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Sir Peter Medawar experimentally demonstrated immunological tolerance through his tissue

transplantation experiment in the early and mid-1950s. He made a central contribution to

modern biomedicine by showing that genetically distinct cells introduced into a body

during its foetal phase could not only be permanently tolerated but also make the host

accept any subsequent skin grafts from the original cell donors. However, this discovery

had only a limited clinical applicability. None could practise Medawar’s method on human

foetuses in preparation for their future need for organ or skin transplantation. I analyse this

problem by focusing on his management of ‘failures’ during the tissue transplantation

experiments. Through statistical, material, theoretical and rhetorical strategies, he managed

unsatisfactory findings of his research, including unexpected skin infection, sudden animal

death and irregularities in homograft survival times. I argue that these strategies and their

inherent ambiguities constituted the course of Medawar’s research, enabling him to

delineate the temporal dimensions of tolerance and a clinical relevance, which were

mutually contradictory. This paper thus illustrates the multiple roles that failures play in

scientific research as well as the conflicting outcomes of investigators’ efforts to manage them.
ark0
There is no calling in life in which mere incompetence is any obstacle to professional

advancement: we are brought into the world by incompetent obstetricians and if we survive

we are baptized by incompetent clergymen who will as likely as not drop us into the font.

Peter Medawar, Memoir of a thinking radish (1986)
INTRODUCTION

In 1953, Peter Brian Medawar (1915–1987) demonstrated immunological tolerance

through tissue transplantation experiments.1 Although it had been known that mammals,

including humans, could not accept tissues grafted from different individuals, Medawar

discovered that they could be induced to accept a foreign body if its cells had been

introduced into them in utero. This phenomenon was genetically specific, because the
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tolerant animals failed to accept grafts from other inbred strains. Subsequently, his research

led other scientists to investigate the body’s way of distinguishing its ‘self’ from ‘non-self’,

which highlighted the biological, rather than chemical, aspects of immunity.2 As this work

confirmed Sir Frank Macfarlane Burnet’s theoretical prediction in 1949, Medawar and

Burnet shared the Nobel Prize in Physiology or Medicine in 1960. However, Medawar’s

1953 experiments had little relevance to actual clinical practices.3 No one could use his

work as a basis for making a human body tolerate skin or organs from another person.

I offer a historical interpretation of these two dimensions of Medawar’s work, which has

not attracted much scholarly attention.4 In particular, this paper focuses on his efforts to

manage failures in his experiments. I use the term ‘failures’ following Medawar’s own

expression in his autobiography and laboratory notes.5 From the outset, the main part of

his tissue transplantation research seemed to accompany a relatively clear definition of

failures because it started from the wartime clinical imperative of treating burn patients.

Despite his strategic ambiguity, his primary work aimed at making skin grafts ‘tolerated’

on a foreign body for an extended period. He thus took many cases without this long-

term survival as potential failures. In effect, he wrote, ‘For one reason or another some of

the experiments failed’, especially as he began his study using foetal mice in 1952.6 In

general, I think, there were three types of failures. The first were those from explicit

errors by Medawar and his colleagues, Rupert Billingham and Leslie Brent; this included

their mistakes during animal surgery, such as loose skin stitches and other problems,

which could be easily corrected. The second were the cases for which his team was not

responsible, but whose causes, according to their view, could still be identified, at least

partly; the graft exchange failures within the same inbred strain due to their residual

genetic heterogeneity belonged to this type. Yet more troublesome was the third kind: the

issues whose causes seemed to lie beyond the scope of Medawar’s understanding or

responsibility. This included mysterious deaths of operated animals, as well as the

rejection of tissues by mice after receiving cells in utero from the strain out of which the

tissues were extirpated. In their laboratory notes, Medawar’s group meticulously recorded

all these difficulties. It was only after years of struggle that they succeeded in showing

that their mice could develop complete tolerance toward foreign skin.

To analyse these efforts, I borrow perspectives from the scholarship on ‘errors’, ‘mistakes’

and ‘failures’. As Giora Hon and other historians have argued, errors and mistakes can play

heuristic roles in scientific research.7 The American neurobiologist Stuart Firestein even

declared that failure is a driving force of scientific enterprises.8 As Henry Petroski has

illustrated, we can learn a lot from historical studies of erroneous judgments in technical

projects, because failure is a great teacher.9 Yet, some scholars take a further step by

questioning the nature of failure itself.10 From his philosophical scrutiny, Hasok Chang has

claimed that scientific ideas that were deemed unsuccessful in the past can be re-evaluated

now for what he calls ‘complementary science’.11 Studying twentieth-century biosciences,

Hans-Jörg Rheinberger has also shown that scientists do not necessarily fail due to

unwanted or unexpected results, because such results, as ‘novelties’, can help researchers

construct new epistemic domains.12 As Graeme Gooday has illustrated, failures in technical

projects are flexibly interpreted, depending on ‘socio-technical relations of usage’.13

Medawar’s research is relevant to these scholars’ study of the nature of failures. As I have

mentioned, he had a relatively clear definition of failures, which led his team to search for

the causes. However, they could not find such causes in all cases, as some of their

unsuccessful trials—belonging to the third type—could be neither understood nor
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controlled.14 Remarkably, however, he rendered many of his failures relevant in a series of

measures. Material from spoiled cases could be reused for different purposes, and could also

foster new lines of investigation. Yet, the most crucial measure came from his mathematical

expertise. Putting his unsuccessful or partially successful cases in a statistical scheme, he

accounted for why tolerance was not an ‘all-or-nothing’ phenomenon.15 Strikingly, Medawar

and his colleagues simultaneously gave their readers an impression that tolerance was a

phenomenon with a clearly delimited boundary equivalent to acquired immunity. Medawar’s

presentation of tolerance was thus ambiguous, but this ambiguity, integrated within his

rhetorical, theoretical and statistical strategies, contributed to making his work convincing

despite its limited applicability.

My analysis of this ambiguity draws on the historical scholarship on quantification and

statistics, especially on the significance of variation. Theodore Porter depicted how

statisticians changed their focal point from the mean as a reified quantity to variations and

dynamics in populations.16 Ian Hacking has also analysed longstanding debates on chance

and certainty, alongside heterogeneity and regularity, amid the ‘avalanche of numbers’

generated by statistics.17 Similarly, J. Rosser Matthews has illustrated how the concept of

‘errors of technique’ was pitted against the idea of the statistical ‘problems of random

sampling’, while Eileen Magnello discussed the differences between vital and mathematical

statistics, which correspondingly stressed ‘averages’ and ‘variations’.18 More recently, Tiago

Moreira and Paolo Palladino have analysed the ideas of ‘laboratory populations’ and

‘population laboratories’, which were geared to gerontologists’ distinct views of averages

and variations, respectively.19 In all these works, the key problem has been about how to

interpret observations: what ontological significance should we assign to variations in

scientific observations? Do they reflect errors in research or actual representations of nature’s

remarkable versatility? I explore this ‘perennial question’ through Medawar’s research.20

I argue that Medawar’s statistical, material, theoretical and rhetorical management of

failures fostered his strategic ambiguity toward irregularities in his experiments—

understood as something between errors in research and nature’s variability—which

enabled him to delineate the temporal dimensions of tolerance and a clinical relevance,

which contradicted each other, reflecting this ambiguity. In my paper, ‘managing failures’

means a broad range of practices for dealing with unsatisfactory outcomes. After

experiencing failure, scientists can modify experimental procedures for better results. But

they also try to make the best use of such failure in various ways, which may not lead to

logically coherent outcomes, as Medawar’s work illustrates.

This effort explains Medawar’s later philosophical arguments. In 1964, he claimed that most

scientific papers, including his own, were ‘fraudulent’, not because they contained any

fabricated records, but because they did not show the complex paths of research.21 Published

papers seriously distorted the actual process of scientific work, which depended on

‘uncharted by-ways of thoughts’ that were impossible in traditional inductivism. Instead, he

defended other philosophies, especially Karl Popper’s work, which appeared to represent

real scientific endeavours. As Neil Calver has argued, however, Popper was not a ‘guru of

falsificationism’ to Medawar, but a science philosopher standing for creativity, imagination

and researchers’ persistent efforts to address ‘mistakes’.22 As Medawar’s research enabled

him to understand the inherent instability and complexity of science unrepresented by

traditional inductivism, he thought that Popper’s work reflected his experience. To Medawar,

science was full of pitfalls, but they could be creatively managed in research. Yet, this effort

could also make the meaning of the research contradictory.
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TWO MATHEMATICAL STYLES IN MEDAWAR’S EARLY RESEARCH

Starting his scientific education and career in Magdalen College and the Zoology

Department at the University of Oxford in 1932, Medawar became interested in

mathematical approaches to biological problems. According to his autobiography,

Bertrand Russell’s The principles of mathematics (1903) was the first book that led him to

understand the importance of mathematical methodologies.23 Thereafter, Medawar was

exposed to two different styles of mathematical reasoning in biology. Initially, he learned

from D’Arcy Thompson’s Growth and form (1917), which explained the development of

organisms and interspecies relationships through mathematical means. Being sceptical of

Darwinian evolution, Thompson was what Magnello called an ‘Aristotelian essentialist’,

as his work dealt with strict geometric correlations among species that hardly changed.24

Medawar’s correspondence with Thompson illustrates his deep respect toward this senior

scholar, for whom he edited Essays on growth and form presented to D’Arcy Wentworth

Thompson (1945).25 Medawar’s scholarship was also shaped by a group of researchers

with an opposite perspective—British evolutionary biologists who contributed to the neo-

Darwinian synthesis, including Ronald Fisher, J. B. S. Haldane and Julian Huxley.26

Viewing living organisms as constantly changing entities, they not only championed

Darwinian evolutionism but also stressed variations and diversity in natural populations

revealed in mathematical analysis. Medawar incorporated their approach as he knew of

them through the alumni–faculty network of Oxford’s zoology department.27

Medawar’s first research project relied on his learning from these scholars, although it is

unclear which approach he then adopted. In his experiment in Howard Florey’s laboratory in

the late 1930s, he mathematically delineated the changing growth rate of chicken embryos’

cells under a substance in malt extracts that inhibited animal cells’ growth in a culture

medium.28 Appropriating Fisher’s ‘specific death rate’, Medawar showed that the rate of

the cells’ growth consistently declined over time, which he interpreted as a sign of

‘senescence’.29 As I have discussed elsewhere, he found that even rapidly growing cells

in an embryo underwent ageing, as was revealed by their declining growth rate.30

Medawar reconfirmed this view of growth and ageing in his 1944 paper, which, unlike his

earliest work, made clear his Thompsonian approach. Using a schematic drawing of human

growth from an anatomy textbook, he delineated a mathematical formula to describe the

changing distance of the fork, navel, nipples and chin from the bottom line. Titled ‘The

shape of the human being as a function of time’, this paper was indeed an exercise of a

Thompsonian methodology. Citing Thompson, he showed how a ‘standard’ human body

underwent transformations following a rigorous mathematical rule, which demonstrated

that ‘the rate of change of shape of the human being falls off progressively in time’.31 He

probably thought that this was not the only possible pattern of growth, but he believed

that it was quite close to the standard. Ageing, expressed in terms of lowering growth

rate, proceeded following a fixed mathematical pattern.

However, in another work, Medawar chose a different approach. Adopting the ideas of

major contributors to the neo-Darwinian synthesis, his evolutionary theory of ageing in

1946 explained the evolutionary emergence of ageing as a consequence of random

mutation and natural selection.32 As I have detailed elsewhere, this theory posited that a

gene’s time of activation determined the amount of selective force exerted on it.33 A gene

activated later in life received lesser force of natural selection. Hence, most genes in the

final phase of life tended to mutate freely under low selective pressure, and would
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become responsible for the symptoms of ageing, which would be manifest after organisms

came to live in protective environments preventing their early death. Medawar could thus

account for a wide variation of timing and rate of ageing among diverse living organisms,

depending on their shifting environmental conditions that had no settled pattern.

This theory, inspiring many later students of the evolution of ageing, reflected an increasing

concern over Britain’s ageing populations that resulted in the creation of its post-war welfare

services following the surveys of the Royal Commission on Population.34 The problems of

ageing also led to the establishment of the British Society for Research on Ageing, for

which Medawar served as an executive committee member.35 With the founders of this

society, Medawar shared the anxiety about the increasing number of seniors in Britain and

its future impact on the country’s economy and medical services.36

But Medawar’s gerontological activity then remained an ‘intellectual pastime’.37 Rather,

he came to concentrate on the ‘homograft problem’, a major medical issue emerging with the

outbreak of the war. Yet, he still had in mind the two different mathematical perspectives,

which respectively assumed an unchanging truth or dynamic variability in nature.

He adopted these two perspectives in managing failures in his transplantation research.
FAILURES AND NUMBERS IN TRANSPLANTATION

The Second World War initiated Medawar’s lifelong endeavour in tissue transplantation. After

seeing a victim who had lost 60% of his skin due to a third-degree burn after a plane crash in

Oxford, he determined to study how to make homografts—tissue grafts from different

individuals belonging to the recipient’s species—successful for patients who had little

remaining skin.38 A great opportunity came when he joined the Burns Unit at the Glasgow

Royal Infirmary through a Medical Research Council (MRC) arrangement.39 There,

Medawar, together with Leonard Colebrook and Thomas Gibson, investigated burn victims

and concluded that homografts could not survive long because of the immune reaction

incurred by the activities of antibodies circulating in the entire body rather than local

tissues.40 Homograft rejection was thus ‘systemic’ and ‘humoral’ in nature.41 Furthermore,

like other immunogenic agents, a second-set graft after the failure of the first-set was broken

down more rapidly.42

At Glasgow, Medawar also tried to use tissue culture techniques that he had mastered in

Florey’s laboratory.43 He cultivated patients’ skin in vitro under trypsin in order to increase

its amount before transplanting it back to the patients. Yet, this work, which appeared to

enable him to solve the problem without using homografts, was not successful because of

severe post-surgical contractions that disfigured the operated area.

Thereafter, Medawar, with an MRC grant, started more systematic experiments on

homografts in his Oxford laboratory, which continued after he became Mason Professor

of Zoology at the University of Birmingham in 1947.44 In general, he pursued three

interrelated lines of research using rabbits and mice. First, he tried to find a way to block

or mitigate homografts’ immunogenic power. Second, he examined the roles of various

factors relevant to immunity, including serum, blood cells, vascularization, sites of

transplantation and differences among species. Third, he scrutinized the quantitative facets

of homograft rejection by measuring the influence of donors and recipients’ age and the

‘dosage’ of grafted tissues. He also traced the variations of mitosis in grafts over time and

the number of antigens responsible for homograft rejection.
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None of these studies was easy, as Medawar often obtained results he did not want. As

early as 1943, he found that his use of cellophane for dressing grafted skin brought about

substantive necrosis, and the trauma of skin removal made some operated animals

inadequate for further use.45 The improper size and thickness of removed skin, as well as

mechanical glitches—such as a leaky or faulty tap stopper of tissue incubators—were no

less significant.46 But even more problematic were troubles regarding experimental

animals. Bacterial infection was quite common in all stages of his work, while fungal

infection also occurred.47 Hence, his animals occasionally contracted various diseases,

including dysentery and ‘cold’, and some of them died.48 Moreover, perhaps owing to the

stressful condition in the cage, some animals attacked others.49

Medawar could reduce the occurrence of these unwanted outcomes by managing the

‘faults’.50 After he failed with a cellophane dressing, he wrote: ‘No cellophane to be used

in the future.’51 Indeed, there were a number of alternatives for dressing purposes.

Likewise, the size and thickness of the cut became more adequate as he refined his

surgical skill, and he fixed mechanical glitches quickly.52 He also tried to improve the

condition of experimental animals in cages by providing better feeds and antibiotics.53

Admittedly, this measure was not always effective. Infection and illness could never be

completely avoided, as several sociologists have shown through their study of

contemporary surgical practices and biological experiments.54 However, he was able to

control bacterial infection at least partially with the post-war dissemination of antibiotics

through Florey’s work that Medawar had assisted in.55 Furthermore, his use of antibiotics

spawned a new set of experiments that he called ‘S-test’. While cultivating a rabbit’s skin

along with serum, lymph nodes and spleen from another animal immunized against it, he

added streptomycin in one batch but omitted it in the other to examine the effect of

antibiotics in culturing tissues undergoing immune reactions.56 Failed works could be

useful in another way: as Leslie Brent has mentioned, Medawar’s team had to struggle

with their limited laboratory equipment after the war.57 They thus tried to save as much

material as they could by using botched experimental subjects for different purposes. For

example, as a graft recipient showed a poor prognosis, he wrote that the animal had ‘no

further use at present’ and it should ‘serve as homograft donor’.58 He also tried to

withdraw blood from an animal, but this job was ‘bungled’ owing to his mistake, which

left permanent damage on the animal body. He thus determined to use it for ‘class

demonstration purposes’.59

With these efforts, Medawar could successfully perform diverse experiments, but many of

them brought about only ambiguous results. Medawar incubated skin patches in Ringer’s

solution at body temperature for a while and transplanted them to a different individual,

finding that few survived there.60 He also discovered that a low-temperature treatment of

skin before homografting slightly enhanced its survivability, while turpentine treatment

lowered it.61 Yet, this difference did not mean much because all homografts soon broke

down. In another set of studies, he examined the effect of cell-free extracts, as well as

cell suspensions, which were expected to reduce or delay immune response, if they were

injected into the host before homografting. However, no practically or theoretically

pertinent outcome was found from this work.62 He also transplanted homografted skin

back to its original donor, and surrounded this ‘autograft’—the graft attached to the

original donor’s body—with six homografts ‘in a symmetrical ring’.63 Through these

experiments, Medawar found that a prolonged contact with foreign tissues barely affected

the life of autografts, which would survive in any case. At the same time, he co-cultured
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the donor and the recipient’s skin with either the donor’s or the recipient’s serum. But this

work showed little meaningful result, just as his experiment of transplanting homografts

from two different individuals, alongside ‘heterografts’ from a different species, failed to

show anything remarkable.64

Medawar’s effort to count the number of antigens responsible for homograft rejection was

equally inconsequential. Using 25 rabbits and the mathematical technique of permutation

and combination, he conducted an extensive set of skin transplantations, which prompted

him to conclude that there were at least seven antigens involved in rejecting homografts.65

Yet, this conclusion, which might be technically correct, revealed no more about the

nature of immunity.

But there were more meaningful studies. In one experiment, Medawar performed a

‘heterotopic’ grafting by placing skin homografts into the brain or the eye’s anterior

chamber.66 As far as vascularization did not take place in such locations, skin patches

after these operations, especially in the eye’s chamber, could survive for some time. This

meant that the ‘breakdown of grafts must be “active” and not merely a consequence of

partial or total withdrawal of blood supply’, because the host destroyed the graft through

its antibodies in the blood.67 He also studied the difference between adult and young

rabbits of between two and four weeks of age, when they were used as homograft

recipients.68 Although this investigation merely showed that there was no significant

difference between them, it would place a stepping stone toward his later experiments on

tolerance, which also focused on the significance of age.

Despite these promising works, several problems persisted when it came to tracking the

shifting condition of grafted tissues. Medawar had to trace transplanted skin’s changing

conditions to see if his operation was successful. This work, involving an examination of

cellular mitosis and migration as well as the mean diameter of grafts, was less than

straightforward. Among theses, measuring cellular migration and the mean diameter was

relatively uncomplicated. Medawar wrote: ‘The judgment, whether epithelium has spread or

not, is hardly subject to error.’69 However, counting cellular mitosis of homografted skin

was a tricky job because it was often difficult to tell whether a cell underwent mitosis or

not. Hence, he made a new category, namely ‘dubious mitosis’, alongside ‘definite

mitosis’.70 Indeed, as he counted the number of mitosis, such ‘dubious’ cases were

frequently found. Furthermore, Medawar had to consider ‘abnormal mitosis’. As his system

was ‘ill-adapted to chromosome study’, he observed numerous cases of cell division that

looked ‘abnormal’. In fact, he found ‘the long axes of the dividing cells may lie at any

angle with regard to the plane of section’, distorting the image of mitosis under his

microscope.71 In such instances, ‘the errors of personal judgment become unduly large’.

What did Medawar do to cope with these problems? Strikingly, he did little: ‘no attempt

was made to distinguish “normal” and “abnormal” mitotic figures’, because ‘any such

discrimination probably introduces as many errors as it can hope to remove’. Likewise, he

did not do anything about ‘dubious mitosis’, because it was found mostly in the second-

set homografts, which did not exhibit many cellular divisions in any case. Ignoring these

problems, he then calculated the ‘mean mitosis’ per diameter which determined the

‘degree of survival’ of homografts.72 He also computed the ‘sampling errors’ out of his

mitosis counts to examine how the number of divisions he measured through ‘sampling’

corresponded to the hypothetical average representing all instances of mitosis.73

This work reveals ambiguity in Medawar’s approach. As Matthews has shown, the

statistical notion of sampling errors assumed heterogeneity in a population that could be
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Figure 1. Changing number of rabbits with surviving skin homografts. The horizontal axis is the number of days
after transplantation, while the vertical axis is the number of rabbits maintaining homografts, converted to a scale
with ten as the maximum. Peter Medawar, ‘The behaviour and fate of skin autografts and skin homografts in
rabbits’, J. Anat. 78, 176–199 (1944), at p. 186.
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shown only partly through sampling, in contrast to the concept of personal errors of technique

that postulated a singular truth, which most experimenters might not reach without committing

‘errors’.74 By computing sampling errors and ignoring personal errors, Medawar seemed to

stress heterogeneity in his research subject. Yet, this heterogeneity, even if it existed, should

not be too great. As sampling errors were ‘a very small fraction of the mean computed

from the readings’, the mean value that he posed should be regarded as a singular truth.

This attitude led Medawar to draw a qualitative conclusion out of quantitative research,

especially since the mean values of mitosis counts revealed a significant difference

between the first- and second-sets.75 He observed a very small number of mitosis in

second-set homografts, in contrast to the first-sets, which displayed substantial cellular

proliferation. This was a great piece of evidence for the immunological nature of graft

rejection. Most cells in second-set homografts could not divide, because the host body

stopped their proliferation by recognizing their physical pattern known from the previous

encounter. The quantitative study based on the notion of sampling errors was thus phased

into the qualitative affirmation of the distinction between first- and second-sets.

Medawar’s analysis of declining numbers of surviving homografts over time also

represented how he found a qualitative implication from quantitative studies. As I have

reviewed in another paper, Medawar traced the number of surviving homograft patches on

rabbits’ bodies.76 The second-set grafts were rejected more rapidly than the first-sets, as the

difference between groups I and II (first-sets) and groups III and IV (second-sets) illustrated

(figure 1). This reconfirmed that the homograft failure was an immunological phenomenon.

In this experiment, he also examined the relevance of ‘homograft dosage’ as well as the

site of operation. In particular, the dosage difference initially seemed important, as large

homograft patches (group II) appeared to break down more rapidly than smaller ones

(group I). But Medawar’s statistical study using probit analysis illustrated that the dosage

affected only the length of the ‘latent period which must pass before the homograft

reaction becomes effective’.77 After the rejection response started, all homografts broke

down at the same rate without regard to their size. The location of homografting also

turned out to be less significant. In terms of the speed of rejection, the second-set skin

grafted on a new site (group III) did not differ much from that reattached on to the site

where the first-set had already been destroyed (group IV). Homograft rejection was thus a

‘systemic’ rather than a ‘local’ reaction.
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But this conclusion entailed an uneasy tension. How large was the gap between groups II

and III if compared with that between groups I and II? To some, the distance between I and II

might look greater than that between II and III. Viewing the graphs in this way, it was

possible to say that there was no clear-cut qualitative distinction between the first- and

second-set homografts, which seemed to exist in a continuous spectrum. There was

another problem: to what extent could Medawar justify his argument that the location of

graft was unimportant by pointing to the minimal distance between groups III and IV?

Was it not large enough to prove that the site did matter? Medawar indeed exercised his

discretion in drawing qualitative conclusions from the numbers he acquired, but his paper

did not articulate its potential problems.
MANAGING FAILURE FOR TOLERANCE

According to a standard historical account, there was a great turning point for Medawar in

1948. At a scientific conference he met Hugh Donald, head of the Animal Breeding and

Genetics Research Organisation in the Agricultural Research Council.78 After hearing

Donald’s concerns over distinguishing monozygotic from fraternal twins among his cattle,

Medawar visited his experimental farm and showed that skin transplantation was useful in

making this distinction: monozygotic twins accepted each other’s skin, while fraternal

twins did not. Yet, he was surprised by some fraternal twins that did accept each other’s

tissues.79 Initially puzzled by this discovery, Medawar soon found an answer in other

scholars’ publications. Above all, he came across Burnet and Fenner’s Production of

antibodies (1949), which predicted that extraneous entities introduced into an animal

during its early life would be indefinitely ‘tolerated’ because ‘the process by which self-

pattern becomes recognizable takes place during the embryonic . . . stages’.80 This idea

was backed up by a piece of evidence provided by Ray Owen, who showed that the blood

type of freemartin cattle—cows that were genetically female but had some masculine

characteristics—was the same as that of their fraternal twins because of their shared blood

circulation during foetal life, which caused their freemartinism as well as tolerance toward

their twin’s cells.81 Indeed, Medawar’s animals that accepted their fraternal twin’s skin

were also freemartins. After this discovery, he started his systematic experiments to

demonstrate tolerance using inbred mice, which culminated in his landmark discovery at

University College London (where he began to teach from 1951).

Although this account is largely correct, it does not completely illuminate Medawar’s

complex path of research. Most of all, the idea that an intervention into embryos and

foetuses would bring about significant changes did not stem only from Burnet’s and

Owen’s work, since it also came from Medawar’s own longstanding interest in the

concatenation between growth and ageing. Medawar took note of Burnet’s and Owen’s

studies because they struck a chord with Medawar’s view that embryogenesis, as revealed

in his tissue culture, was a key period that accompanied both rapid growth and ageing.82

Medawar later found that an animal’s ability to develop tolerance also underwent rapid

decline during its growth in embryonic and foetal stages. The idea that ageing and growth

simultaneously occurred can also be found in his 1946 paper on the evolution of ageing,

which postulated that senile changes took place right after birth.83

Medawar devised a new line of immunological research out of this 1946 paper, which

proposed that tissue exchanges between old and young organisms would reveal significant
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information about the ageing processes. In 1951, Medawar’s team began a systematic

grafting study among animals of different ages.84 The goals of his research expanded

because he also investigated the relevance of age in homografting as well as the

mechanisms of senescence. Indeed, he had already investigated whether young rabbits

differed from old in responding to homografts in 1945. He was also aware of James

Murphy’s and others’ earlier work on embryos which temporarily accepted foreign

grafts.85 In his own experiments in 1951 and 1952, using rabbits and mice, Medawar

inquired if age differences between the graft and the host affected homografts and

autografts.86 Simultaneously, he used a deep-freezer: he could temporarily stop the ageing

of skin grafts by storing them at 270 8C for a while. Then, these ‘young’ tissues would

be thawed and grafted to a host.87 What would happen to these ‘young’ homografts

attached to an older host? Would they survive any longer?

There was another project that also addressed age and development. In 1947, Medawar’s

team showed that a piece of darker skin would gradually colour its neighbours with a lighter

hue.88 Conspicuously, this experiment brought forth the significance of development,

because Medawar explained it through cytoplasmic inheritance theories, which—

according to historian Jan Sapp—were deeply associated with embryologists’ view that

development and heredity were integrated.89 In fact, Medawar’s postulation of darker skin

cells’ cytoplasmic hereditary entity and its migration into its surrounding cells was based

on embryologists’ long-lasting speculation on the roles of cytoplasmic inheritance in

cellular differentiation during foetal growth. Rupert Billingham later claimed that his and

Medawar’s study of cytoplasmic inheritance would contribute to explaining ‘embryonic

differentiation’.90 It is probably no coincidence that Burnet, who focused on early life as

the period of the formation of immune ‘self’, also incorporated cytoplasmic inheritance in

his theory of antibody formation.91

The relationship between pregnancy and homografting pertained to this research. If

embryonic and foetal life was important in forming immunity, pregnancy must be

investigated, too. To Medawar, foetuses were similar to homografts, because both were

genetically distinct from their host. As early as 1948, he thus tried to find a way to a

successful homografting by investigating the mother–foetus relations, because foetuses were

not normally subject to mothers’ immune reaction, except for the case of the Rh disease,

known to him through the problems of the wartime transfusion service which highlighted the

risk of an Rhþ foetus in an Rh– mother’s uterus.92 At that time, Medawar started

investigating the influence of pregnancy on homografts’ survival, alongside the influence of

maternal hormones, including ‘cortisone or something like it’, which seemed to be secreted

by the mother’s body to reduce or stop its immunological reaction toward the foetus.93

In all these experimental projects, Medawar, Billingham and Brent experienced numerous

problems, which they could partly manage. During their experiment on ageing, they

improved their method of storage in a freezer, after finding ‘a faculty method’.94 They also

managed some petty issues such as ‘confusion of labelling’ and overcame the problems of

their coordination, especially when Brent—then a postgraduate student—made a mistake.95

Medawar’s team could also find the right amount of cortisone for controlling the homograft

response after their initially disappointing trials performed with inadequate amounts.96

But Medawar’s experiments were still not entirely satisfactory. In particular, the sex of

mice was a troublesome factor because he thought that female mice could become

pregnant by males in the same cage and thereby—according to him—might show aberrant

responses to homografts. He also thought that female mice could be killed or harmed by
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male mice.97 Hence, he tried to segregate animals according to their sex, but his effort

occasionally failed, as he erred in confirming the sex of mice.

More problematic was what I have called the third type of failure, namely the

disappointing attempts that could not be explained. For instance, a recipient animal,

during an experiment on ageing, ‘died 2hrs AFTER OPERATION’ for no good reason.98

In another investigation, Medawar was not able to explain why grafts on a mouse grew so

slowly. He suspected that ‘there is definitely something wrong with this animal’, but

could not tell what was actually ‘wrong’.99 He also thought that operations that ‘were

clumsily and incompetently done’ were the cause of the ‘excessive drying’ of the part on

which extraneous tissues were grafted,100 but he could not point to the specific steps in

the procedure in which he made a mistake.101 Likewise, he found that a graft’s condition

became ‘hopeless’ during an experiment on pigment spreading, but this ‘cannot be due to

faulty technique’, since everything appeared properly done.102 Indeed, this issue was very

annoying because he then transplanted autografts, which should usually be successful.

Medawar continued to face obstacles well into his main tolerance research using young

mice. Based on his longstanding studies of growth and ageing, as well as Burnet’s and

Owen’s investigations, he started homografting on newborn mice in July 1952 and in

September he adopted even younger hosts, foetal mice.103 In these works, he consistently

implemented his research scheme—inoculating young inbred hosts with cell suspensions

from a different inbred strain and examining whether the host, after completing growth,

could accept skin from the donor strain—but he found that ‘some of the experiments

failed’.104 His laboratory notes clearly express his attitude toward these failures, which

‘must be prevented in future’.105

Indeed, Medawar appeared able to identify the causes of some failures, such as a ‘blunt’

needle, improper cell suspensions including ‘bony matter’, stitches that became ‘adrift’ after

operation and an erroneous use of cortisone.106 In such cases, Medawar and his colleagues

could easily correct the problems. They could also use the lymph nodes from mice that failed

to develop tolerance for a different experiment—on the ‘passive transfer’ of immunity—in

order to save materials.107

However, some of their problems could not be brought under complete control. In

particular, foetus manipulation was not easy. In fact, Medawar and his colleagues had to

‘see’—and identify with his fingers—foetuses through the mother’s body wall exposed by

a mid-ventral incision.108 Therefore, they occasionally erred in counting the number of

foetuses. The process of foetal injection was equally problematic. He sometimes killed his

mice due to an overly ‘thorough’ injection of cell suspensions.109 He also injected cells

into ‘the head region’ of foetal mice, which thereafter perished.110 But even more

problematic was the third type. For example, Medawar could not account for some

experimental animals’ sudden death and stillbirth. Other mice were excessively sensitive

to anaesthesia, yet he could not explain the reason.111 He also wrote that a ‘young mouse

has disappeared without a trace’ and could not find it again, although he suspected that it

was lost during cage changes.112

The irregularities within Medawar’s inbred mice were equally annoying, even though he

thought that he partially knew the causes. Since 1945, he had maintained several inbred

mouse strains that he acquired from the Jackson Laboratory.113 Although all inbred mice

in one strain should exchange skin without immune reaction, he found contrary evidence

among some: definite immune reaction was found during intra-strain skin grafting with

varying survival times. In fact, this finding was alarming because different inbred mice



Figure 2. The percentage mortality of homografts over time. ‘Homograft survival times: B series’, Medawar’s
laboratory notes stored in Box 43, Folder C155, Peter Brian Medawar Papers, Wellcome Library, London.
(Online version in colour.)
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had to provide their skin after the original donor from the same strain was killed having given

its organs for creating cell suspension. If the later skin donors were different from the

original cell donor, it was hard to test whether the recipient developed tolerance.

To cope with this problem, Medawar pointed to several possible factors, which would

cause not just graft breakdown but also ‘variation’ in the survival time. Initially, these

factors included ‘residual heterozygosity in the inbred lines’, ‘small differences of graft

dosage’, ‘differences of physiological state in the grafted skin’ and ‘differences in

physiological state of the recipients’ including the influence of their ‘sex’.114 Later, he

added another factor, namely ‘mutation’ during inbreeding.115 However, for reasons

unknown, he came to disregard all of these factors except ‘residual heterozygosity’—the

existence of some genetic heterogeneity within inbred strains. In truth, his transplantation

test revealed that the aaUU strain (C-line) was slightly heterogeneous, and he decided to

refrain from using this strain, especially for ‘Exp. 73’, detailed in his 1953 paper.116

However, it remained unknown if other factors were really irrelevant. Furthermore, some

mice from the A-line, deemed reliable for its ‘known and charted inbreeding’, also

displayed some adverse reactions against grafts from the same strain.117

Grafting between different strains was more straightforward, but was still irregular in

many aspects. As this was homografting, there was no reason to expect that it would

succeed. Yet, its survival time varied considerably, perhaps due to genetic heterogeneity

and errors in technique. This variation thus led Medawar to perform some statistical

analysis based on his measurement of ‘median survival time’ (MST), determined by a

mathematical transformation of the ‘time-frequency distribution of the moments of graft

death’ into a curve tracing the ‘percentage mortality’ over time.118 In this new curve,

MST was defined as ‘the time at which this curve passes through the ordinate

corresponding to 50% graft mortality’ (figure 2).

However, things were not entirely certain. The ‘time-frequency distribution’, which was

supposed to be normal, ‘cannot of course be exactly normal: some skew-ness is to be

expected, since there is no theoretical limit to time which a homograft may survive’.119 The
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timing of graft survival was also problematic, because host cells’ proliferation may be mistaken

as that of grafted skin.120 Moreover, some degenerating grafts had a small number of die-hard

cells, whose long life hampered Medawar’s attempt to distinguish dead from living grafts.121 If

only 10% of a graft’s cells were surviving, was it then alive or dead?

Medawar did not publish many of these complications in his 1953 Nature paper. Above all,

this paper mentioned only one successful case, which he called ‘Exp. 73’, among a total of 15

sets of experiments on foetal mice conducted before the publication. Whereas all these

experiments were recorded in his laboratory notes like a natural history, namely with a full

chronological detail of trials and errors, his published account presented his work as a

smooth progression toward success with no chronological references.122 Admittedly, he did

mention the cases that did not exhibit tolerance in ‘Exp. 73’. Among the six foetal CBA

mice inoculated with A-line cells, only two displayed lifetime tolerance toward A-line skin,

while another tolerant mouse exhibited ‘a long-drawn-out “spontaneous” involution’ of its

graft.123 Among the other three, one was not even born, and the remaining two rapidly

rejected new tissues from the A-strain. The problem was that this was not the only issue.

His paper did not even mention that he inadvertently picked up a pregnant female mouse

for a second-set graft, although he wanted to choose a male that could not become

pregnant. Because he suspected that pregnancy influenced homograft survival, this was a

mistake that he acknowledged only in his laboratory notes.124 Similarly, he came to use a

pregnant female mouse as a recipient of the CBA lymph nodes immunized against A-line

in examining the restoration of immunity, which would demonstrate that tolerance was ‘due

to a failure of the host’s immunological response’.125 Yet, its A-line skin stayed for a

longer period than he expected before its breakdown, probably because of the host’s

pregnancy.126 But a greater disparity was found in the actual success rate. Whereas

Medawar’s 1953 paper described his production of two tolerant mice out of six, the rate

recorded in his laboratory notes was far lower (table 1).

Among the 77 mice inoculated in utero, those that tolerated homografts for more than 15

days numbered 17 (22.1%), among which only six tolerated for 31 days or longer (7.8%). His

laboratory notes clearly expressed his feeling toward some of these unsuccessful attempts: it

was ‘depressing’, especially when inoculated mice could not even have a chance to exhibit

tolerance owing to their untimely death.127 Admittedly, some will say that Medawar had no

obligation to publish all these failed works. I agree, but the absence of his reference to the

failures made his narrative in the paper awkward. After discussing ‘Exp. 73’, he suddenly

mentioned the result of his inoculations into newborn animals, in which ‘only nine mice

[out of 96] showed an increase of tolerance’.128 The word ‘only’ would make sense if he

had already shown the full records of his foetal inoculations, whose success rate was

supposed to be higher. According to my own count, even this success rate for inoculations

into newborn mice (9.4%) was exaggerated, because it probably included rather questionable

cases in which grafts survived just for a few additional days plus MST (table 2).129 The mice

that tolerated foreign grafts for 15 days or longer were merely four (4.4%), and only one

among them showed lifetime tolerance (1.1%).

The low success rate could raise a question on Medawar’s claim with regard to ‘Burnet

and Fenner’s . . . theory’ on the prenatal formation of the immunological ‘self’. Could

Medawar’s work really be the decisive evidence supporting Burnet’s theory if only a

small fraction of inoculated mice developed permanent tolerance toward the donor

strain?130 Perhaps these fully tolerant mice might be a result of mere chance, if he were

to remain consistent with his statement that ‘there is no theoretical limit to time which a



Table 1. A tabulation of Medawar’s experiments for inducing tolerance by inoculating foetal mice

with cells from mice of different inbred strains, from September 1952 to May 1953. The data came

from Medawar’s laboratory notes stored in Box 43, Folder C156, Peter Brian Medawar Papers,

Wellcome Library, London.

Cases Injected Failed
Survival for
12–14 days

Survival for
15–30 days

Survival for
31 days or longer

EMB-85 3 1 1 1
EMB-68 4 3 1
EMB-79 6 5 1
EMB-103 4 2 1 1
EMB-102 7 6 1
EMB-100 6 5 1
EMB-94 3 1 2
EMB-87 4 3 1
EMB-77 5 3 2
EMB-74 5 3 2
EMB-73 6 3 3
EMB-69 5 5
EMB-64 5 4 1
EMB-41 7 6 1
EMB-180 7 6 1
Total 77 56 4 11 6

Rate of success (all) 27.3%
Rate of success (graft survival for 15 days or longer) 22.1%
Rate of success (graft survival for 31 days or longer) 7.8%
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homograft may survive’.131 Equally troublesome were his temporarily tolerant mice. Did

they ever support Burnet’s theory? Maybe they could reflect Medawar’s technical

mistakes or the genetic heterogeneity of his mice, but their widely varying survival times

also indicated that he could not identify—let alone control—the cause of the problems. In

effect, he worried about this for a long time, at least until 1986: ‘survival times varied, of

course, however much one tried to standardize the conditions under which

transplantations were carried out’.132

Medawar’s response to these problems was not to find out all their causes. Such efforts

might be too time-consuming and unproductive. Perhaps his team could also consider any

‘hidden variable’ behind the low success rate, but ‘Medawar’s group, which was so

creative in other respects, did not at the time suspect that there might be’ such variables.133

Instead, the Medawar team managed the problems by being strategically ambiguous. This

ambiguity came from the two mathematical traditions he had incorporated since the 1940s. If

Fisher and Haldane told Medawar that mathematics was useful for addressing diversity and

variability in nature, Thompson taught him that there was an unequivocal truth delineated

rigorously in mathematical terms. Indeed, referring to the non-tolerant mice of ‘Exp. 73’,

Medawar said that ‘this was because they were imperfectly injected’.134 Although

Medawar did not mention all other problems—including the heterogeneity of inbred mice,

mutation, mistakes in inoculations, hosts’ physiological condition, incorrect counting and

the ambiguity in measuring graft survival—this statement assumed the possibility of an

ideal experiment for ‘perfect’ tolerance. However, he also wrote that ‘the conferment of

tolerance is not of an all-or-nothing character; every degree is represented, down to that



Table 2. A tabulation of Medawar’s experiments for inducing tolerance by inoculating newborn mice

with cells from mice of different inbred strains, from July 1952 to May 1953. The data came from

Medawar’s laboratory notes stored in Box 43, Folder C156, Peter Brian Medawar Papers, Wellcome

Library, London.

Cases Injected Failed
Survival for
12–14 days

Survival for
15–30 days

Survival for
31 days or longer

EMB-16 5 5
EMB-14 6 6
EMB-12 4 4
EMB-24 7 7
EMB-31 6 6
EMB-57 7 5 2
EMB-58 2 1 1
EMB-86 9 9
EMB-28 6 5 1
EMB-17 6 4 2
EMB-62 7 6 1
EMB-8 8 8
EMB-7 6 6
EMB-19 7 7
NB-10 4 3 1
Total 90 82 4 3 1

Rate of success (all) 8.9%
Rate of success (graft survival for 15 days or longer) 4.4%
Rate of success (graft survival for 31 days or longer) 1.1%
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which gives the test-grafts only a few days of grace beyond the median survival time’. In this

statement, he translated errors into the inherent variability of tolerance as a natural

phenomenon which could be quantitatively represented around MST. As a result, it

became hard to distinguish usual homografts that were destroyed after 13 days of

operation from some of his ‘successful’ grafts on mice inoculated with A-line cells right

after birth. If both grafts stayed on their hosts’ body just for 11 days of MST plus two

additional days, why, then, did the former represent a normal breakdown but the latter

tolerance?

Reflecting this ambiguity, Medawar proposed a theoretical scheme subsuming

irregularities in an apparent order. As I have mentioned, he noted that the rate of failure

for inoculations into newborn animals was higher than that for foetal operations. In effect,

the graft survival times of most newborn inoculated mice were close to MST—indicating

that tolerance failed to develop—while even later inoculation triggered more clear-cut

immune reactions in mice, with homograft survival times shorter than MST.135 Then he

could say that ‘the pattern of the host’s response to foreign tissue cells is turned

completely upside down’ from tolerance to immunity during growth. In this scheme, he

might assign positive numbers to tolerance as the survival time of grafts on tolerant mice

was longer than MST, but negative numbers should be given to immunity as most

homografts broke down before reaching MST. Between these two poles, a short span of

time after birth was called the ‘null period’, because newborn mice—whose grafts’

duration of survival was almost equal to MST—usually showed neither tolerance nor

immunity.136 To him, this trend pointed to a steady decline, as his later publication
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further confirmed. In 1956, Medawar’s team showed that very young foetuses, before their

eighteenth day after conception, had a greater chance (58%) of developing tolerance than

older foetuses (13%).137 In other words, they found failed cases less often with the

younger foetuses. Citing two American scientists, Jack Cannon and William Longmire,

who discovered a similar phenomenon, Medawar thus claimed that there was ‘the

progressive decay, with [hosts’] increasing age, of the power of an antigenic stimulus to

confer tolerance’.138 This conclusion was consistent with his earlier view that growth

accompanied ageing.

But Medawar’s theory was not entirely consistent with his rhetorical presentation of his

finding as a possible clinical innovation. His theory, reflecting Medawar’s interpretation of

the quantitative pattern of failures during the growth of host mice, could potentially

facilitate a breakthrough in clinical transplantation, but these failures contributing to his

theory made its realization questionable. He indeed claimed that ‘actively acquired

tolerance’ was ‘the exact inverse of “actively acquired immunity”’, based on his view that

an animal’s growth accompanied a decline of its power to develop tolerance, which

decreased the rate of success in Medawar’s experiments and ultimately brought forth

immunity.139 If actively acquired immunity was useful, then actively acquired tolerance

could also be useful. Yet, these two phenomena were different. While most forms of

‘actively acquired immunity’ were relatively easy to trigger with vaccination, ‘actively

acquired tolerance’ was far more difficult, as his repeated failures demonstrated. In a

sense, this problem echoed the ambiguity between failure and nature’s variability, a

longstanding problem in his research. If his theory represented the dynamics of the

transformation from tolerance to immunity, the lack of its clinical prospect reflected the

other side of this dynamic—those mice that failed to develop tolerance even after

receiving foreign cells during their early life.

In retrospect, there was a major reason why Medawar’s work had no clinical relevance.

Later, Medawar’s team discovered that the causes of this continuing trouble would be

found not just in ‘technical errors’ and other irregularities but the graft-versus-host

disease, an illness caused by the graft’s leucocytes attacking the host.140 Unfortunately,

they did not know anything about this disease in the period 1951 to 1956 when they were

actively investigating tolerance using young mice.

At the time, Medawar declared that he found a ‘solution’ to a problem that he had long

struggled with since the war.141 Although he wrote that it was just a ‘“laboratory” solution’ at

the time, he felt ‘certain that the clinical homograft problem is soluble’, and some readers

would also feel that his work could bring about an actual clinical application comparable

to vaccination.142 These readers, including surgeons, were encouraged by Medawar’s

work, especially his reference to acquired immunity, which was a convincing rhetoric.

Yet, they ultimately had to search for different kinds of tolerance induced by distinct

factors, including radiation and immunosuppressants.143

This problem reflected the contradictory roles of failures in Medawar’s work. Being

likened to acquired immunity, tolerance became a phenomenon with a definite category,

which could be violated through failures. Still, these failures did not just violate but also

constituted the boundary of tolerance, which formed a long continuum toward its opposite

pole, immunity. It was through his failures that Medawar built his theory, placing both

tolerance and immunity in a quantitative and temporal continuum within which he forged

his claim for a clinical relevance. Curiously, the relevance was contradicted by this very

continuum, comprising his interpretation of failures.
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CONCLUSION

Medawar’s research has been known as an exemplary scientific achievement with its

multiple contributions, including the creation of practical and epistemic bridges between

laboratories and clinics in biomedicine.144 I have illuminated his work from a different

perspective. Despite its pivotal role in biomedicine, Medawar’s work had no clinical

relevance. No doctor undertook the risky task of inoculating foreign cells into human

foetuses in preparation for their future transplantation.145 But why was it so risky? An

obvious reason was found in the low success rate of his experiments. His publications

reflected only a small portion of his laboratory research, during which he tried not only to

control but also to appropriate various failures.

This paper illustrates how he managed these problems. He certainly learned from his

failures, and also utilized materials resulting from unsatisfactory cases for other purposes.

But, in some instances, he could not understand why his experiments failed. Nevertheless,

he incorporated these failures under a theoretical, rhetorical and statistical scheme.

Utilizing two different mathematical approaches, Medawar placed his failures between a

deviation from the normal practice and a part of nature’s diversity and variability. With

this ambiguity, he crafted a theory that integrated his failures in a quantitative–temporal

scheme, which enabled him to propose a clinical utility in a rhetorical framework that

was contradicted by the basis of the theory—the failures.

This contradiction highlights a new dimension of failures in science. It has been well

known that failures can help scientists be creative, but their multiple roles in research

programmes have not been well understood. Medawar was undoubtedly a great scientist,

and the failures during his research played heuristic roles in his success. Simultaneously,

they were also limiting, as his successful research had little clinical implication owing to

the manifold failures constituting his experiments.
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