaying image to improve nuclear detection using CNN. 

However, for H&E stained sections, improved color decomposition also improves the 

accuracy of nuclear detection using CNN.

One of the limitations of the NMF is that random initialization provides unstable CD, and 

repeated applications of NMF provide different color decompositions. The rationale being 

that NMF is essentially a greedy approach and is sensitive to initialization. However, with 

proper initialization based on image statistics corresponding to peaks and valleys of the LoG 

filter response, a more stable CD is computed. This technique is referred to as NMF(LoG), 

which has also shown to have a superior performance profile when compared to other 

techniques. With respect to the nuclear detection with CNN, samples can be represented 

either as 2D or 3D images and the network architecture can be either shallow or deep. Both 

shallow and deep CNN have been trained with different permutations of input data 

representation for both 2D and 3D data. Evaluation is performed against a large set of 

manually curated images.

Organization of this paper is as follows: Section II reviews previous research. Section III 

describes the details of the proposed color decomposition, network configuration, and input 

feature representations. Section IV presents our experimental results and performance of 

alternative architectures. Lastly, Section V concludes the paper.

II. Background

The topics of nuclear detection and segmentation have been widely explored in 2D and 3D 

images [6], [7], [8], [9], [10], and a very recent review paper summarizes alternative 

methodologies for nuclear detection and segmentation [11]. Traditionally, nuclear detection 

strategies have relied on either model-free or model-based techniques. These include 

variations of seed detection based on morphological operators and distance transform [12] 

[13], iterative voting [14], and fast radial transform [15], [16]. However, more recently, 

convolutional neural networks (CNN) [17] have also been extended for nuclear detection 

where CNNs are trained for a specific pattern to elucidate a model automatically. Several 

configurations of CNN have been suggested for detection of nuclei in histology images, and 

two cases are summarized below. In [18], a model of CNN has been proposed to learn the 

localization and its corresponding confidence values jointly; however, the method has been 

tested on samples that have been stained with the Ki-67, a proliferating marker, and the 
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experimental design can benefit from a different marker since Ki-67 and the nuclear stain are 

co-localized and have an additive signal. In [19], a spatially constrained model of the CNN 

has been proposed for nuclear detection where the constrain is based on a pre-defined 

distance measure. Detection of nuclei, using CNN, imposes a challenge as a result of having 

a single response (e.g., a delta function) for each nucleus, and one cannot train a CNN with 

such an input-output response. Therefore, a real-valued spatial landscape needs to be defined 

for training.

The differences between our approach and previous methods are 3 folds. Previous 

researchers have (I) validated their method with samples that came from one laboratory; 

hence strict quality control for sample preparation has been enforced; (II) not evaluated the 

effects of color decomposition and the presence of multiple nuclear phenotypes; (III) not 

evaluated nuclear detection in 3D samples that have been imaged with confocal microscopy. 

More importantly, we train the CNN with the LoG response of the image following accurate 

color decomposition. The LoG response is advantageous over the various distance functions 

that have been proposed in the past. The LoG response captures intrinsic spatial landscape 

for each nucleus; hence, no artificial distance function is needed to encode the input-output 

relationships in the CNN. In other words, the LoG response captures pertinent information 

about the nuclear shape and size with the outcome being an improved performance.

III. Methods

A. Color Decomposition for H&E Stained Sections

In this section, we focus on H&E stained tissue sections that are visualized in the RGB color 

space. In this assay, hematoxylin and eosin stain the DNA and the protein macromolecules 

in blue and pink colors, respectively. However, two problems persist: in most cases, (i) there 

are variations in tissue fixation and staining that lead to a significant batch effect; and (ii) 

biological heterogeneity persists per patient and across patients. The latter can be caused by 

either macromolecules being secreted into the tumor microenvironment as a result of cellular 

stress, heterogeneous response to therapy, or presence of mixed tumor types. Often these two 

problems are interrelated in a large cohort; thus, color decomposition needs to be adjusted 

per histology section or per field of view. Although a number of methods have been 

proposed for color decomposition, we aim to extend non-negative matrix factorization 

(NMF) [20], [21].

NMF is a matrix factorization method that assumes an image can be decomposed into parts 

and subparts, and that image composition from its parts is strictly non-negative. This is an 

appropriate model for CD since each stain uniquely adds to the components of the color 

space. Typically, in NMF, basis and coefficient matrices are randomly initialized and the 

solution is optimized by iteratively fixing one variable and estimating the other one. This 

approach is intrinsically a greedy search method that with poor initialization may lead to an 

undesirable solution, i.e., different initializations lead to different deconvolutions matrices. 

Furthermore, poor initialization may also lead to a random ordering of nuclear and non-

nuclear channels. One promising method for initialization is peaks associated with the 

response of the LoG filter since nuclei have a blob-like morphometry and are darker than the 

background. Accordingly, the LoG filter is used to generate the initial statistics. However, 
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optical density transformation is a necessary requirement prior to the application of NMF. 

Optical density linearizes the relationship of the color distribution in the RGB space, as 

shown Figure 1. Hence, the steps are:

1) Optical Density transformation—Let S ∈ R3×2 be the mixing matrix, and M ∈ R2×N, 

where N is number of pixels of the image. Then the Beer-Lambert law [22], for stain 

absorption of light, satisfies the following equation:

I = I0e−SM (1)

Where I is the RGB image, I0 is the maximum value of I in all channels, and matrices M and 

S are to be estimated. However, the non-linear Equation 1 can be linearized simply by:

SM = − log( I
I0

) (2)

The optical density (OD) is then defined as the product of stain and coefficient matrices or:

D = SM (3)

Where D is the OD transform of RGB image I. This representation is shown in Figure 1 a–c, 

where the OD representation (i) linearizes color separation in the RGB spaces, and (ii) 

facilities color decomposition via matrix factorization techniques.

2) NMF Initialization—Color decomposition using NMF requires estimation of matrices 

M (coefficient matrix) and S (stain matrix) of the following equation. While the coefficient 

matrix is randomly initialized, the stain matrix is initialized according to the intrinsic 

properties of the image.

In order to generate the statistics for the initial stain matrix, a prior model is constructed by 

computing the peaks that correspond to the LoG response of the blue channel in the RGB 

image. Ideally, positive and negative peaks correspond to the foreground (e.g., nuclei) and 

background regions, respectively. In practice, there can be a significant amount of overlap 

[4]. Therefore, a probability distribution function is constructed, and a percentage of the top 

and bottom peak candidates is selected. This particular threshold (e.g., percentage) simply 

selects conservative peaks that strictly belong to nuclei and non-nuclei regions. 

Subsequently, these peaks are projected onto the RGB channel where the pixel intensities are 

read and averaged per image to establish the initial conditions. Algorithm 1 illustrates the 

required steps to calculate the initial stain matrix.
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Algorithm 1

Stain Matrix Initialization

Input: Blue channel of RGB image

Output: Stain matrix M3×2

 Step 1: Compute LoG response of the input

 Step 2: Compute local peaks of the LoG response

 Step 3: Compute the density distribution of the peaks

 Step 4: Select a conservative representative subset of minimum (e.g., negative values) and maximum (e.g., positive) 
peaks from the density distribution

 Step 5: Average RGB values of minimum and maximum peaks of Step 4 to set the initial stain matrix

B. Nuclei Detection

Detection of nuclei is performed by using a CNN as a classifier and applying sliding window 

through the whole image. The result will be a probability map, which indicates the 

probability of each pixel to be the centroid of a nucleus.

Typically, a CNN consists of a cascade of layers which map an input image x to output 

vector y. Each layer is represented as (f1, f2, …, fL), and the input-output relationship is 

given by:

y = f x; w1, w2, …, wL

= f L . , wL ∘ f L − 1 . , wL − 1 ∘ … ∘ f 1 x, w1

Where each wi is the bias and the weight for fi in the ith layer; fis are defined as functions of 

layers (e.g., convolution, max-pooling) with a specific activation policy (e.g., sigmoid, tanh, 

ReLU) at that layer; the weights and biases (wis) for each layer are learned with an 

annotated dataset; and a loss function minimizes the output of network against the input 

data. This loss function, shown below, is minimized using the stochastic gradient decent 

technique.

argmin
w1, …, wL

1
N ∑

i = 1

N
L f xi; w1, …, wL , yi

+ ∑
l = 1

L
λ1l wl 1 + λ2l wl 2

In the remainder of this section, we examine variations in the representation of input data 

and network architectures.

There are mutiple polices for preprocessing of the input data. In the case of histology 

sections, preprocessing of the input representations can be enumerated as a function of RGB, 

grayscale, LoG response of the blue channel, NMF, and LoG response of NMF 

corresponding to the nuclear channel. In the case of 3D fluorescence images, representations 
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can be enumerated as a function of gray scale or LoG of the gray scale. The selection policy 

of the input patch, for training the CNN, is also evaluated as a function of random selection 

or strictly nuclei-centered regions.

Gray or RGB normalized images have been widely used for training CNN; however, nuclei 

detection can benefit from the LoG response that accentuates their blob-shape property. 

Nevertheless, there are several permutations of the input representation with the LoG filter 

that need to be evaluated. For example, one can apply the LoG filter to the gray level 

representation of the original image or to the nuclear channel following color decomposition 

by NMF.

With respect to the patch selection for training the CNN, there are two dominant strategies 

that include either random patch selection or selection of nuclei centered patches. In the 

former, data augmentation is less significant because random selection can intrinsically 

increase the sample size. In the latter case, data augmentation is highly desirable and 

necessary. Strategies for data augmentation include affine transform, perturbations of the 

appearance model by manipulating computed basis functions, and elastic deformation.

2) Variations in the Network Architecture—There are many permutations of the CNN 

architecture (e.g., in terms of convolution size, size of the filter bank, activation function, 

contrast enhancement), but the dominant differences are shallow versus deep networks. 

Thus, different network configurations have been designed to evaluate the best performing 

architecture. Several variations of shallow and deep CNN have been evaluated, where the 

deep CNN is based on VGG [23]. With respect to the shallow CNN, two convolutional 

layers with 2 × 2 max-pooling and ReLU as an activation function provided the better 

performance. This network is shown in Figure 2. The last stage has a LogSoftmax function 

that computes the probability of each pixel as being the centroid of the nuclei. Table I 

indicates the design of the shallow CNN (ShCNN) for a 2D image (histology).

With respect to the deep networks (e.g., VGG architecture), eight layers with 3 × 3 

convolutions were constructed. The output classifier consists of two fully connected layers, 

and the log probability is computed using the LogSoftmax function. The dropout technique 

[24] has been applied in the last two layers in order to avoid over-fitting. Specifications of 

the deep convolutional neural network (DCNN) are indicated in Table II. Finally, with 

respect to the detection of nuclei imaged with confocal microscopy, the network 

architectures are identical to those designed and tested for 2D histology images with the 

exception that all convolutions are performed in 3D.

IV. Evaluation

This section evaluates the proposed techniques for color decomposition, nuclear detections 

in 2D and 3D, sensitivity analysis, strategies in training, over-fitting analysis, and the effect 

of boosting on the overall performance. Two datasets have been curated for nuclear detection 

in 2D (e.g., histology) and 3D samples (e.g., cultured multicellular systems) that are imaged 

with brightfield and confocal microscopy, respectively. Annotated histology sections consist 

of 29 images of brain and breast cancer tumor sections, with a total of 13,766 annotated 
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nuclei. Annotated multicellular systems consist of 68 samples, where each sampled is 

imaged at 0.25 micron resolution in the XY directions and 1 micron resolution in the Z 

direction resulting in images of approximately the size of 256-by-256-by-80 pixels. In both 

cases, samples were equally divided for training and testing. More specifically, (i) in the case 

of 2D, 15 images were used to generate 200,000 data points for training through random 

selection or data augmentation, and (ii) in the case of 3D, 34 images were selected to 

generate 8000 data points for training through random selection. The rest of the data were 

used for testing.

A. Color Deconvolution

The effectiveness of the color deconvolution approach is compared against (i) NMF[27] with 

random initialization, (ii) the classical method proposed by Ruifrok and Johnston[28], (iii) 

the method based on singular value decomposition proposed by Macenko et al [26], and (iv) 

the method proposed by Khan et al[25]. Implementation of the last two methods are 

borrowed from the stain normalization toolbox [29], and evaluation is based on the quality 

of segmentation computed by applying the Otsu thresholding method. The performance of 

color decomposition is quantified in terms of F-Score, precision, and recall. Table III shows 

superior performance of the proposed method against prior state of art. Figure 3 illustrates 

the qualitative results of color deconvolution of Khan et al.[25], Macenko et al.[26], and the 

proposed method, respectively.

B. Detection of Nuclei from the 2D Histology Images

In order to evaluate the proposed concept, multiple configurations are implemented and the 

performance is quantified. These configurations include input representation (e.g., raw 

versus engineered features), network architecture (e.g., deep versus shallow networks), and 

patch selection for training (e.g., random patches, nuclei centered patches). The batch 

gradient descent with a batch size of 256 is used for back propagation optimization. The 

learning rate is set at 10−5 and the learning rate decay is set at 10−7. L1 and L2 

regularizations were performed with weights of 0.001 and 0.01, respectively. Since proper 

initialization is critical for deep networks, the weights and biases are initialized using the 

proposed method in [30]. Accordingly, the biases are initialized to be zero, and the weights 

in each layer are initialized with a uniform distribution as follows:

W i j U[ − 1
n

, 1
n

] (4)

Where Wij is the weight matrix between layers i and j, U indicates uniform distribution, and 

n is the size of the previous layer. The input samples have been scaled to have zero mean and 

be in the range of [−1, 1]. There are several enumerations of the input representation when 

coupled with the network architecture. The following nomenclatures are used for Table IV, 

and references to the NMF indicate the nuclear channel computed through color 

decomposition.

• LoG of NMF(LoG)+ShCNN: LoG of NMF, where NMF is initialized with the 

LoG response, coupled with the shallow convolutional neural network of Table I
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• NMF(LoG)+ShCNN: NMF initialized with the LoG response coupled with the 

shallow convolutional neural network of Table I

• BR+ShCNN: Blue ratio [4] coupled with the shallow convolutional neural 

network of Table I

• LoG of BR+ShCNN: LoG of blue ratio [4] coupled with the shallow 

convolutional neural network of Table I

• RGB+ShCNN: Direct application of the color image to the shallow convolutional 

neural network of Table I

• LoG of the Blue Channel+ShCNN: LoG of the blue channel of the RGB image 

coupled with the shallow convolutional neural network of Table I

• LoG of NMF(LoG)+DCNN: LoG of NMF, where NMF is initialized with the 

LoG response, coupled with the deep convolutional neural network of Table II

• NMF(LoG)+LoG+DCNN: NMF with random initialization followed by the 

application of the LoG filter to the nuclei channel and coupled with the deep 

convolutional neural network of Table II

Table IV shows the recall, precision, and F-score for the above permutations. Furthermore, 

over-detection is also reported because it has a direct impact on characterizing accuracy. 

Figure 4 shows the results of nuclei detection using ShCNN with alternative preprocessing 

steps. Among all experimental variations, LoG of NMF(LoG)+ShCNN has superior results. 

Note that vesicular phenotypes are also detected in Figure 4.

Our annotated image database consists of nuclei with many phenotypes which can be due to 

either aberrant nuclear architecture or poor staining. For example, a subset of nuclei have a 

vesicular phenotype. Therefore, to improve the detection profile, two separate networks with 

the same architecture, are trained with vesicular and non-vesicular samples. The results of 

these two networks are then fused. Two policies for fusion were examined: (i) “addition” of 

the probability maps of the two networks, as shown in Figure 5, and (ii) replacing the 

“addition” operator by training a third CNN. The latter approach did not produce superior 

results, but the first policy improved the F-Score, precision, and recall of LoG of NMF(LoG)

+ShCNN to 0.8707, 0.9036 and 0.8401. Overall, fusion improved the results by around 3%.

The above experiments have been implemented by random patch selection of section III 

with a dataset of 200,000 sample patches. It should be noted that random selection enables 

an almost infinite number of patch generation; hence, no data augmentation is needed. 

Alternatively, one can select nuclei centered patches with data augmentation. With equal 

training and testing datasets between these two policies, nuclei-centered patches result in an 

inferior performance of 0.6256, 0.6378, and 0.6139 for F-Score, precision, and recall, 

respectively.

Figure 6 shows the performance of the nuclear detection using LoG of NMF(LoG) on a 

diverse set of nuclear phenotypes from brain and breast tumors. In the case of brain tumors, 

the phenotype includes normal and malignant, viable tumors mixed with infiltration of 

lymphocytes, and vesicular nuclei. In the case of breast cancer, nuclei are detected in the 
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context of collagen scaffolding and mammary glands. The goal is to demonstrate strength 

and weaknesses of the current method for nuclear detection.

C. Sensitivity Analysis for the Shallow CNN

The input patch size of the shallow CNN was modulated from 31 to 71 to determine the 

optimum detection performance empirically. In all cases, CNN was trained with the LoG of 

NMF(LoG) representation. The results, shown in Table V, indicate that the performance 

increases as a function of the patch size, levels off between 41 and 51, and then decreases. 

Thus, the selection of patch size of 51-by-51 is empirically justified. A possible explanation 

is that the patch sizes of 41-by-41 to 51-by-51 cover a range which is the double the size of 

nuclear variations.

D. Over-fitting Analysis

For the Deep CNN, the dropout technique has been used to avoid over-fitting. For the 

Shallow CNN, the learning curve was monitored by measuring the classification accuracy on 

the training and testing data. The results, shown in Figure 7, indicate that over-fitting did not 

happen since there is no abrupt decrease in the testing accuracy. In addition, the 

classification accuracies of the training and testing data as a function of increased number of 

training samples are shown in Figure 8.

E. Detection of 3D Nuclei in samples imaged with confocal microscopy

Colony formation is an important facet for profiling of 3D multicellular systems, and the 

first step is to detect nuclei. Once nuclei are detected, important colony indices (e.g., 

flatness, size, elongation) can be computed [10], [31]. Detection of 3D nuclei representation 

is evaluated with the same configuration of the network architecture for 2D detection. 

However, in this case, there is no need for color decomposition. The detection of nuclei has 

been validated with four human mammary epithelial cell (HMEC) lines with diverse genetic 

diversity. These include (a) premalignant line of MCF10a, (b) ductal carcinoma in situ 

(DCIS) model of MCF7, (c) EGFR positive model MDA-MB-468, and (d) triple negative 

model of MDA-MB-231. Such a strategy has an added value that validation is not cell-line 

specific. The nomenclatures of this section are as follows:

• LoG+ShCNN: LoG of raw data with the shallow convolutional neural network.

• Raw+ShCNN: Raw input with the Shallow convolutional neural network.

• IV: Iterative voting[14].

Table VI shows the performance of 3D nuclear detection using shallow CNN, where the 

performance is also compared with the 3D implementation of iterative voting technique [32], 

[14]. The significance of this experiment is that CNN, with automatically learned kernels, 

performs slightly better than carefully crafted algorithm such as iterative voting. It is also 

important to note that the DCNN design did not improve nuclear detection profile, which 

was the same case for detecting nuclei from 2D images. Finally, detection of nuclei is shown 

in two different panels. In Figure 9, nuclear detection results are overlaid on a single focal 

plane of the 3D image stack. In Figure 10, nuclei are detected and represented as 3D spots, 

organization of spots are represented with Delaunay triangulation, and organizations are 
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visualized by their outer surfaces as well as triangulated edges. These results clearly show 

that the premalignant line of MCF10a and DCIS line of MCF7 organize as spheroids; 

however, the other two lines are more flat and elongated–an observation that is consistent 

with published literature [10].

V. Conclusion

Experiments in this paper indicate that robust initialization of the NMF, with the statistics 

collected by the LoG response of the image, improves color decomposition when compared 

to prior methods. In addition, nuclear detection with CNN is improved (a) by color 

decomposition, and (b) the LoG response corresponding to the computed nuclear channel 

following CD. The LoG filter accentuates underlying spatial distribution of the nuclei 

regions and performs a rudimentary initial detection. These observations suggest that 

accurate color decomposition and application of engineered features to the image are 

important for improved nuclear detection. Furthermore, one of the major challenges for 

nuclear detection has been the vesicular phenotypes, which can be biologically relevant or 

be the result of poor sample preparation. However, the proposed fusion model has improved 

the detection rate for this class of phenotype. The same framework, but with the exclusion of 

the color decomposition, has been applied to 3D multicellular systems that have been 

imaged with confocal microscopy. The results indicate improved performance without any 

complex algorithmic development. In addition, multiple training strategies have revealed that 

random patch selection, as opposed to nuclei-centered patch selection, provides a better 

training model. A plausible explanation is that random selection (i) offers increased 

diversity, and (ii) contains information about the cellular organization (e.g., adjacent nuclei). 

In contrast, the required data augmentation (e.g., affine transformation, elastic deformation) 

for nuclei centered-patches does not generate sufficient diversity. Finally, in a very small 

number of cases, some nuclei with visually sharp contrast are missed. Further analysis of the 

corresponding probability maps indicated unusually low probabilities for these nuclei. Since 

this phenomenon usually occurs for fibroblasts and that these cell types were rarely included 

in the training set, our conjecture is that deep learning integrates coupled representation of 

shape and intensity for detection of nuclei. This is an interesting observation since it allows 

the detection of nuclei to be limited to tumor and epithelial cells while the stromal cells (e.g., 

fibroblast) are excluded from higher level analysis. Future research may include increasing 

the diversity of the LoG response filters with the difference of oriented Gaussian filters. 

These filters have the advantage of preferred orientation for accentuating elongated nuclei 

(e.g., fibroblast, mesenchymal cells).
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Fig. 1. 
Optical density representation linearizes color separation of the RGB space. (a) The original 

image, (b) scatter plot in the RGB space, and (c) scatter plot in the optical density space.
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Fig. 2. 
A CNN is made of two basic parts which are feature extraction and classifier. Feature 

extraction includes several convolution layers followed by max-pooling and an activation 

function. The classifier usually consists of fully connected layers.
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Fig. 3. 
Each column shows color deconvolution results by different methods in the original color 

map space. (a) Original image, (b) Khan [25], (c) Macenko [26], (d) NMF(LoG) (proposed).
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Fig. 4. 
Detected nuclei are highlighted by yellow stars. (a) Original image, (b) NMF(LoG)

+ShCNN, (c) BR+ShCNN, (d) LoG of the blue channel, (e) LoG of BR+ShCNN, and (d) 

LoG of NMF(LoG)+ShCNN (proposed).
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Fig. 5. 
Two separate CNNs are trained by different phenotypes (e.g., vesicular), and computed 

probability maps are added for nuclei detection.
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Fig. 6. 
Qualitative performance representation for detection of nuclei (a) with normal organization 

in GBM; (b–c) having imaging artifacts; (d) having either vesicular or potentially necrotic 

phenotypes; (e) with viable GBM and infiltrating lymphocytes, (f–g) in the context of 

collagen and mammary gland architecture; and (h) with proliferating and pleomorphic tumor 

cells.
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Fig. 7. 
There is no abrupt decrease in the testing accuracy; therefore, over-fitting does not happen.
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Fig. 8. 
The difference of classification accuracies is decreased between the training and testing data 

as a function of increased number of training samples.
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Fig. 9. 
Detected nuclei of 3D fluorescent images in 2D from. (a) and (b) show the results of using 

the raw image and LoG of gray image as CNN inputs, respectively.
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Fig. 10. 
Detection of nuclei contributes to colony profiling in multicellular assays. Colony formation 

of one premalignant cell line and three breast cancer cell lines are shown in (a), (b), (c), (d)
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TABLE I

Shallow CNN with two layers of convolution

Layer Type Input/Output Dimensions Filter Dimensions

0 Input 51 × 51 × 1

1 Conv 28 × 28 × 256 24 × 24 × 1 × 256

2 Max-Pooling 14 × 14 × 256 2 × 2

3 Conv 10 × 10 × 128 5 × 5 × 256 × 128

4 Max-Pooling 5 × 5 × 128 2 × 2

5 Full 1 × 2 –

6 LogSoftmax – –

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Khoshdeli and Parvin Page 24

TABLE II

DCNN with eight layers of convolution

Layer Type Input/Output Dimensions Filter Dimensions

0 Input 51 × 51 × 1

1 Conv 48 × 48 × 64 4 × 4 × 1 × 64

2 Conv 46 × 46 × 64 3 × 3 × 64 × 64

3 Conv 44 × 44 × 64 3 × 3 × 64 × 64

4 Max-Pooling 22 × 22 × 64 2 × 2

5 Conv 20 × 20 × 128 3 × 3 × 64 × 128

6 Conv 18 × 18 × 128 3 × 3 × 128 × 128

7 Conv 16 × 16 × 128 3 × 3 × 128 × 128

8 Max-Pooling 8 × 8 × 128 2 × 2

9 Conv 6 × 6 × 512 3 × 3 × 128 × 512

10 Conv 4 × 4 × 512 3 × 3 × 512 × 512

11 Max-Pooling 2 × 2 × 512 2 × 2

12 Full 512 –

13 Dropout – –

14 Full 128 –

15 Dropout – –

16 Full 2 –

17 LogSoftmax – –
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TABLE III

Performance Evaluation of Alternative Color Decomposition Strategies

Method Precision Recall F-Score

Proposed 0.7302 0.6548 0.6904

NMF 0.7215 0.6170 0.6651

Ruifrok and Johnston.[28] 0.5951 0.6891 0.6386

Macenko [26] 0.7746 0.6025 0.6568

Khan [25] 0.7408 0.5428 0.6265
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TABLE IV

Performance Evaluation of Nuclear Detection as a Function of alternative representations and network 

architectures

Method Recall Precision F-Score Over-detected

LoG of NMF(LoG)+ShCNN 0.8104 0.8820 0.8447 0.0600

BR+ShCNN 0.5012 0.9053 0.6452 0.0858

NMF(LoG)+ShCNN 0.6810 0.8965 0.8005 0.0806

LoG of BR+ShCNN 0.7194 0.9020 0.7010 0.0705

RGB+ShCNN 0.3836 0.8894 0.5361 0.1586

LoG of the Blue Channel+ShCNN 0.6226 0.6146 0.6186 0.0655

NMF(LoG)+DCNN 0.6332 0.4281 0.4625 0.1315

LoG of NMF(LoG)+DCNN 0.6551 0.4245 0.4796 0.1299
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TABLE V

Performance evaluation as a function of the patch size

Input size Recall Precision F-Score Over-detected

31 × 31 0.7120 0.6970 0.7039 0.0965

41 × 41 0.9170 0.7763 0.8408 0.0880

51 × 51 0.8104 0.8820 0.8447 0.0600

61 × 61 0.8552 0.7916 0.8222 0.0816

71 × 71 0.6192 0.8420 0.6645 0.0716
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TABLE VI

Nuclei detection results of 3D Data

Method Recall Precision F-Score Over-detected

LoG+ShCNN 0.8534 0.9394 0.8944 0.0337

Raw+ShCNN 0.8228 0.8908 0.8555 0.1225

Iterative Voting[14] 0.8600 0.8700 0.8649 unkhown

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 June 01.


	Abstract
	I. Introduction
	II. Background
	III. Methods
	A. Color Decomposition for H&E Stained Sections
	1) Optical Density transformation
	2) NMF Initialization


	Algorithm 1
	B. Nuclei Detection
	2) Variations in the Network Architecture


	IV. Evaluation
	A. Color Deconvolution
	B. Detection of Nuclei from the 2D Histology Images
	C. Sensitivity Analysis for the Shallow CNN
	D. Over-fitting Analysis
	E. Detection of 3D Nuclei in samples imaged with confocal microscopy

	V. Conclusion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	TABLE I
	TABLE II
	TABLE III
	TABLE IV
	TABLE V
	TABLE VI

