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Abstract

Many modern biomedical studies have yielded survival data with high-throughput predictors. The 

goals of scientific research often lie in identifying predictive biomarkers, understanding biological 

mechanisms and making accurate and precise predictions. Variable screening is a crucial first step 

in achieving these goals. This work conducts a selective review of feature screening procedures for 

survival data with ultrahigh dimensional covariates. We present the main methodologies, along 

with the key conditions that ensure sure screening properties. The practical utility of these 

methods is examined via extensive simulations. We conclude the review with some future 

opportunities in this field.
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§1 Introduction

Modern biomedical studies have generated abundant survival data with high dimensional 

biomarkers for various scientific purposes. For instance, identifying genomic profiles that 

are associated with cancer patients’ survival may help with understanding disease 

progression processes and designing more effective gene therapies. With the advent of new 

biotechnologies, the emergence of high-throughput data, such as gene expressions, SNPs, 

methylation and next-generation RNA sequencing, has pushed the dimensionality of data to 

a larger scale. In these cases, the dimensionality of covariates may grow exponentially with 

the sample size and such data has been commonly referred to as ultrahigh dimensional data 

([5]).

When the number of covariates (p) is less than the sample size (n), the parametric regression, 

such as Weibull models, and the semiparametric regression, such as the Cox proportional 

hazards model and the Accelerated Failure Time (AFT) model, have been routinely used for 

modeling censored outcome data in many practical settings. When p > n, penalized 
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likelihood methods have been proposed by various authors ([20], [4], [25], [29]) and the 

oracle properties and statistical error bounds of estimation have been established ([13], [15]). 

However, when p ≫ n, computational issues inherent in these methods makes them non-

applicable to ultrahigh-dimensional statistical learning problems because of serious 

challenges in “computational expediency, statistical accuracy, and algorithmic stability” 

([6]). A recent work by [2] did establish the oracle properties of the regularized partial 

likelihood estimates under an ultrahigh dimensional setting. The results, however, required 

the optimizers to the penalized partial likelihood function to be unique and global, which is, 

in general, difficult to verify, especially when the dimension of covariates is exceedingly 

high.

A seminal paper by [5] has demonstrated a simple but useful way to deal with ultrahigh 

dimensional regression. First, a variable screening procedure is used as a fast and crude tool 

for reducing the dimensionality to a moderate size (usually below the sample size). In the 

second step, a more sophisticated technique, such as penalized likelihood methods, can be 

further applied to perform the final feature selection and parameter estimation 

simultaneously.

In the framework of linear regression with normal errors, [5] showed that sure independence 

screening (SIS), which recruits features with the largest marginal correlations with the 

response, has the desirable sure screening property. That is, with probability converging to 1, 

the screening procedure retains all of the important features in the model. While screening 

approaches have been actively pursued for completely observed outcome data, the 

development of ultrahigh dimensional screening tools with survival outcomes, however, has 

been less fruitful. Several adhoc solutions are available from [21] and [3], though detailed 

accounts of practical utility or theoretical support are still elusive. Recent years have seen a 

rapid surge in variable screening methods for survival data, but to our knowledge, no 

systematic reviews and comparisons are available. To fill the gap, we will review and 

compare several representative works in this field. Specifically, we first review model-

motivated screening methods, including the principled sure screening by [27], the feature 

aberration at survival times screening by [8] and the conditional screening by [11]. We then 

review several model-free methods, including the quantile adaptive sure independence 

screening by [9], the censored rank independence screening procedure by [19], the survival 

impact index screening by [17] and the integrated powered density screening by [10]. We 

introduce the motivation of each method, describe the main conditions that lead to the sure 

screening property and numerically compare all the methods under the same settings.

Below we describe notation and terminologies that will be used throughout this paper. 

Suppose we have n observations with p covariates, where p ≫ n. Denote by Xij the jth 

covariate for subject i, and write Xi = (Xi1, …, Xip)T. Let Ti and Ci be the underlying 

survival and censoring times, respectively. We, however, only observe Yi = min{Ti, Ci}, and 

the event indicator δi = I(Ti ≤ Ci), where I(·) is the indicator function. In general, we assume 

random censoring such that Ci and Ti are independent given Xi. Let Ni(t) = I(Yi ≤ t, δi = 1) 

be the observed failure process and Ỹi(t) = I(Yi ≥ t) be the at-risk process. We assume (Yi, 
δi, Xi) are independently and identically distributed (i.i.d). In particular, we assume (Ti, Xij), 
i = 1, …, n, are i.i.d copies of (T, Xj), the random variables that underlie the survival time 
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and covariates. Denote by S(·) the marginal survival function of T and by S(t|X) the 

conditional survival function of T given X, where X = (X1, …, Xp). Let G(t) = pr(Ci > t) be 

the survival function of Ci and Ĝ(t) be the Kaplan-Meier estimator of G(t) based on {Yi, δi}, 

i = 1, …, n. Suppose that S(t|X) only depends on a subset of covariates, denoted by ℳ. The 

overarching goal of variable screening is to estimate ℳ, which we let be ℳ̂. We note, 

however, the specific definitions of ℳ and ℳ̂ may differ in the reviewed papers and will be 

defined under the specific contexts.

§2 Screening methods

2.1 Principled Cox sure independence screening

[27] generalized the sure independence screening ([5]) to the Cox proportional hazards 

model, which stipulates that the hazard at time t > 0 for a subject i with the vector of 

covariates Xi is

h(t ∣ Xi) = limΔt 0 +
1

Δt P(t ≤ T ≤ t + Δt ∣ T ≥ t, Xi)

= h0(t) exp ∑
j = 1

p
Xi jβ j ,

(1)

where h0(t) is an unspecified baseline hazard function.

Under (1), [27] defined ℳ = {j: βj ≠ 0} and proposed to estimate it as follows. Assuming a 

(working and possibly misspecified) marginal Cox model on each Xj, namely, 

h0, j
∗ (t) exp (Xi jβ j

∗), they obtained the maximum partial likelihood estimate of β j
∗, denoted by 

β̂j. Then, the importance of Xj was measured by a Wald type statistic for testing β j
∗ = 0. As a 

result, the estimated ℳ was given by

ℳ = { j: I j(β j)
1
2 ∣ β j ∣ ≥ λn},

where βĵ solves the partial likelihood score equation

U j(β) = 1
n ∑

i = 1

n ∫
0

ν
Xi j −

∑i = 1
n Xi j exp (Xi jβ)Y∼i(t)

∑i = 1
n exp (Xi jβ)Y∼i(t)

dNi(t) = 0, (2)
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I j(β j) = −
∂U j(β)

∂β ∣
β = β j

 is the observed information at β̂j, and λn is a pre-specified cut-off 

that depends on n. Here, ν > 0 in (2) is the study duration, which is assumed to be long 

enough to ensure that ample events are observed during the interval [0, ν].

As there were no principled ways of choosing λn, the work of [27] provided a new 

perspective of choosing λn such that one can achieve the sure screening property while 

controlling the false positive rate, or the proportion of unimportant covariates incorrectly 

included in ℳ̂. The rationale is as follows.

If the true model size |ℳ| = s, then the expected false positive rate can be written as

E ∣ ℳc ∩ ℳ ∣
∣ ℳc ∣

= 1
p − s ∑

j ∈ ℳc
P{I j(β j)

1
2 ∣ β j ∣ ≥ λn} .

Moreover, when βj = 0 or j ∈ ℳc, I j(β j)
1
2 β j converges in distribution to a standard normal 

variable. Hence, by setting λn = Φ−1(1 − f/(2p)), the expected false positive rate is 2(1 − 

Φ(λn)) = f/p, which is approximately equal to the desirable false positive rate, f/(p − s). 

Here, Φ(·) is the standard normal cumulative distribution function and f is the number of 

false positives that one is willing to tolerate. The screening procedure is commonly referred 

to as the principled Cox sure independence screening (PSIS).

To study the sure screening property, they first established the following “β-min” condition 

(that is, the true signals have enough marginal strengths): there exist constants c1 > 0 and 0 < 

κ < 1/2 such that minj∈ℳ |cov[Xij, E{FT (Ci|Xi)|Xi}]| ≥ c1n−κ, where FT(·|Xi) is the 

cumulative distribution function of Ti given Xi. Then [27] proved that

min
j ∈ ℳ ∣ β j ∣ ≥ c2n−κ, (3)

where c2 is a positive constant. This result led to the sure screening property

pr(ℳ ⊂ ℳ) ≥ 1 − s exp ( − c3n1 − 2κ), (4)

where c3 is a positive constant. As n → ∞, pr(ℳ ⊂ ℳ̂) → 1 for the nonpolynomial (NP)-

dimensionality problem log(p) = O(n1−2κ).

[27] demonstrated that, numerically, PSIS is stable and computationally efficient in selecting 

true signals. However, given that PSIS stems from a Wald test based on a Cox model, its 

performance is unclear when the underlying assumption of a Cox model fails.
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2.2 Feature aberration at survival times screening

With the goal of making the screening procedure less model-centric, [8] proposed a ‘feature 

aberration at survival times’ (FAST) statistic that measures the aberration of each covariate 

relative to its at-risk average. Specifically, for covariate Xj, the FAST statistic is defined as

d j = 1
n ∑

i = 1

n ∫
0

ν
Xi j −

∑i = 1
n Xi jY

∼
i(t)

∑i = 1
n Y∼i(t)

dNi(t), (5)

where t ∈ [0, ν].

The statistic can be justified under an administrative censoring scheme (Ci ≡ ν). With 

standardized covariates such that E(Xj) = 0 and var(Xj) = 1 for j = 1, …, p, first note that the 

population version of dj is

d
∼

j = E(d j) = cov {X j, FT(ν ∣ Xi)} + ∫0
ν

cov {X j, FT(t ∣ Xi)}K(t)dt,

where FT (t|Xi) = P(Ti ≤ t|Xi) and K(·) is a strictly positive function. Thus, d̃j is large if 

cov{Xj, FT (t|Xi)} has a constant sign throughout t ∈ [0, ν]. Thus, it is reasonable to 

consider the magnitude of dj as a marginal utility to rank the importance of Xj.

In addition, by taking β to be 0 in (2), we note that (2) reduces to (5). Therefore, FAST can 

also be viewed as a score test statistic based on a Cox model, which is a special case of the 

score-based screening proposed by [28].

To study the sure screening property, [8] assumed that the true hazard function is of the 

single-index form

hi(t) = h(t, Xi
Tβ), i = 1, …, n, (6)

and required the resulting survival function exp {∫ 0
t h(s, · )ds} to be strictly monotonic for 

each t ≥ 0. They argued that such an assumption holds true for a variety of models, including 

the additive model ([18]), the Cox model and the AFT model. Under (6), [8] defined the true 

set as

ℳ = { j: β j ≠ 0},

and proposed to estimate it by
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ℳ = { j: ∣ d j ∣ > λn},

for a given λn.

Assuming various regularity conditions, [8] showed that there exists a threshold ζn > 0 such 

that minj∈ℳ |d̃j| ≥ ζn and maxj∉ℳ |d̃j| = 0. Thus, the signals d̃j when j ∈ ℳ are stronger than 

those when j ∉ ℳ. They further assumed that |cov(Xj,XTβ)| ≥ c1n−κ, j ∈ ℳ, for some c1 > 0 

and κ < 1/2. Then they showed that, by taking λn = c2n−κ for some constant 0 < c2 ≤ c1/2, 

the sure screening property holds even when p grows exponentially fast with n, or,

pr(ℳ ⊂ ℳ) 1 when n ∞ .

As FAST is essentially a score test that requires fitting only the null model, its computation 

is simpler than the Wald test based screening methods, such as PSIS ([28]). Like the sure 

independence screening (SIS) of [5], FAST assumes that the covariates present in the true 

model ℳ are independent of the irrelevant covariates. This assumption is often violated in 

practice. To account for possible correlations between variables, [5] proposed an iterative 

SIS procedure (ISIS): after applying the SIS procedure, the relevance of the unselected 

covariates is reassessed given the selected covariates and a small number of the most 

relevant features among them can be added to the selected set. These iterative steps are 

repeated until some stopping criterion is reached. [5] and [3] showed that an iterative 

screening procedure may perform better than a non-iterative procedure. A similar iterated 

FAST procedure was proposed by [8]; however, like the general ISIS procedure, its 

theoretical support is still an open problem.

2.3 Conditional screening

Intensive biomedical research has generated a large body of biological knowledge. 

Incorporating such knowledge may lead to improved accuracy in modeling. However, the 

marginal screening approaches, such as PSIS and FAST, were not designed to integrate prior 

knowledge into variable screening. Recent years have seen an advent of conditional sure 

independence screening methods that use a priori information; see [1], [12]. By including 

such important predictors as the conditioning variables, conditional screening ranks the 

marginal utility of each variable after adjusting for these conditioning variables.

[11] proposed a conditional screening method under the Cox proportional hazards model (1) 

by computing the marginal contribution of each covariate given priorly known information. 

This method is referred to as the Cox conditional screening (CoxCS).

Denote by  the indices of the set of covariates that are known a priori to be related to the 

number of covariates. Let ℳ−  = {j ∉ , βj ≠ 0}, q = | |, and X  = (Xj, j ∈ )T. [11] 

proposed to fit the marginal Cox regression by including the known covariates in X . 

Specifically, for each Xj ∉ X , they considered the following Cox regression model
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h j(t, Xi) = h j, 0(t) exp (β𝒞
T Xi𝒞 + βXi j) .

The maximum partial likelihood estimates (β𝒞
T , β j)

T
 can be obtained by solving the 

following equations:

V j(β𝒞, β) = [V j, k(β𝒞, β)]T = 0q + 1,

with

V j, k(β𝒞, β) = ∑
i = 1

n ∫0
ν

Xik −
∑i = 1

n XikY∼i(t) exp (β𝒞
T Xi𝒞 + βXi j)

∑i = 1
n Y∼i(t) exp (β𝒞

T Xi𝒞 + βXi j)
,

for k ∈  ∪ {j}. The key is to recruit variables with large additional contributions given X . 

If the conditioning set X  is empty, the method reduces to PSIS. Using the magnitude of β̂j 
as a marginal utility to rank the importance of Xj, the set of selected variables among j ∉  is 

given by

ℳ−𝒞 = { j ∉ 𝒞: ∣ β j ∣ > λn},

for a pre-defined λn.

To study the asymptotic behavior of the proposed procedure, [11] assumed the following 

“beta-min” condition: for constants c1 > 0 and 0 < κ < 1/2,

min
j ∈ ℳ−𝒞

∣ E[ cov∗ {X j, pr(δ = 1 ∣ X) ∣ X𝒞}] ∣ ≥ c1n−κ, (7)

where cov*(ζ1, ζ2|ξ) indicates the conditional linear covariance between ζ1 and ζ2 given ξ. 

[11] introduced this new concept in order to approximate the ordinary conditional variance 

and facilitate the proof of the sure screening property.

Under (7) and some other conditions, [11] proved that the estimated β̂j converges uniformly 

to βj in probability. That is, for any given ε1 > 0 and ε2 > 0,

pr max
j ∈ ℳ−𝒞

∣ β j − β j ∣ >
c2
2 (n−κ − ε1) ≤ 2s(q + 1) exp ( − c3n1 − 2κ) + ε2,
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where c2 and c3 are some positive constants, q is the size of , and s is the size of ℳ− . In 

addition, they established the following “β-min” condition:

min
j ∈ ℳ−𝒞

∣ β j ∣ ≥ c2n−κ,

where 0 < κ < 1/2.

Taking λn = c4n−κ with c4 > 0, this “β-min” condition leads to the following sure screening 

property:

pr(ℳ−𝒞 ⊂ ℳ−𝒞) 1, as n ∞ .

The conditional screening approach can identify “marginally unimportant but jointly 

important” variables, commonly referred to as hidden variables. Failing to include hidden 

variables in the screening stage may cause undesirable consequences. For example, 

important features may be missed in model selection or biased inference may occur in the 

subsequent analysis.

Since CoxCS requires the prior information to be known and informative, it remains 

statistically challenging to develop efficient screening methods in the absence of such 

information. In the context of generalized linear models, [12] proposed a data-driven 

alternative in the absence of prior knowledge. The question of how to extend the data-driven 

approach to a survival setting, however, would require more intensive theoretical and 

empirical work.

2.4 Quantile adaptive nonparametric screening

The validity of model-based screening methods, such as PSIS and CoxCS, often hinges upon 

the assumptions of the underlying models. For example, when the proportional hazards 

assumption fails, the model-based approaches may incur a large number of false negatives 

and lead to an invalid result. To develop a model-free framework that can be applicable to a 

more general class of survival models, [9] proposed the quantile adaptive sure independence 

screening (QaSIS). This approach performs screening based on the disparity between 

unconditional and conditional quantiles given each covariate. They defined the true set at a 

given quantile level α ∈ (0, 1) as

ℳα = { j:Qα(T ∣ X) functionally depends on X j},

where Qα(T|X) is the α-th conditional quantile of T given X. That is, Qα(T|X) = inf{t: pr(T 
≤ t|X) ≥ α}.

Now let qαj = E{Qα(T|Xj) − Qα(T)}2, where Qα(T|Xj) is the α-th conditional quantile of T 
given Xj and Qα(T) is the marginal α-th quantile of T. Then, qαj gauges the magnitude of 
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the association of T with Xj, and T and Xj are independent if and only if qαj = 0 for every α 
∈ (0, 1).

To estimate Qα(T|Xj), [9] proposed a spline estimator, Q̂α(T|Xj) = π(Xj)T β̂j. Here, π(x) = 

{B1(x), …, BN(x)}T is the normalized B-spline basis functions and β̂j = (βj1, …, βN)T is 

obtained via the inverse probability weighted marginal quantile regression estimator, i.e.,

β j = argmin
π ∈ ℝN

∑
i = 1

n δi
G(Yi)

ρα(Yi − π(Xi j)
Tβ),

where ρα(x) = x[α − I(x < 0)] is the quantile loss function. On the other hand, the marginal 

quantile Qα(T) can be simply estimated by the inverse function of the Kaplan-Meier 

estimate of the α-th conditional quantile of T, FKM, n
−1 (α). Hence, qαj can empirically be 

estimated by qα j = n−1∑i = 1
n {π(Xi j)

Tβ j − FKM, n
−1 (α)}2

. Then, ℳα is estimated as

ℳα = { j:qα j
≥ λn}

for some λn > 0. The method is deemed a model-free approach as it does not resort to a 

specific model structure.

To guarantee sure screening and control the false selection rate, [9] assumed that 0 < κ < 1/4 

and N3n2κ−1 = o(1), where N is the number of basis functions. By taking λn = c*n−κ with 

c*≤ c1/16 and c1 > 0 the sure screening property holds. That is,

pr(ℳα ⊂ ℳα) ≥ 1 − sα{17 exp ( − c3n1 − 4κ) + 12N2 exp ( − c4N−3n1 − 2κ)} 1, as n ∞ ,

where c3 and c4 are some positive constants and sα is the size of ℳα.

Overall, QaSIS is flexible as it allows the set of active variables to vary across quantiles, 

which is appealing to the analysis of heterogeneous data. However, since not every quantile 

is estimable under censoring, its performance under heavy censoring is unclear. The question 

of how to choose the quantile level α in practice to optimize the procedure seems intriguing 

as well.

2.5 Censored rank independence screening

In biomedical studies, variables are often transformed to achieve uniformity across different 

platforms, and from time to time, outliers are observed in predictors. It is desirable for 

screening tools to possess invariance properties under transformations of variables (Xi or Ti) 

and robustness against outliers. As Kendall’s τ, a widely used measure of correlation, is 

robust against heavy tailed distributions and invariant under monotonic transformations, 

researchers proposed Kendall’s τ based screening methods ([16]). To accommodate survival 
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data, [19] considered the concordance between failure time T and covariate Xj in the 

presence of censoring.

Define τj = pr(Xji > Xji′, Ti > Ti′) − 1/4, (j = 1, …, p, i = 1, …, n). [19] advocated using τj as 

the marginal utility measure for ranking predictors for several reasons. First, τj measures the 

association between T and Xj and τj is 0 if T and Xj are independent. Second, τj is invariant 

to any monotonic transformations on T and Xj. Third, this rank based measure is robust 

against outliers in the data.

Let ψj = δi′I(Xij > Xi′j, Yi > Yi′)/G2(Yi′). It can be easily shown that E(ψj) = pr(Xij > Xi′j, 
Ti > Ti′). Thus, a natural estimate of τj is:

τ j = n
2

−1
∑

i < i′

δi′
G2(Yi′)

I(Xi j > Xi′ j, Yi > Yi′) − 1/4,

where Ĝ(·) is the Kaplan–Meier estimator of G(t) = pr(Ci ≥ t).

Define the true set as

ℳ = { j:pr(T > t ∣ X) functionally depends on X j} .

Then, it is estimated by a set of important predictors with large τ̂j:

ℳ = { j: ∣ τ j ∣ > λn},

where λn is a predefined threshold value. This procedure is called the censored rank 

independence screening (CRIS). [19] showed that τ̂j is a consistent estimator for τj. That is,

pr max
j

∣ τ j − τ ∣ < c6n−κ ≤ p{2.5n exp ( − c1n) + 4 exp ( − c4n1 − 2κ) + 2.5n exp ( − c2n1 − 2κ)},

for some positive constants c1, c2, c4, and c6. Moreover, when minj∈ℳ |pr(X1j > X2j, T1 > 
T2) − 1/4| ≥ c0n−κ for some 0 < κ < 1/2 and c0 > 0, taking λn = c7n−κ with c7 ≤ c0/2 leads to

pr(ℳ ⊂ ℳ) ≥ 1 − s{2.5n exp ( − c1n) + 4 exp ( − c4n1 − 2k) + 2.5n exp ( − c2n1 − 2κ)} 1, as n ∞ ,

where s is the size of ℳ.

CRIS is a model-free approach that enjoys the sure screening property. Moreover, the 

screening statistic is a U-statistic with a bounded kernel function. The large sample results 

hold even without the tail probability conditions. However, the computation of τ̂j requires 
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the comparison of all possible pairs of samples. This exceedingly heavy computational 

burden may hamper its applicability when the sample size is large.

2.6 Survival impact index screening

QaSIS and CRIS are model-free screeners, but both employ the inverse probability of 

censoring weighting (IPCW), which may be unstable, especially when evaluated at large 

observed survival times. In addition, they may not capture the full-range impact of covariates 

on the overall survival since QaSIS focuses on a specific quantile level and CRIS relies on a 

summarized value of association. To more fully capture the overall influence of a covariate 

on the outcome distribution, [17] proposed a new metric called the survival impact index 

(SII), which evaluates the absolute deviation of the covariate-stratified survival distribution 

from the unstratified survival distribution.

Specifically, for each Xj, j = 1, …, p, SII is defined as

ξ j = ∫t ∈ 𝒯, x ∈ 𝒳
Wξ(t, x) ∣ S(t ∣ X j > x) − S(t) ∣ dxdt,

where Wξ(t, x) is a pre-determined weight function introduced to capture the covariate 

impact on either early or late survival. The authors argued that if, for at least one t and one x, 

the survival function stratified on Xj > x differs from the unstratified survival function at t, 
then ξj will be non-zero under mild conditions. On the other hand, if T and Xj are 

independent, then ξj = 0. Hence, ξj serves as a sensible index for characterizing the 

importance of Xj in influencing the distribution of T.

To estimate ξj, [17] proposed to use

ξ j = ∫
t ∈ 𝒯, x ∈ 𝒳

Wξ(t, x) ∣ S(t ∣ X j > x) − S(t) ∣ dxdt, (8)

where Ŝ (t|Xj > x) is the Kaplan-Meier estimator based on sub-sample Xj > x and Ŝ(t) is the 

Kaplan-Meier estimator for the survival function of T. Note that (8) indicates SII does not 

need to adopt IPCW to handle the random censoring.

The set of important predictors with large ξ̂j is defined by ℳ̂ = {j: ξ̂j > λn}. Under some 

regularity conditions, given 24/(nμγ4) < ε < 1, [17] proved that the estimated survival 

impact index ξ̂j is uniformly consistent to ξj, or

pr max
j

∣ ξ j − ξ j ∣ > ε ≤ c3 exp ( − nc4ε2 − c5 log ε), (9)

where c3, c4, c5, μ, and γ are some positive constants and n is sufficiently large. With the 

true set being
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ℳ = { j:ξ j > 0},

if p = O(exp(nc)) for some 0 < c < 1 and minj∈ℳξj > c0n−α for some constant c0 > 0, 0 ≤ α < 
(1 − c)/2, [17] proved that

pr(ℳ ⊂ ℳ) ≥ 1 − c3s exp { − nc4(c0 − b)2n−2α − c5 log ((c0 − b)n−α)},

where s is the size of ℳ. It follows that the sure screening property holds by taking λn = bn
−α with b ≤ c0/2. That is, pr(ℳ ⊂ ℳ̂) → 1 as n→∞.

One potential challenge with SII is that (8) needs to be computed over a range of values for 

both T and Xj, which is often associated with high computation cost. The problem of how to 

select the weight function may warrant more research.

2.7 Integrated powered density screening

In a survival setting, nonparametric variable screeners have focused on discerning how each 

candidate variable influences survival functions. One way of detecting such influence is by 

studying the variability of survival functions for the subpopulations or strata defined by each 

variable. The difference patterns, however, may vary across covariates. Specifically, the 

differences may occur either during the early or late period in the follow-up due to disease-

related characteristics. For example, survival differences between chemotherapy versus both 

chemotherapy and radiation treatment groups among childhood cancer patients may be more 

pronounced right after treatment, while survival differences between the EGFR mutation 

status among nonsmall cell lung cancer patients may be more obvious long after the onset of 

cancer. Therefore, screening approaches that rely on a single screening criterion may not be 

able to capture the complex difference patterns and may lead to false non-discovery. [10] 

proposed to consider the following integrated powered density (IPOD):

∫0
t

f γ(s)ds,

where a power index γ(> 0) inflates either early (γ > 1) or late differences (γ < 1) during 

the life span and thus gives more flexibility in detecting distributional differences. IPOD 

resembles the cumulative distribution function (CDF) and satisfies the basic properties of 

CDFs, except that it does not necessarily approach one when t→∞.

To derive the screening criterion, first consider a discrete Xj with Rj categories. The unique 

property of IPOD motivates the following marginal utility to detect distributional 

differences:

ℐ j
(γ) = max

r1, r2 ∈ {1, …, R j}
sup

t ∈ [0, ν] ∫
0

t
f T ∣ X j

γ (s ∣ X j = r1)ds − ∫
0

t
f T ∣ X j

γ (s ∣ X j = r2)ds , (10)
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where fT|Xj(s|Xj = r) denotes the conditional density function of T given Xj = r. Since 

ℐ j
(γ) = 0 if and only if T and Xj are independent, it serves as a measure of marginal utility for 

each Xj. The framework of IPOD is general by accommodating different γ’s. For example, 

when γ = 1, (10) is simply the classical Kolmogorov difference: maxr1,r2∈{1,…,Rj} supt∈[0,ν] 

|FT|Xj(t|Xj = r1) − FT|Xj(t|Xj = r2)|.

Denote by hn > 0 the bandwidth of a kernel function K(·). Then, (10) can be estimated by

ℐ j
(γ) = max

r1, r2 ∈ {1, …, R j}
sup

t ∈ [0, ν] ∫0
t

f T ∣ X j
γ (s ∣ X j = r1)ds − ∫0

t
f T ∣ X j
γ (s ∣ X j = r2)ds ,

where Ŝ(t) is the Kaplan–Meier estimator for the survival function of T,

f T(t) = ∑
i

K((t − ti)/hn)(ST(ti − 1) − ST(ti)),

and the conditional density estimator f̂T|Xj(t|Xj = r) can be obtained similarly as f̂T (t) by 

restricting samples to Xj = r.

[10] defined the true important feature set as

ℳ = { j:S(t ∣ X) functionally depends on X j for some t ∈ (0, ∞ )},

which is estimated by ℳ1 = j:ℐ j
(γ) > λn  where λn > 0. This procedure is referred to as the 

IPOD screening.

When a covariate Xj is continuous, it can be discretized into Rj slices by using the 

percentiles of the empirical distribution of Xj. Suppose there are N different ways of slicing 

a continuous covariate Xj, denoted by Λju, u = 1, …, N with each slicing Λju containing Rju 

intervals. To ensure there are enough sample within each slice for all slicing schemes, one 

may take Rju = 3, …, [log(n)], which gives N = [log(n)−2] slicing schemes. Denoting 

ℐ j, Λ j, u
(γ)  as the IPOD screening statistic corresponding to the slicing scheme of Λju, they 

proposed the following fused IPOD screening statistic that collects all information from each 

slice:

ℐ∼ j
(γ) = ∑

u = 1

N
ℐ j, Λ ju

(γ) ,

which leads to the following screening criterion:
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ℳ2 = j:ℐ∼ j
(γ) > λn ,

where λn > 0 is a pre-specified constant.

For large sample results, [10] stipulated the following assumptions. Let Λjuo be the partition 

based on the theoretical quantiles qju(r), r = 0, …, Rju of Xj and ℐ jo
(γ) = ∑u = 1

N ℐ j, Λ juo
(γ) . 

Assume that there exist a c > 0 and 0 < v < 1/2 such that min j ∈ ℳ ℐ jo
(γ) ≥ 2cn−v for a specific 

γ.

When covariates include both continuous and discrete values, under the above conditions, 

[10] proved that

pr(ℳ ⊂ ℳ2) ≥ 1 − O(Np exp ( − b2n1 − 3κ − 2v − 2μ − 2ρ + κ log n)),

where b2 is a positive constant. For 0 < α < 1 − 3κ − 2v − 2μ − 2ρ, if N = O(log n) and log p 
= O(nα), the fused IPOD has the sure screening property.

IPOD enjoys the invariance property like other nonparametric screeners such as SII and 

CRIS, but it is more computationally efficient with increasing n. The performance of the 

method depends on how well the distribution function can be estimated on each covariate-

defined stratum. Hence, it may not work well for small sample sizes. Moreover, since 

smoothing techniques are used to evaluate the density functions, the choice of bandwidth 

affects the accuracy of results.

§3 Numerical comparisons

All the reviewed papers were exemplified with intensive simulations. As the simulation 

setup differs across different papers, to make fair comparisons and give general guidelines 

for practical utility, we considered various simulation settings, under which the methods 

reviewed in Section 2 are all compared. For each configuration, a total of 100 simulated 

datasets were generated. We considered n = 100 and n = 300 and explored how the 

performance of the methods improved with sample size.

Example 1 (Nonlinear covariate-response relationship)—The survival time was 

generated from log(T) = g1(X1)+g2(X2)+g3(X3)+g4(X4)+ε, where g1(x) = 5x, g2(x) = 

−4x(1−x), g3(x) = 10[exp{−3(x−1)2}+exp{−4(x−3)2}]−1.5, and g4(x) = 4sin(2πx). The 

vector of covariates X was generated from a multivariate normal distribution with mean 0, 

variance 1, and a first order autoregressive correlation structure, i.e., cor(Xj,Xj′) = ρ|j−j′| (j, j′ 
= 1, …, p). The error ε ~ N(0, 1) is independent of X. The censoring time C was generated 

from a 3-component normal mixture distribution N(0, 4) − N(5, 1) + 0.5N(25, 1). This 

example was adopted from [17].

Grace and LI Page 14

Appl Math. Author manuscript; available in PMC 2018 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Example 2 (Rayleigh model)—The survival time was generated from a hazard function 

h(t|X) = 2t(|X1|+|X2|). All covariates were generated from the multivariate normal 

distribution with mean 0, variance 1, and an exchangeable correlation structure with the true 

parameter value of ρ. In this case, the marginal correlation between each of the active 

variables, X1 and X2, and the survival time is 0. The censoring time C was generated from a 

uniform distribution on (0, 3). This example was adopted from [10].

Example 3 (Linear transformation models)—The survival time was generated from 

the class of linear transformation models

log {0.5(e2T − 1)} = − βTX + ε,

where β = ( − 1, − 0.9, 06
T, 0.8, 1.0, 0p − 10

T )T and X were generated from a multivariate normal 

distribution with mean 0, variance 1, and a first order autoregressive correlation structure, 

i.e., cor(Xj,Xj′) = ρ|j−j′| (j, j′ = 1, …, p). The error was generated from the standard normal 

distribution and the censoring time was generated from a uniform distribution on (0, 3). This 

example was adopted from [19].

Example 4 (Discrete covariates)—The survival time was generated from the 

proportional hazards model,

h(t ∣ X) = 0.1 exp ∑
j = 1

p
β jI(X j ∈ {2, 3}) ,

where β = ( − 15, 0p − 5
T )T. The covariates x★ underlying these discrete variables were 

generated from a multivariate normal distribution with mean 0 and a covariance matrix Σ = 

(σjj′)p×p, σjj = 1 and σjj′ = 0.5 for j ≠ j′. For each j, x j
∗ was further quarterized by its quartile 

values: the obtained quarterly variable Xj = 1 if x j
∗ is less than the lower quartile, 2 if 

between the lower quartile and the median, 3 if between the median and the upper quartile, 

and 4 if else. The censoring time was generated from a uniform distribution on (0, 40). This 

example was adopted and modified from [10].

Example 5 (Hidden variables)—The survival time was generated from a Cox model:

h(t ∣ X) = exp (βTX),

where X were generated from a multivariate normal distribution with mean 0, variance 1, 

and an equal correlation of 0.5 and β = (15
T, − 2.5, 0p − 6

T ). In this case, X6 has a lower 

marginal utility than all the noise variables. The censoring time was generated from a 

uniform distribution on (0, 10). This example was adopted from [11].
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Following the literature, we used three metrics as the criteria for comparisons, the minimum 

model size (MMS; the minimum number of variables that need to be selected in order to 

include all active variables), the true positive rate (TPR; the proportion of active variables 

selected in the first [n/log n] variables), and the probability of inclusion of the true model 

(PIT; the probability of all active variables selected in the first [n/log n] variables). MMS 

was reported as the median and TPR and PIT as the averages over 100 repetitions in Tables 1 

and 2. Three conditioning sets 1 = {X1}, 2 = {X1,X2}, and 3 = {X1, an inactive 

variable} were used for the conditional screening method ([11]), whenever appropriate. 

Many screeners assumed that the active variables are independent of the inactive variables, 

which is difficult to satisfy in practice. To explore how sensitive the competing methods are 

toward this assumption, we set the correlation coefficient ρ to be 0, 0.5, and 0.8 in each 

example, except in Example 5 wherein ρ = 0.5 was carefully chosen to generate a hidden 

variable.

Table 1 documents a comparison of computation time of nonparametric screening methods 

with various n and p. It shows that the computation time of CRIS increases non-

proportionally with the sample size. SII is also computationally expensive as it needs to 

exhaustively search the ranges of both T and Xj. On the other hand, IPOD seems to be less 

impacted by the increasing n and p.

Tables 2 and 3 demonstrate that when the covariates and the response have a nonlinear 

relationship (Example 1), IPOD, SII, and CoxCS outperformed the other methods. In 

Example 2 where the marginal correlation between each active variable and the survival time 

is 0, PSIS, FAST, and CRIS performed poorly. With the linear transformation model in 

Example 3, all methods easily identified active variables, especially when the sample size 

was large. When the covariates are discrete (Example 4), IPOD, which is designed to 

accommodate discrete variables, outperformed all the other methods. In Example 5, all 

marginal screeners had difficulties recruiting a “marginally unimportant but jointly 

important” variable X6. Only the conditional screening approach, CoxCS, was able to detect 

the hidden variable. In addition, the performance of IPOD varied with different γ. The 

conditional approach might fail when the dependence among covariates is too strong, as 

shown in Example 3 with ρ = 0.8.

§4 Discussion

The aim of this paper is to provide a selective overview on feature screening for ultrahigh-

dimensional survival data. We study the justifications of some commonly used methods, 

paying attention to the motivation and rationale of the screening statistics. Under the same 

simulation settings, we have numerically compared all the reviewed methods and 

commented on their practical utility.

With the advent of the biomedical big data era, variable screening for ultrahigh dimensional 

survival data has been rapidly evolving; see some recent works in [26], [22], [24], and [23]. 

Variable screening is becoming a standard and indispensable analytical tool for ultrahigh 

dimensional data analysis, especially when outcomes are subject to censoring.
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Even with the discussed progress, from our perspectives, there are several open problems 

that may attract researchers’ attention. First, as the majority of works in this field have 

focused on right-censored survival times, it would be of interest to extend the works to 

accommodate more complex censoring mechanisms, including left censoring, interval 

censoring and left/right truncation.

Second, most authors explicitly or implicitly assumed partial orthogonality ([7]). That is, 

they assumed the active variables and inactive variables are independent. This assumption is 

often violated in practice, as variables tend to be dependent, no matter whether they are 

active or inactive. It is worth investigating how to relax this condition in the theoretical 

development or to design a more efficient screening method for dependent predictors.

Third, as shown in the numerical studies, variable screening methods do not necessarily 

agree with each other as they tend to select different variables. Hence, a natural question is 

how to integrate the results from these different screening methods, while controlling false 

positives as well as false negatives.

Fourth, most screening methods developed so far focus on independent survival times. 

Generalizing the results to accommodate more complex survival settings, including multi-

state models and competing risks, semi-competing risks, multivariate survival, etc., remains 

an open problem.

Finally, existing variable screening methods have often overlooked the useful information on 

covariates with similar functionality or spatial proximity. Partitioning biomarkers into 

smaller groups according to biological knowledge or other useful information may facilitate 

feature selection. Recently, a partition-based screening method, which accounts for such 

grouping, has been proposed in a generalized linear regression setting by [14]. It is worth 

investigating its extension to the survival setting.
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Table 1

Average runtime (seconds) of nonparametric screeners for Example 1 on a CPU with 2.9 GHz Intel Core i5 

and 8GB of memory

(n, p) CRIS SII IPOD

(100, 1000) 10.873 53.307 12.030

(100, 10000) 83.384 524.126 119.233

(300, 1000) 77.244 659.949 18.139

(300, 10000) 625.341 5607.038 175.598
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3 = {X1, an inactive variable} were used for the conditional screening method ([11]), whenever appropriate. Many screeners assumed that the active variables are independent of the inactive variables, which is difficult to satisfy in practice. To explore how sensitive the competing methods are toward this assumption, we set the correlation coefficient ρ to be 0, 0.5, and 0.8 in each example, except in Example 5 wherein ρ = 0.5 was carefully chosen to generate a hidden variable.Table 1 documents a comparison of computation time of nonparametric screening methods with various n and p. It shows that the computation time of CRIS increases non-proportionally with the sample size. SII is also computationally expensive as it needs to exhaustively search the ranges of both T and Xj. On the other hand, IPOD seems to be less impacted by the increasing n and p.Tables 2 and 3 demonstrate that when the covariates and the response have a nonlinear relationship (Example 1), IPOD, SII, and CoxCS outperformed the other methods. In Example 2 where the marginal correlation between each active variable and the survival time is 0, PSIS, FAST, and CRIS performed poorly. With the linear transformation model in Example 3, all methods easily identified active variables, especially when the sample size was large. When the covariates are discrete (Example 4), IPOD, which is designed to accommodate discrete variables, outperformed all the other methods. In Example 5, all marginal screeners had difficulties recruiting a “marginally unimportant but jointly important” variable X6. Only the conditional screening approach, CoxCS, was able to detect the hidden variable. In addition, the performance of IPOD varied with different γ. The conditional approach might fail when the dependence among covariates is too strong, as shown in Example 3 with ρ = 0.8.
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