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Abstract The mutation–selection process is the most fundamental mechanism of
evolution. In 1935, R. A. Fisher proved his fundamental theorem of natural selection,
providing a model in which the rate of change of mean fitness is equal to the genetic
variance of a species. Fisher did not include mutations in his model, but believed that
mutations would provide a continual supply of variance resulting in perpetual increase
in mean fitness, thus providing a foundation for neo-Darwinian theory. In this paper
we re-examine Fisher’s Theorem, showing that because it disregards mutations, and
because it is invalid beyond one instant in time, it has limited biological relevance.
We build a differential equations model from Fisher’s first principles with mutations
added, and prove a revised theorem showing the rate of change in mean fitness is equal
to genetic variance plus a mutational effects term. We refer to our revised theorem
as the fundamental theorem of natural selection with mutations. Our expanded the-
orem, and our associated analyses (analytic computation, numerical simulation, and
visualization), provide a clearer understanding of the mutation–selection process, and
allow application of biologically realistic parameters such as mutational effects. The
expanded theorem has biological implications significantly different fromwhat Fisher
had envisioned.
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1 Introduction

R.A. Fisherwas one of the greatest scientists of the 20th century. He is considered to be
the singular founder of modern statistics and simultaneously the principle founder of
population genetics (followed byHaldane andWright). Fisher was the first to establish
the conceptual link between natural selection and Mendelian genetics. This paved the
way for what is now called neo-Darwinian theory.

At the heart of Fisher’s conception was his famous fundamental theorem of natural
selection (Fisher’s Theorem). Fisher’s Theorem, published in his text The Genetical
Theory of Evolution (Fisher 1930), showed that given a population with pre-existing
genetic variants (i.e., Mendelian alleles) the population’s mean fitness will increase.
Not only will mean fitness increase, the rate of increase will be proportional to the
genetic variance for fitness within the population at any given time. This constitutes a
proof that natural selection leads to increasing fitness in idealizedMendelian genetics,
although it is often overlooked that Fisher’s theorem does not consider mutations and
without newly arising variants natural selection can only lead to stasis.

By itself, Fisher’s Theorem seems obvious and of little significance. The impact of
the theorem came from the following two points.

(A) Fisher conceptually linked natural selection with Mendelian genetics, which had
not been done up to that time.

(B) Fisher assumed that, when combined with a constant inflow of newmutations, his
theorem guaranteed unbounded increase of any population’s fitness. Therefore in
his mind his theorem constituted a mathematical proof of Darwinian evolution.

At the time of Fisher’s work, there were two competing schools of thought about
genetics and evolution (Plutynski 2006). The Biometric school viewed genetics as
quantitative and continuous, fully understandable solely by statistical metrics and a
vague notion ofDarwinian gradualism.TheMendelian school of thought viewed inher-
itance as the transmission of discrete Mendelian units, hence evolution was thought to
progress by discrete steps. In describing Fisher’s goal in his text, Plutynski writes, “His
aim was to vindicate Darwinism and demonstrate its compatibility with Mendelism—
indeed, its necessity given aMendelian systemof inheritance” (Plutynski 2006). Fisher
wanted to show that the established reality of the discrete units of Mendelian inher-
itance did not undermine Darwinian evolution (as some were arguing), but actually
supported it.

1.1 Fisher’s derivation of how natural selection and Mendelian genetics can
work together

Fisher’s model, and the assumptions he placed on his model system, have been inves-
tigated by numerous authors. It is generally accepted that while Fisher does not clearly
state his assumptions about his system, it is possible to create a model system consis-
tent with his work in which the proof of his theorem is valid. Price summarizes various
perspectives on Fisher’s Theorem as (Price 1972):
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Also, he [Fisher] spoke of the “rigour” of his derivation of the theoremand of “the
ease of its interpretation”. But others have variously described his derivation as
“recondite” (Crow andKimura 1970), “very difficult” (Turner 1970), or “entirely
obscure” (Kempthorne 1957). And no one has ever found any other way to derive
the result that Fisher seems to state. Hence, many authors (not reviewed here)
havemaintained that the theorem holds only under very special conditions, while
only a few (eg. Edwards 1967) have thought that Fisher may have been correct—
if only we could understand what he meant!
It will be shown here that this latter view is correct. Fisher’s theorem does indeed
hold with the generality that he claimed for it. The mystery and the controversy
result from incomprehensibility rather than error.

Fisher’s model assumes many simplifying (but unrealistic) assumptions that define
the limited generality that Price describes. For example, Fisher’s Theorem requires
the assumption of zero dominance and zero epistasis. Price (1972) posits that Fisher
defined dominance and epistasis to be environmental effects, whichmakes the theorem
correct in this restricted level of generality, but limits its application as a fundamental
rule affecting biological species as Fisher later claims. Ewens (1989) confirms the
validity of Fisher’s Theorem in this level of generality. Also, Fisher’s definition of
genetic variance uses a metric that changes with the population, thus his measure of
genetic fitness is only applicable to a singlemoment in time, thwarting the development
of a dynamicmodel of the evolution of the population (Price 1972; Ewens 1989). Fisher
defines the expected value of fitness of an organism y to be

X (y) = m̄ +
∑

l

Ql,a(y,l) (1.1)

where m̄ is the average fitness of the population, the sum is over every loci l in the
genome, a(y, l) is the allele for the organism y at loci l, and Ql,a is the “increment”
[Fisher’s terminology (Fisher 1930, p. 32)] associated with allele a at loci l, defined
by Fisher to be the difference from the mean fitness that an organism will gain by
having this allele at this locus. While Fisher does not provide a direct formula for the
increments, Price (1972) suggests that they are the regression coefficients associated
with the allele, defined by letting Pl,a be the population of all organisms with allele a
at locus l, #Pl,a be the number of organisms in population Pl,a , m(y) be the fitness of
organism y, m̄ be the mean fitness of the total population, and

Ql,a =
∑

y∈Pl,a

m(y) − m̄

#Pl,a
. (1.2)

The genetic variance as defined by Fisher is the variance of the genetic fitness X (y)

over all organisms y [See Price (1972) for a complete derivation from this perspec-
tive]. Because Fisher’s measure of genetic fitness of each organism y depends on the
constituency of the population as a whole at that time, his theorem cannot be extended
to a dynamic model over time. This, combined with his modeling ignoring important
effects such as epistasis, does not invalidate Fisher’s theorem, but it makes his theorem
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inconsistent with his conclusion about how it applies as a universal law of evolution
to all biological populations over time (Price 1972; Ewens 1989).

Fisher believed that his fundamental theorem applied to all species as a natural
part of their function, “As each organism increases in fitness, so will its enemies and
competitors increase in fitness”; (p. 41, Fisher 1930), not as providing a special case
or just one piece of the change in fitness over time. Moreover, Fisher clearly claimed
that his fundamental theorem should be as universal as entropy in thermodynamics
(p. 36, Fisher 1930):

It will be noticed that the fundamental theorem proved above bears some remark-
able resemblances to the second law of thermodynamics. Both are properties of
populations, or aggregates, true irrespective of the nature of the units which
compose them; both are statistical laws; each requires the constant increase of a
measurable quantity, in the one case the entropy of a physical system and in the
other the fitness, measured by m, of a biological population. As in the physical
world we can conceive of theoretical systems in which dissipative forces are
wholly absent, and in which the entropy consequently remains constant, so we
can conceive, though we need not expect to find, biological populations in which
the genetic variance is absolutely zero, and in which fitness does not increase.
Professor Eddington has recently remarked that “The law that entropy always
increases the second law of thermodynamics holds, I think, the supreme position
among the laws of nature”. It is not a little instructive that so similar a law should
hold the supreme position among the biological sciences.

Despite the limitations in Fisher’s theorem, Point (A) above (that natural selec-
tion can result in an optimization process of allele frequencies) is widely accepted.
Thus, while his methods to compute fitness from the genetic level have not become
universally accepted, his general conclusion concerning Point (A) has been accepted.

What is often overlooked is that without a constant supply of new mutations,
selection can only increase fitness by reducing genetic variance (i.e., selecting away
undesirable alleles, eventually reducing their frequencies to zero). This means that
given enough time, selection must reduce genetic variance all the way to zero, apart
from new mutations. According to Fisher’s Theorem, at this point effective selection
must stop and fitness must become static. This evolutionary scenario only results in a
minor increase in fitness followed by terminal stasis. Apart from a constant supply of
new mutations, Fisher’s Theorem would actually suggest that “Mendelism has killed
Darwinism” (Glick 2009, p. 265), a common view in Fisher’s time. This is precisely
the opposite of what Fisher wanted to prove.

1.2 Fisher’s theorem with mutations

In terms of Fisher’s primary thesis, we cannot overstate the essential role of new
mutations and their fitness effects. Fisher’s theorem by itself actually shows that,
apart from new mutations, a population can only optimize the frequencies of the pre-
existing alleles, followed by stasis. Yet Fisher argued forcefully that his theorem was
so fundamental in its nature, that it essentially guaranteed that any population would
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increase in fitness without limit (essentially constituting a mathematical proof that
Darwinian evolution is inevitable). How could he make this argument? To make his
theorem meaningful Fisher had to assume a constant supply of new mutations. He
understood that both deleterious and beneficial mutations occur, but argued against
the effects of deleterious mutations (p. 41, Fisher 1930):

If therefore an organism be really in any high degree adapted to the place it fills
in its environment, this adaptation will be constantly menaced by any undirected
agencies liable to cause changes to either party in the adaptation. The case of large
mutations to the organism may first be considered, since their consequences in
this connexion (sic) are of an extremely simple character. A considerable number
of such mutations have now been observed, and these are, I believe, without
exception, either definitely pathological (most often lethal) in their effects, or
with high probability to be regarded as deleterious in the wild state. This is
merely what would be expected on the view, which was regarded as obvious by
the older naturalists, and I believe by all who have studied wild animals, that
organisms in general are, in fact, marvellously (sic) and intricately adapted, both
in their internal mechanisms, and in their relations to external nature. Such large
mutations occurring in the natural state would be unfavourable (sic) to survival,
and as soon as the numbers affected attain a certain small proportion in the whole
population, an equilibrium must be established in which the rate of elimination
is equal to the rate of mutation. To put the matter in another way we may say
that each mutation of this kind is allowed to contribute exactly as much to the
genetic variance of fitness in the species as will provide a rate of improvement
equivalent to the rate of deterioration caused by the continual occurrence of the
mutation.

He reasoned that mutations that were seriously deleterious would easily be selected
away, and so could be ignored. Beyond this, he loosely suggested that the downward
impact on fitness must be balanced by the upward impact on genetic variance. In
mutation–selection population models, as described in Sect. 2, there is a balance
between the downward effects of deleterious mutations and upward effect of selection
that balances out in infinite population models but not in finite population models.
Our main theorem, Theorem 2, provides the rate of change of mean fitness into two
terms, the first being the genetic variance and the second being a decrease in fitness
from mutations, and the two are not equal.

After arguing that large mutations are generally deleterious and can be ignored
because they are self-eliminating, Fisher argues that mutations with small net effects
have a nearly equal chance of being deleterious as being beneficial (p. 46, Fisher 1930):

Adaptation, in the sense of conformity in many particulars between two complex
entities, may be shown, by making use of the geometrical properties of space of
many dimensions, to imply a statistical situation in which the probability, of a
change of givenmagnitude effecting an improvement, decreases from its limiting
value of one half, as the magnitude of the change is increased. The intensity of
adaptation is inversely proportional to a standard magnitude of change for which
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this probability is constant. Thus the larger the change, or the more intense the
adaptation, the smaller will be the chance of improvement.

Having argued that the effects of large mutations can be ignored, he argues that the
small mutations have a net effect that was effectively neutral (the net effect approaches
zero as the size of the effect approaches zero), with 50% of these mutations being
beneficial and 50% of being deleterious. Fisher does not consider any mutations other
than those with large deleterious effects and those with small nearly neutral effects.

It is now clear Fisher was wrong regarding the effects of mutations. Research since
that time, described in Sect. 2, shows that the mutations with intermediate fitness
effects have the greatest impact on long-term fitness. This has been shown in models,
demonstrated in laboratory experiments, and has led to antiviral therapies. At the time
Fisher wrote, the distribution of mutational effects was not understood, and so his
fundamental assumption was incorrect.

Fisher’s primary error was that he sincerely believed that mutations by themselves
could continuously restore genetic variance without affecting fitness (and then selec-
tion could always translate the replenished genetic variance into increased fitness). It
is very significant that new mutations were not part of Fisher’s mathematical formu-
lation, he only added mutations as an informal corollary to his Theorem. Although
Fisher did not explicitly make the distinction, for clarity we need to separate Fisher’s
Theorem (no mutations included) from “Fisher’s corollary” (mutations included).

Fisher’s Corollary 1 Fisher’s fundamental theorem, plus a steady supply of new
mutations, necessarily results in unbounded fitness increase, as mutations continuously
replenish variance, and as selection continuously turns that variance into increased
fitness.

The term “corollary” is justified here because Fisher believed that if Fisher’s funda-
mental theorem is true, then the corollary is true as a necessary logical consequence.
Fisher never derived his corollary mathematically. Moreover, most modern evalua-
tions of Fisher’s theorem focus on the theorem itself and do not address the role of
mutations.

It has been observed that systems with more than one loci and recombination can
have limit cycles and mean fitness (measured as mean reproduction rate) that is not
strictly increasing (Karlin andCarmelli 1975;Hastings 1981), and periodic oscillations
can occur in diploid models (Hofbauer 1985; Burger 1989). Following the approach
of Price, the component of change in mean fitness due to natural selection is still equal
to variance in genetic fitness but recombination and other factors can act as external
variables, and so these special cases may not violate Fisher’s fundamental theorem
of natural selection in its limited generality. However, these examples do violate how
Fisher perceiveduniversal applicability of the theorem in the sense of always increasing
mean fitness. In this paper we address the mutation–selection process in the restricted
setting that Fisher considered.

This paper show’s mathematically how Fisher’s Corollary depends upon the
assumption that the net effect of new mutations must be effectively fitness-neutral.
Even if Fisher had understood the nature of mutations, and had developed a mathe-
matical model for the actual effect of mutations on fitness, there seems to be no clear
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way for him to incorporate that model into his original theorem. This is because his
theorem is formulated to only consider modifications in frequencies of pre-existing
alleles.

In order to understand Fisher’s theorem in light of newly arisingmutations, we need
to reformulate the original theorem to allow for incoming new mutations. Instead of
building the model up from the genetic allele level, we consider the resulting fitness to
be equal to theMalthusian growth rate of the population in its environment, such that a
“special example” (Crow and Kimura 1970, p. 10) of Fisher’s theorem can be proven.
This new version of the theorem includes an objective metric of fitness which allows
for dynamic modeling of the mutation–selection process over time. In this special
case, we are exchanging Fisher’s derivation of the theorem based upon pre-existing
Mendelian alleles for a new derivation that has the ability to quantify fitness with
an objective metric that can be applied to a changing population. The statement of
Fisher’s fundamental theorem becomes “the rate of change of fitness at any instant,
measured in Malthusian parameters, is equal to the variance in fitness at that time”
(Crow and Kimura 1970, p.10).

The goal of this paper is to develop a version of Fisher’s theorem analogous to that
presented by Crow and Kimura (1970), but with the additional capability of tracking
the effects of mutations to new genetic varieties over time. This new formulation is
proven as Theorem 2, where we derive a formula that gives the rate of change of
mean fitness as a function of both the variance in fitness and the mutation effects on
population fitness. In this manner, we provide the ability to mathematically analyze
Fisher’s Corollary (Point (B)).

Since the premise underlying Fisher’s Corollary is now demonstrably wrong, it is
a forgone conclusion that Fisher’s Corollary is false. Mutations are not effectively
fitness-neutral, not even when all large deleterious mutations are eliminated by selec-
tion, so Fisher’s conclusion that natural selection with mutations necessarily results
in increasing fitness is not true. In reality, the direction and rate of fitness change is the
sum of two terms. One term is the upward effect of selection, which is proportional
to genetic variance in fitness (as in Fisher’s original formulation). The other term is
the net downward effect of mutations, which will depend on the exact distribution
of mutational fitness effects and other biological factors affecting selection effective-
ness. Our Theorem 2, which we call the fundamental theorem of natural selection
with mutations, expands upon Fisher’s fundamental theorem of natural selection by
incorporating into it the modern understanding of mutations.

2 Mutation–selection models—a review of the literature

Since the early days of Fisher, Haldane, and Wright, a number of newer models for
the mutation-selection process have been formulated. On a practical level it does not
seem that most population biologists have actually believed that fitness could increase
universally, continuously, and without bound. Indeed, the literature has reported many
empirical and theoretical studies that indicate that fitness increase can be very problem-
atic, and that fitness decline is a very real possibility for any population. It seems most
population biologists have viewed Fisher’s theorem as being simply out of date and of
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modest historical interest. Yet theorems should not just fade away—mathematically
they should be upheld, refuted, or corrected.Our goal is to correct and re-apply Fisher’s
Theorem, such that it is consistent with real biology.

Most of the more recent mutation–selection models have a general framework
which employs a method for describing all possible genotypes (called the state space),
wherein organisms reproduce at rates proportional to the fitness determined by the
parent genotype(s), and resulting progeny can be of a different genotype than the
parents caused by mutations. Each model has its own set of variables that are studied
and its own set of rules governing change over time.

Every model is only an approximation of some isolated subset of reality, and each
model is only useful insofar as it: (1) includes the variables and rules to be studied and:
(2) the rules governing change in themodel accurately approximate themost important
factors affecting change in reality. Simple rules make a model more mathematically
tractable, but at the cost of utility as a usefulmodel of reality. The general goal is to have
rules that are as simple as possible, and yet capture all the driving factors contributing
to the phenomena to be studied. In using a model to make general statements about
behavior in reality, it is essential to consider the built-in assumptions implicit in the
structure of the rules in a model.

2.1 Deterministic versus non-deterministic models

Deterministic models are models in which all future behavior is determined by the
current state of the system. In non-deterministicmodels (sometimes called agent-based
methods), mutations and Mendelian genetic principles (which are non-deterministic
on an individual organism level) are used to determine genetics of offspring from
parents. Numerical simulations can simulate change in genetics over time, and there is
almost no limit to the complexity of the simulation. As with all numerical simulations,
general principles are not derived mathematically as much as are made as general
observations from repeated experiments. Non-deterministic agent-based methods are
at the extreme end of enabling the most accurate approximation of factors driving
genetic change in real biological systems at the cost of little accessibly to proving
mathematical principles or laws. Non-deterministic models can be used to explain
what is likely (or unlikely) to happen given some underlying set of governing rules,
but are unlikely to provide must-happen rules in the form of physical laws that Fisher
sought in his fundamental theorem.

The ideal situation in usingmodels to understand reality is to have phenomena that is
observable in reality, observable in non-deterministic models, and that has underlying
principles provable in deterministic models.

2.2 Infinite population models

In this section we discuss models for mutation–selection that come under the general
heading of infinite population models. In these models, the population size is held at
carrying capacity but the population can be divided into infinitely small subsets. These
models also have an explicitly defined state space describing the possible genotypes
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and mutations occuring but only between genes that are already present. Selection
occurs as genetic varieties reproduce and compete at different rates depending on fit-
ness, providing a first-principles approach to selection. These models are important
for understanding the selection–mutation process as a population adapts to its envi-
ronment, but do not provide direct insight into how a population forms new genotypes
that may be more fit or less fit than the original population; no genes are lost and no
new genes are created.

There are two main explicit models for the state space of genotypes upon which
selection–mutation acts in infinite population models: measuring the frequency of
alleles present and segregating population into subpopulations, each of which corre-
sponds to a different genotype. Modeling from the allele frequencies is considered a
population genetics approach because the focus is on the genetics and is the approach
that Fisher used. Modeling each individual subpopulation by genotype is called the
quasispecies theory because the population of a species is modeled as a cloud of
separate genotypes each of which can mutate to any of the others, and is generally
attributed to the work of Eigen in (1971), with the term quasispecies first used in Eigen
and Schuster (1977). While the two approaches begin with different foundations, they
are more appropriately described as two sides of the same coin as opposed to being
entirely different models.

While these two types of models use differing descriptions of the state space, they
both use equivalent rules for change over time: organisms reproduce proportional to
fitness with mutations. Before introducing equations for specific models from each
approach (which vary according to additional assumptions made), we discuss the
context for using either approach.

Thepurposeof the allele-frequency approach (andothermodels basedon thegenetic
components) is to investigate the change in the underlying genetics over time, as
described in Burger (1989):

“Traditionally, models with only two alleles per locus have been treated. At the
end of the fifties the first general results for multi-allele models with selection
but without mutation were proved. In particular, conditions for the existence of
a unique and stable interior equilibrium were derived and Fisher’s fundamental
theorem of natural selection was proved to be valid (e.g. Mulholland and Smith
1959; Scheuer and Mandel 1959; Kingman 1961). It tells that in a one-locus
multi-allele diploid model mean fitness always increases. It is well known now
that in models with two loci or more this is wrong in general”.

An excellent exposition of the population genetics approach is provided in Burger
(1989), which includes criteria for cases where a Lyapunov function [a function
on the state space that is increasing with respect to time, also called a maximiza-
tion principle (Hofbauer 1985)] may or may not exist. It is standard results that
any system with a Lyapunov function (which may or may not be mean fitness)
and a compact state space will have all solutions forward asymptotic to equilibria
(Hofbauer 1985). In cases where the population approaches an equilibrium, new
mutations tend to decrease fitness but are balanced by the selection process, called
the mutation–selection balance. The mutation–selection balance is an important con-
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cept for real populations even though there is no guarantee of achieving such an
equilibrium.

The objective in the quasispecies theory was originally to investigate error-prone
self-replication of biological macromolecules with a focus on the origin on life. This
theory has been applied with success to RNA viruses which replicate at high mutation
rates and have extremely polymorphic populations (Pariente et al. 2001; Crotty et al.
2001; Grande-Perez et al. 2002; Anderson et al. 2004). The quasispecies approach
enables investigation of the distribution of a population across a fitness landscape. Of
primary importance is the measurement of when selection acting within a population
will adapt effectively around the higher fitness varieties in the landscape vs. when
mutations will cause the population to spread out across the landscape.

For a given fitness landscape, the mutation rate separating adaptation from spread-
ing over low-fitness genotypes is called the error threshold. While the Quasispecies
Equation always has an equilibrium and the form of the equation holds the total popu-
lation fixed at carrying capacity, the idea that a highmutation rate causes the population
to spread out over lower fitness genotypes has led to effective antiviral therapies in
which the increase in mutation rate causes extinction of the population (Pariente et al.
2001; Crotty et al. 2001; Grande-Perez et al. 2002; Anderson et al. 2004). The infinite
population models a priori prevent extinction (because of approximating assumptions
in the models not present in the biological populations), and models that can exhibit
such an extinction due to mutations will be provided in Sect. 2.3.

Although these two approaches use different models for the state space, they are
more complementary than at opposition to each other. Because they bothmodel change
over time for organisms reproducing proportional to fitness with mutations, the behav-
ior observed in each should at least be compatible. InWilke (2005), the author explains
“I review the pertinent literature, and demonstrate for a number of cases that the quasis-
pecies concept is equivalent to the concept of mutation–selection balance developed in
population genetics, and that there is no disagreement between the population genet-
ics of haploid, asexually-replicating organisms and quasispecies theory”. The main
difference between the approaches is how the measure that behavior and its effect on
underlying variables (specifics of genetic variation in the population in the one case,
and the distribution of the population over fitness landscape in the other). The popula-
tion genetics approach allows the study of the effects of mutation–selection on allele
frequencies and the quasispecies enables the study of the effects on the distribution of
a population across a fitness landscape.

We now present equations for deterministic models for the mutation–selection pro-
cess that assume an infinite population. Themutation process in the model is explicitly
incorporated by a matrix of values that provide the mutation rate from one genotype
(or allele) to a different one. As such, only mutations between pre-existing geno-
types (alleles) are considered. Selection occurs via different reproduction rates for the
genotypes (alleles) with the total population help at carrying capacity.

The infinite population assumption is implicit in the model; it is present by mod-
elling each genotype frequency (or allele frequency) by a real number between 0 and 1.
This makes the population “infinite” because a subset of the population corresponding
to a genotype (or allele) can be a nonzero arbitrarily small fraction of the total popula-
tion. Also implicit in the equations, connected to the infinite population assumption, is
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that every subpopulation is nonzero for all time making any form of extinction a priori
impossible. In addition, these models only permit mutations among genetic varieties
that are already present, limiting their utility for modeling ongoing change in a genes,
either creating ongoing improvements as Fisher envisioned or building up deleterious
mutations in fitness decline.

We start with the single locus case with multiple alleles {A1, . . . , An}. Denote the
frequency of allele Ai by pi and ui j the mutation rate for allele A j to Ai . Denote the
fitness of an organism with allele Ai by mi , and then the mutation–selection model
from Crow and Kimura (1970) is

dPi

dt
= Pi (mi − m̄) +

∑

j

ui j Pj − Pi , (2.1)

where m̄ = ∑
i mi Pi . In the terminology of Burger (1989), this is the “classical

haploid one-locus multi-allele model with mutation and selection”. It is explicitly
solvable with a unique forward-time stable equilibrium solution (Burger 1989), which
is the mutation–selection balance.

For the one-locus diploid model with alleles {Ai , . . . , An} and associated fre-
quencies {p1, . . . , pn}, we define the fitness of an organism with allele Ai A j to be
mi j = m ji . The marginal fitness of allele Ai is then mi = ∑n

j=1 mi j p j . The mean
fitness is m̄ = ∑n

i, j=1 mi j pi p j . We define ui j to be the mutation rate for allele A j

to Ai for i �= j satisfying ui j ≥ 0 and
∑n

j=1 ui j = 1 for all j . Then the one locus
diploid model given in Crow and Kimura (1970) is:

dPi

dt
= Pi (mi − m̄) +

∑

j

(ui j Pj − u ji Pi ). (2.2)

The dynamics for the diploid model are more complicated (Burger 1989), and can
include stable periodic orbits (Hofbauer 1985).

To describe the quasispecies model, we want to define the state space in terms of
a (finite) set of different genetic sequences (genotypes). Suppose now that Pi is the
concentration of the i th genetic sequence, mi is the associated fitness, and that Qi j

is the mutation probability from j to i . Then the quasispecies model as presented
in Wilke (2005) is

dPi

dt
= Pi (mi Qii − m̄) +

∑

j �=i

m j Qi j Pj . (2.3)

From this form of the equation it is not difficult to see that this is equivalent to Eq. 2.1,
with different interpretation of the constants. A more concise form of the quasispecies
equation can be obtained by letting

dPi

dt
=

∑

j

m j Qi j Pj − m̄ Pi . (2.4)
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This is the form used in Nowak (2006), Chapter 3. This form has the advantage that
all the reproduction–mutation creating genotype Pi is in the first term,

∑
j m j Qi j Pj ,

and the second term − m̄ Pi can be seen as the normalization term that keeps the total
population constant. As with the haploid model 2.1, the quasispecies model has a
unique for stable equilibrium solution.

The quasispecies equation allows examination of the distribution of the population
across the fitness landscape. The distribution can be dense around the most fit geno-
types (strongly adapted), or it can be spread out to include significant lower fitness
genotypes (no adaptation). Selection tends to push the distribution to the higher fitness
while mutations work in the opposite direction distribution the population evenly, the
error threshold is the highest mutation rate at which adaptation occurs. Adaptation is
only possible if the mutation rate per base is less than the inverse of the genome length
using appropriate units (Nowak 2006).

The basic idea of Fisher’s Theorem, that mean fitness of a population is always
increasing, is valid for the haploid one-locus and quasispecies models, but not for the
diploid model. The basic idea of Fisher’s Corollary, that mutations add ongoing new
varieties resulting in unbounded growth is untrue in all cases as they are asymptotic
to a limit set.

More generally, given any model in this class of infinite population models in
which mean fitness is always increasing, the mean fitness acts as a Lyapunov and
all solutions are forward asymptotic to an equilibria (See Burger (1989) for specific
criteria).Moreover, for any continuousmutation–selectionmodel with non-decreasing
continuous mean fitness function and a compact state space, there is a maximum
possible mean fitness and all solutions will be asymptotic to a limit set [The state
space will be compact if for example there is a finite upper bound on genome length.
See Basener (2013b)]. In many cases, the existence of an increasing mean fitness
mathematically precludes unbounded increase in mean fitness anticipated in Fisher’s
Corollary.

The model we provide in Sect. 3 is not restricted in the genetic varieties that can
be created via mutations, and thus can exhibit either ongoing increase or ongoing
decrease in fitness depending on mutational effects. An error threshold type boundary
between increasing and decreasing fitness is provided in Theorem 2.

2.3 Finite population models

Finite population mutation–selection models are models with rules assuming a finite
number of organisms. Since there is a limited number of genetic varieties to select
among, selection becomes less effective. As a result, finite population models are
able to produce realistic phenomena that is a priori impossible in infinite population
models, most importantly the build-up of deleterious mutations over time.

An early significant step in finite populationmodelingwas the simple thought exper-
iment that in a small asexually reproducing population, no parent can have offspring
more fit than the parent (beneficial mutations are insignificant compared to deleterious
ones, and back mutations are rare). It is possible that through random chance the most
fit class of organisms might not produce offspring as fit as the parents, and the genetic
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makeup of this class would be lost. The next most fit class could suffer the same fate,
and so on until the population loses fitness needed for population survival. This was
pointed out by Muller (1964), and termed “Mullerś Ratchet” by Felsenstein (1974),
with each click of the ratchet being a loss of a most fit class.

The predominance of deleterious mutations over beneficial ones is well estab-
lished. James Crow in (1997) stated, “Since most mutations, if they have any effect
at all, are harmful, the overall impact of the mutation process must be deleterious”.
Keightley and Lynch (2003) given an excellent overview of mutation accumulation
experiments and conclude that “...the vast majority of mutations are deleterious. This
is one of the most well-established principles of evolutionary genetics, supported by
both molecular and quantitative-genetic data. This provides an explanation for many
key genetic properties of natural and laboratory populations”. In (1995), Lande con-
cluded that 90% of new mutations are deleterious and, the rest are “quasineutral”
(Also see Franklin and Frankham (1998)). Gerrish and Lenski estimate the ratio of
deleterious to beneficial mutations at a million to one (Gerrish and Lenski 1998b),
while other estimates indicate that the number of beneficial mutations is too low to be
measured statistically (Ohta 1977; Kimura 1979; Elena et al. 1998; Gerrish and Lenski
1998a). Studies across different species estimate that apart from selection, the decrease
in fitness from mutations is 0.2–2% per generation, with human fitness decline esti-
mated at 1% (See Lynch 2016; Lynch et al. 1999). Estimates suggest that the average
human newborn has approximately 100 de novo mutations (Lynch 2016). Research
using finite population models has been driven by the need to understand the impact
of the buildup of deleterious mutations (called mutational load) in small populations
of endangered species (See Lande 1995; Franklin and Frankham 1998). Of special
interest is the mutational load in the human species given the relaxed selection due to
social and medical advances (Kondrashov 1995; Crow 1997; Lynch 2016).

Lynch and Gabriel (1990), proposed a discrete-time (non-overlapping generations)
model assuming that the effect of every deleteriousmutation is equal to a value s, called
the mutational effect or selection coefficient. The cumulative effects of mutations is
assumed to be multiplicative, and so the fitness of a an organisms with n mutations is
W = (1 − s)n (assuming an initial well-adapted baseline fitness of 1). Reproduction
proceeds assuming a carrying capacity of K ; after reproduction if there are more
than K individuals then only the most fit K are kept. In the model it is assumed that
the initial population is adapted to its environment with little mutation variance, and
is at carrying capacity, for example a newly arisen from an ancestral sexual species.
Analysis of the model includes both numerical simulations and analytic computations.

Lynch and Gabriel show that the resulting dynamics has three quantitative phases.
First, the mutations are rare and selection is effective, and the mutation number grows
slowly to approach the expected drift–selection–mutation equilibrium value. During
the second phase, mutations continue to accumulate at a nearly constant rate until
the mean viability is reduced to 1/R (less than one surviving progeny per adult, or
equivalently a negative growth rate). From this point on, the population decreases in
size which accelerates the decrease in fitness, resulting in “mutational meltdown”.

The Lynch–Gabriel mutation accumulation model enables estimation of important
relationships—for example the time-to-extinction for varying values of the mutational
effect s and the carrying capacity K , (Lynch et al. 1993, 1995a, b), and the time to
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extinction is approximately equal to the log of the carrying capacity Lynch et al. (1993).
The models shows that “an intermediate selection coefficient (s) minimizes time to
extinction” (Lynch et al. 1993). Mutations with an effect in this intermediate range
are small enough to not be selected out but large enough to still impact overall fitness.
The model was extended to similar conclusions for sexually reproducing organisms
(Lynch et al. 1995b), with a longer time to extinction. It has been used as an important
guide in managing endangered species (Franklin and Frankham 1998).

While the Lynch–Gabriel mutational accumulation model assumes all mutations
have the same impact on fitness, in reality the possible effects of deleterious mutations
is a distribution ranging from effectively neutral to lethal (Lynch et al. 1999):

A lethal mutation is one that in the homozygous state reduces individual fitness
to zero, whereas deleterious mutations have milder effects and neutral mutations
have no effect on fitness. Because the distribution of mutational effects is con-
tinuous, it is difficult to objectively subdivide the class of deleterious mutations
any further.

Of critical importance are deleterious mutations that are small enough in effect to
accumulate, which Kondrashov calls “very slightly deleterious mutations” (VSDMs)
(Kondrashov 1995). He states, “The study of VSDMs constitutes one of the pillars of
population genetics” and attempts to quantify the most dangerous range of VSDMs
as follows: “deleterious mutations with an effect less than 1/G (where G is the length
of the genome) have little effect no fitness even in large numbers, and that deleterious
mutations with an effect greater than 1/4Ne (where Ne is the effective population size)
will be eliminated via selection”. He then observes, “In many vertebrates Ne ≈ 104,
while G ≈ 109, so this dangerous range includes more than four orders of magnitude”
(Kondrashov 1995). Other authors (e.g. Butcher 1995) have described this dangerous
range in terms of Mullerś ratchet; deleterious mutations with a larger effect give a
larger turn of the ratchet at each click but have a slower rate of clicks (because they
are more susceptible to selection), while mutations with smaller effects give a smaller
rotation at each click but have a higher click-rate. The mutations with the greatest long
term impact on fitness are in the middle range with the greatest net rotation rate of the
ratchet. These are the mutations, like those in the range of values observed by Lynch
et al that minimize time to extinction (Lynch et al. 1993), which can accumulate over
time and have significant net impact over time on fitness. In (1997), Crow describes
the effect of these mutations as follows:

...diverse experiments in various species, especially Drosophila, show that the
typicalmutation is verymild. It usually has noovert effect, but showsupas a small
decrease in viability or fertility, usually detected only statistically. ... that the
effect may be minor does not mean that it is unimportant. A dominant mutation
producing a very large effect, perhaps lethal, affects only a small number of
individuals before it is eliminated from the population by death or failure to
reproduce. If it has a mild effect, it persists longer and affects a correspondingly
greater number. So, because they are more numerous, mild mutations in the long
run can have as great an effect on fitness as drastic ones.

123



The fundamental theorem of natural selection with mutations 1603

Computations based on this dangerous range of mutation effects suggest that popu-
lations in general should be accumulating very slightly deleteriousmutations sufficient
to affect mean fitness. Kondrashov conjectured in (1995) that mutational epistasis and
soft selection may stop the accumulation of VSDMs. Mutational epistasis is the con-
cept that multiple mutations will have a larger cumulative effect then the sum (or
product, depending on the model) of the individual effects. If mutations all have the
same mutational effect s and it is in the dangerous range, then as mutations accumu-
late epistasis implies that the effects of additional mutations will have increasingly
large effects, eventually so large as to be no longer in the dangerous region, able to be
selected out of the population.

The mutation–accumulation model of Lynch et al. (Butcher et al. 1993; Lynch et al.
1995a, b) was extended from considering mutations with a single fixed effect s to a
continuous range of possible effects by Butcher (1995). Butcherś model is exactly the
Gabriel-Lynch model with two modifications. First, instead of all mutations having
the same effect, a probability distribution for the possible mutational effects is used.
Second, Butcher has an epistasis term in his fitness to account for the mutational
epistasis. Butcher shows “epistasis will not halt the ratchet provided that rather than a
single deleteriousmutation effect, there is a distribution of deleteriousmutation effects
with sufficient density near zero”. The phenomena is conceptually understandable
even without the model details; as mutations accumulate, additional mutations that
would have previously been in the dangerous range can now be selected out, but other
mutations whose effects previously had been too minor to be dangerous will now be
in the dangerous range. Butcher concludes that “This contradicts previous work that
indicated that epistasis will halt the ratchet”. This is further supported byBaumgardner
et al. (2013), which shows that in simulations with biologically realistic parameters,
synergistic epistasis does not halt genetic degeneration—but actually accelerates it.
Likewise, Brewer et al. (2013), shows that related mechanisms (such as the mutation-
count mechanism), fail to halt genetic degeneration.

The observation that modeling of the mutation selection process, using realistic
parameters measured from nature, suggests that mutations should accumulate to the
significant detriment of even large populations is a paradox highlighted byKondrashov
(1995):

I interpret the results in terms of the whole genome and show, in agreement
with Tachida (1990), that VSDMs can cause too high a mutation load even
when Ne ≈ 106−107. After this, the data on the relevant parameters in nature is
reviewed, showing that the conditions underwhich the loadmay be paradoxically
high are quite realistic.

Kondrashov’s paradox suggests the critical need to better understand the mutation–
selection process. Models show that deleterious mutations accumulate quickly in high
mutation rate environments and small populations, and these models confirm observa-
tions from real organisms. Thesemodels further suggest that deleteriousmutationswill
accumulate even in large populations with realistic parameters. The most complete
models—those that like Butcher’s model use a distribution of mutational effects—
suggest that the deleteriousmutation accumulation is robust. There is a critical need for
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more complete models of mutation–selection and the surrounding biological param-
eters.

2.4 Conceptual selection models

In this section we describe some conceptual selection models. These models are not
first-principle models, being more conceptual than derived from competing / repro-
ducing organisms.

Truncation selection is an artificial selection process wherein every generation the
members of a population are sorted and ranked based upon a specific criteria (such
as total fitness), then a threshold of performance is defined, and all individuals below
this threshold are unconditionally eliminated. This process is used in breeding plants
and animals. While this is an effective method for amplifying desirable traits, there is
no reason to believe that nature “ranks and truncates” (see Crow and Kimura 1979)
populations.Moreover, while truncation selection is useful in breeding, it is only useful
for amplifying a trait up to a limit; beyond that limit loss of genetic variance leads to
diminishing returns and genetic pathologies.

Truncation selection can sometimes happen in nature; but only in isolated and
largely artificial circumstances. For example, when a bacterial colony is exposed to an
antibiotic, all cells dies except for the resistent ones. However, almost universally, total
fitness is affected by many traits, many genetic factors, many selection factors, and
many environmental effects. Therefore, truncation is not generally relevant in natural
populations.

3 Modeling natural selection with mutations

In this section, we present a system of equations for a population model which, unlike
the model in Fisher’s Theorem, can be studied as a dynamical system extended over
time and which allows for the inclusion of a continuous supply of new mutations. In
comparison to the models described in Sect. 2, we use a state space for the possible
genotypes similar to the quasispecies approach, allow organisms to reproduce at rates
proportional to fitness as with the infinite population models, but as with the finite
population models, our total population is not forced to stay at carrying capacity and
the mutations can create new genetic varieties not present in the original population.
Themodel can be treated as an infinite populationmodel using the differential equation
in Eq. (3.2), or as a finite population model when any subpopulation with less than
one organism is rounded down. Thus, we use the first principles approach to modeling
from the previous infinite population models, but incorporate the flexibility of the
previous finite ones.

3.1 Differential equations with mutations

For a given population, divide the population into a collection of N subpopulations
{P1, . . . , PN }, where all organisms in subpopulation Pi have the same fitness. This
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could be done by grouping them be genotype (Pi being all organisms with genotype
i as in the quasispecies model), but two genotypes with the same fitness will be
indistinguishable in our model and do not need to be separated. Alternatively, we
could divide the range of finesses for the whole population into N subintervals and
define Pi to be the organisms with fitness in the ith subinterval.

Denote the birth rate of the i th subpopulation by bi and the death rate by di , with
resulting net intrinsic growth rate of mi = (bi − di ). Suppose that, in addition, the
probability that the progeny of a parent with fitness m j has fitness mi is given by a
probability distribution function fi j . It is assumed that this the distribution is a function
of (mi − m j ); that is, it depends on the difference in fitness from parent to offspring
and not on the particular genotype of the parent. Describing this distribution, either in
general terms or with a class of formulas, is an ongoing research endeavor, although it
is known that the distribution is highly skewed in favor of deleterious mutations [See
Ohta (1977), Kimura (1979) and further discussion in Sect. 2].

Ignoring mutations for the moment and considering only the fitness, which is
assumed equal to the Malthusian growth rate, yields a system consisting of one expo-
nential growth model for each subpopulation:

dPi

dt
= mi Pi . (3.1)

This is the system used for the special example of Fisher’s theorem (Crow and Kimura
1970, p. 10). To derive our equations including the effect of mutations, we can rewrite
Eq. (3.1) using mi = bi − di to get

dPi

dt
= bi Pi − di Pi .

In this equation, the first term is the rate at which organisms in the i th subpopulation
are born and the second term is the rate at which these organisms die. To incorporate
mutations, we need to consider not just births of subpopulation i from within this
subpopulation, but the total births of organisms Pi resulting from parents of all sub-
populations. Because, b j Pj is the rate at which the population of Pj is giving birth
and fi j is the fraction of these births that are in Pi , the rate at which progeny are
born in Pi from parents within Pj is b j fi j Pj , and thus the rate at which organisms
of subpopulation i are born from parents of all subpopulations is

∑
j b j fi j Pj . The

governing equation for our model system is then:

dPi

dt
=

∑

j

b j fi j Pj − di Pi . (3.2)

Observe that if we remove the effect of mutations ( fi j = δi j , where δi j = 1 if i = j
and is zero otherwise), then we retrieve the system in Eq. (3.1).
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3.2 The fundamental theorem of natural selection with mutations

In this section we present the main theorem of the paper, proving a formula for the
rate of change of the average fitness of a population based on the variance in fitness
and the probability distribution for the effect of mutations on fitness.

Theorem 2 The fundamental theorem of natural selection with mutations
The rate of change of mean fitness m̄ = (

∑
i Pi mi )/

∑
i Pi of a population is given

by

dm̄

dt
= Var(m) + 1∑

i Pi

∑

i

⎛

⎝

⎛

⎝
∑

j

b j fi j Pj

⎞

⎠ − bi Pi

⎞

⎠ (mi − m̄). (3.3)

If we let Bin
i be the rate at which organisms of genotype i are born, and let Bout

i be
the rate at which they are giving birth, then the equation becomes

dm̄

dt
= Var(m) + 1∑

i Pi

∑

i

(
Bin

i − Bout
i

)
(mi − m̄). (3.4)

Observe that, as before, if we remove the effect of mutations (by setting fi j = δi j )
then we retrieve the special case of Fisher’s fundamental theorem of natural selection
from Crow and Kimura (1970). Also observe that the right-hand most term repre-
sents a downward (negative-valued) pressure when births tend to decrease fitness. A
better understanding of this new term would be extremely valuable to understanding
Theorem 2.

Proof By the quotient rule applied to m̄ = (
∑

i Pi mi )/
∑

i Pi ,

dm̄

dt
=

(∑
i P ′

i mi
) (∑

i Pi
) − (∑

i P ′
i

) (∑
i Pi mi

)
(∑

i Pi
)2

Separating the fraction, using m̄ = (
∑

i P ′
i )/

∑
i Pi ), and then recombining gives

=
∑

i P ′
i mi∑

i Pi
−

(∑
i P ′

i

) (∑
i Pi mi

)
(∑

i Pi
)2

=
∑

i P ′
i mi∑

i Pi
− m̄

∑
i P ′

i∑
i Pi

=
∑

i P ′
i mi − m̄

∑
i P ′

i∑
i Pi

=
∑

i P ′
i (mi − m̄)
∑

i Pi
.

(3.5)
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Now using the definition of P ′
i gives

=
∑

i

(∑
j Pj b j fi j − di Pi

)
(mi − m̄)

∑
i Pi

.

(3.6)

Solving mi = bi −di for −di and substituting, and then adding 0 = m̄ Pi − m̄ Pi gives

=
∑

i

(∑
j Pj b j fi j − bi Pi + mi Pi + m̄ Pi − m̄ Pi

)
(mi − m̄)

∑
i Pi

.

(3.7)

Separating the finite sum yields

=
∑

i

(∑
j Pj b j fi j − bi Pi

)
(mi − m̄) + ∑

i m̄ Pi (mi − m̄) + ∑
i Pi (mi − m̄) (mi − m̄)

∑
i Pi

.

(3.8)

Seperating the sum across the top gives

=
∑

i

(∑
j Pj b j fi j − bi Pi

)
(mi − m̄)

∑
i Pi

+
∑

i m̄ Pi (mi − m̄)∑
i Pi

+
∑

i Pi (mi − m̄)(mi − m̄)∑
i Pi

.

=
∑

i

(∑
j Pj b j fi j − bi Pi

)
(mi − m̄)

∑
i Pi

+0 +Var(m),

(3.9)

which completes the proof.

4 Analytic solutions

In this section we provide analytical results for themain equation, Eq. (3.2) when there
are a finite number of fitness levels and the population is assumed infinite. In this case,
the differential equation is solvable like many of the models presented in Sect. 2.2.
While the focus of this paper is the derivation and analysis of this equation along the
lines of Fisher’s work and analysis of fitness distributions using realistic biological
parameters, it is useful to consider related solvable systems.

Using the notation from Eq. (3.2), define the matrix W by

wi j = b j fi j − diδi j .

Note that we are making an implicit assumption here that there are a finite number of
fitness levels. Equation 3.2 can then be rewritten as

P′ = WP.
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This is a linear differential equation. The sole equilibrium solution is the P = 0, and
all other solutions will be asymptotic to the eigenvector corresponding to the largest
eigenvalue of W .

By treating the system as a differential equation, we are implicitly assuming an
infinite population; in this model, each Pi will be non-zero positive, but can be arbi-
trarily small. The system given in Equation 4 is analogous to a quasispecies model
discussed in Sect. 2.2. The difference is that in a quasispecies each Pi is the number
of organisms with the i th genotype whereas in Equations 4 and 3.2, Pi is the number
of organisms with fitness in the i th fitness level. These systems are considered infinite
populations in part because each subpopulation Pi remains non-zero, regardless of
how small Pi is compared to the total population. In the numerical simulations of
Sect. 5, we address this be setting any subpopulation with sufficiently small fraction
of the total population to zero.

Evenwith the infinite population nature, quasispecies analysis is consistent with our
results. The error threshold is the mutation rate separating adaptation (the population
distributionwithmostmass onhighfitness genotypes) from failure to adapt (population
distribution spread across to include lower fitness genotypes), and Theorem 2 gives
a condition on the population and mutation distribution separating increasing mean
fitness from decreasing mean fitness.

This paper focuses on the implications of the main system as it relates to Fisher’s
work using biological realistic parameters. Even in an infinite population, the mean
fitness goes to equilibrium fitness, and not perpetual increase as Fisher predicted.
Beyond this, we will not develop the infinite population approach further. However,
there are interesting questions of what quasispecies type analysis would imply for
Equation 4, wherewe a consideringmutations between fitness levels with probabilities
prescribed by known fitness effects distributions. For example, under what mutation
effect distributionswill the resulting eigenvector have positive or negativemeanfitness,
or howdoes the behavior of the solution to the linear system compare to solutionswhen
finite populations are considered.

5 Numerical simulations

In this section we present numerical results for the main system and plot components
of the resulting numerical solution to illustrate Theorem 2. All plots in this section
were created using the online JavaScript page developed for modelling this system
(Basener 2013a).

Because the focus of this paper is on implications of the system for biological
populations, we make a modification of Eq. (3.2) that effectively restricts to finite-
sized populations. To remain biologically realistic, we assume a finite population: any
subpopulation Pi that contains less than some fraction of the population is assumed
to contain zero organisms. For the numerical simulations, we set Pi = 0 whenever
Pi is less than 10−9 of the total population. This approximates a total population of
109 and eliminates any subpopulation with less than a single organism. The only case
where this made an observable difference was Sect. 5.4. In that case, without the
finite-population condition subpopulations remain viable even when they contain less
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than a fraction of an organism. As a result, extremely small, biologically nonsensical,
populations control the observed results and obscure the effect of mutations on the
population as a whole.

We assume for all simulations that the initial population has a Gaussian fitness
distribution with mean of m̄ = 0.044 (as is commonly seen in a typical pre-industrial
human population) and a standard deviation of σ = 0.005. Also in all simulations we
model the fitness levels in the population, measured in Malthusian growth rate, over
500 evenly spaced discrete values ranging from m = − 0.05 to m = 0.15. The death
rate is set to di = 0.1 (equivalently, the populations dies at 10% per year) and the birth
rate is determined for each i using bi = mi + di . We also assume that the individuals
within the initial population have fitness level ranges up to 0.1, which includes values
up to 11.2 standard deviations above the mean.While there will always be some upper
limit of fitness within the organisms of any population, we chose this specific value to
permit extremely high fitness values and for the convenience of display in the plots.
The actual maximal value is not important.

As discussed previously, Fisher assumed that largemagnitude deleteriousmutations
would be eliminated by selection, and the remaining small magnitudemutationswould
be neutral with an average change in fitness of zero. There is no support for “selecting
out” mutations before incorporating them into the mutation–selection model; if they
get selected out it has to take place within the competition between populations in the
model as in real biological populations. Recent research demonstrates that the effect
of mutations are highly skewed to being deleterious, with most mutations having a
very slight deleterious effect on fitness.

The distribution can be modeled using a Gamma probability distribution (Kimura
1979).

f (s′) = αβe−αs′
s′β−1/Γ (β),

where s′ is the change in fitness (in absolute value), f (s′) is the probability for this
change in fitness to occur from parent to child, α = β/s̄′ where s̄′ is the mean selective
disadvantage, and β is a parameter, called either the shape parameter or rate parameter,
with 0 < β ≤ 1. Kimura suggests that a typical value for s̄′ is 10−3 for deleterious
mutations, which is the value we use.

The parameter β determines the tendency formutations to be neutral; in the limiting
case as β → 0, all mutations are neutral and in the case with β = 1, we regain
Ohata’s model (Ohta 1977) in which there are not a sufficient number of nearly-neutral
mutaitons, according to Kimura (1979). We choose β = 0.5 which is the estimation
given by Kimura (1979).

f (s′) = 5000.5e−500s′
s′−0.5/Γ (0.5) ≈ 12.6e−500s′

s′−0.99

If we use	i, j to denote the change in fitness from mi to m j then our formula becomes

fi, j ≈ 12.6e−500	i, j 	i, j
−0.5 (5.1)
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Fig. 1 The Gaussian and Gamma probability distributions for the effect of mutations on fitness. Note that
the distributions have been scaled different for this plot so that the mode of both is equal to one, as noted
in the Figure Key. The Gamma distribution requires that nearly all mutations have very small deleterious
fitness effects

This distribution used byKimura only accounts for deleteriousmutations. He points
out: “Note that in this formulation, we disregard beneficial mutants, and restrict our
consideration only to deleterious and neutral mutations. Admittedly, this is an over-
simplification, but as I shall show later, a model assuming that beneficial mutations
also arise at a constant rate independent of environmental changes leads to unrealistic
results” (Kimura 1979).

For our purposes of dynamically modeling the change in fitness over time, we
require some beneficial mutations (Otherwise long-term fitness increase would be
impossible). We make the simplifying assumption that the fraction of beneficial
mutations is 0.001, and we also assume that the distributions for beneficial and delete-
rious mutations otherwise have the same parameterization. This fraction of beneficial
mutations overestimates the actual rate of beneficial mutations by orders of magni-
tude. Gerrish and Lenski estimate the ratio of deleterious to beneficial mutations at
106 : 1 Gerrish and Lenski (1998b). Other estimates indicate that the number of ben-
eficial mutations is too low to be measured statistically (Ohta 1977; Kimura 1979;
Elena et al. 1998; Gerrish and Lenski 1998a). By assuming the same parameterization
for beneficial and deleterious mutations, we also overestimate the range of the bene-
ficial mutations because beneficial mutations tend to consistently have more modest
fitness effects. A plot of the distribution for the effect of mutations is shown in Fig. 1,
showing both the symmetric Gaussian distribution imagined by Fisher and the Gamma
distribution we use building from Kimura’s work. Note that beneficial mutations are
present in the Gamma distribution but are too unlikely to appear on this plot.

5.1 Simulation with no mutations and a short time-span

First we present a simulation that demonstrates Fisher’s Theorem in its original form
by modeling a population over a short time period, wherein no new mutations are
arising. We have to use a short time period because his theorem only gives a formula

123



The fundamental theorem of natural selection with mutations 1611

Fig. 2 Plots showing the change in the population distribution from year zero to year 500

Fig. 3 The value of the mean population fitness as a function of time is shown. The value in year 250 is
marked with a blue circle (color figure online)

for the rate of change of fitness at one instant. We can approximate this instantaneous
rate of change by only running our model for a short time.

As mentioned above, we assume an initial fitness distribution with mean equaling
0.044 and a standard deviation equaling 0.005 (Recall also that the upper limit on the
fitness of organisms in the initial distribution is m = 0.1).

The solution to the set of equations in Eq. (3.2) is a population distribution that
changes over time. If we plot the results of a numerical simulation of Eq. (3.2) over a
short time interval withoutmutations, thenwe get as expected a population distribution
that has a steadily increasing mean fitness. The steady increase in the population can
be observed in the plot shown in Fig. 2, which shows the initial population fitness
distribution, the distribution in the year 250, and the distribution at the end of the
simulation in year 500 (We use years here because our growth rate factor m is defined
in terms of years).

The value of the mean fitness of the population is plotted in Fig. 3 as a function of
time, for the systemwith nomutations. The variance for our initial distribution is σ 2 =
0.0052 = 0.000025. The mean fitness shown in Fig. 3 increases by approximately
0.0025 every 100 years—that is, the slope of the line is 	y/	x = 0.0025/100 =
0.000025. Thus, as expected, we observe the mean fitness increasing at a constant rate
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Fig. 4 Plots showing the change in the population distribution from year zero to year 3500

approximately equal to the variance. Not shown is the change in variance over time,
which is negligible.

The numerical example in the above section illustrates Fisher’s fundamental the-
orem of natural selection. The higher fitness organisms reproduce more quickly, and
thus come to dominate the population resulting in increasing mean fitness; specifically
the rate of increase in fitness is proportional to the variance. Because Fisher’s Theo-
rem only applies to an instantaneous rate of change in fitness of the population, and
not to the change in the population over time, it is important that we kept this model
restricted to a small time interval. It is interesting in this example that the population
distribution appears to simply be translating to the right, with no change in the shape
of the distribution. This suggests the conjecture that the second derivative of the mean
fitness is equal to zero if the fitness distribution of the initial population is Gaussian.

5.2 Simulation with no mutations and a long time-span

We present a simulation that demonstrates the limitations of Fisher’s Theorem applied
to a population changing over time by modeling a population with no mutations over
a longer time period. By using the same system as in Sect. 5.1 but with a time period
of 3500 years, we see the population increase in fitness until it runs up against the
maximal fitness of the initial population, which is m = 0.1. The population distribu-
tions resulting from this system are shown in Fig. 4. Observe that there is the initial
population with mean fitness of 0.044, then a transitional population distribution from
year 750 with mean fitness of 0.063, and the final population distribution running up
against the maximal fitness of the population.

The value of the mean fitness of the population is plotted as a function of time in
Fig. 5. The mean fitness initially increases at a constant rate approximately equal to
the variance and then levels off as it approaches the upper limit of m = 0.1. As this
limit is approached, the distribution loses variance, becoming taller and narrower in
shape (See Fig. 4). As a result the increase in fitness slows down. Over a longer time
period, the fitness approaches the limiting value of m = 0.1.
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Fig. 5 The value of the mean population fitness as a function of time is shown. The value in year 750 is
marked with a blue circle (color figure online)

Fig. 6 Plotting the mean fitness
and the variance, we see the
increase in fitness up to its
limiting value of 0.1 and the
eventual decline in variance

The plot of the mean fitness and variance of the population for this numerical
simulation is shown in Fig. 6. In this plot we see the mean fitness increasing at first
and then approaching the limit of m = 0.1 while the variance is initially steady and
then decreases toward its limiting value of var = 0.

The numerical simulations in this section illustrate the effects of selection apart
from mutation. In this case we have an initial increase in fitness until the variance is
consumed in the optimization process and the population fitness approaches its lim-
iting maximal value. This is what is observed by selective plant and animal breeders.
Selective breeding within a genetically diverse population results in an initial increase
in some predetermined trait, for example height. But selective progress always even-
tually slows down and the trait approaches a natural limit.

5.3 Simulation with a Gaussian distribution for mutational effects

Fisher assumed that the only mutations that needed consideration in a mathematical
model are those with a mutational effect with equal probability of being beneficial
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Fig. 7 Plots showing the change in the population distribution from year zero to year 500 for a system
with a Gaussian distribution for the effect of mutations

Fig. 8 The value of the mean population fitness as a function of time is shown. The value in year 150 is
marked with a blue circle (color figure online)

as deleterious. A numerical solution to the set of equations in Eq. (3.2), assuming a
Gaussian distribution (mean equal to zero and standard deviation equal to 0.002) is
shown in Fig. 7.

It is clear from Fig. 7 that the mean fitness of the population is increasing, as
Fisher expected. Also, in this example it appears that the population distribution has
an increasing variance as time passes. It takes less than 500 years for this population
to reach a mean fitness of 0.1, whereas the numerical solution in Sect. 5.2 was run
for 3500 years without reaching this fitness value. This shows the profound effect of
modeling a mutation distribution having a zero net change in fitness. The value of the
mean fitness of the population is plotted in Fig. 8 as a function of time.

The plot of the mean fitness and variance of the population for this numerical
simulation is shown in Fig. 9. In this plot we see that both the mean fitness and
the variance are increasing with time. The increasing variance corresponds to the
increasing rate of change of fitness, observable in the concave up shape of the graph
in Fig. 8.

The solution in this section indicates an increasing rate of change in mean fitness.
Not only is the mean fitness increasing, but it is accelerating. In contrast, the case
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Fig. 9 Plotting the mean fitness
and the variance, we see that
both values are increasing as
time passes

with no mutations in Sect. 5.1 had a mean fitness that increased at a constant rate. It is
possible that for an initial population with a Gaussian distribution and with Gaussian
mutations, the mutations will cause a continually increasing fitness and variance.
Although this system is biologically unrealistic, it behaves mathematically as Fisher
would have expected.

5.4 Simulation with a gamma distribution for mutational effects

The results of a numerical solution to Eq. (3.2) using the Gamma distribution from
Eq. (5.1) for mutation effects on fitness and with the finite population condition
are shown in Fig. 10. It is worth noting that without the finite-population condi-
tion described at the beginning of this section, which requires that all subpopulations
with less than a single organism be set to zero, some numerical solutions went to an

Fig. 10 Plots showing the change in the population distribution from year zero to year 2500
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Fig. 11 The value of the mean population fitness as a function of time is shown. The value in year 325 is
marked with a blue circle (color figure online)

Fig. 12 Plotting the mean
fitness and the variance, we see
that the fitness decreases steadily
with the variance increases, then
falls. The mean fitness becomes
negative, deaths exceed
births—causing population
collapse

equilibrium. The focus of this paper is on biological implications of the system, so we
only show results for the system with the finite-population condition.

The initial population distribution has a mean of 0.044, shown in red. The final
equilibrium population has a mean fitness a little greater than −0.014 , shown in
green. Negative fitness means deaths exceed births, such that the population will
shrink regardless of resources. There is a transient state distribution shown in blue,
which is slightly bimodal and has a mean fitness of 0.019.

The mean fitness is plotted as a function of time in Fig. 11. We see that the fitness
decreases steadily to about −0.014 over 2500 years. Moreover, the fitness appears to
be continuing to fall without-bound.

The mean fitness and variance are plotted in Fig. 12. This plot suggests that the
fitness is decreasing steadily, but the variance increases, goes through a cusp, and then
decreases (as the population collapses). This cusp occurs about the point where the
mean fitness (growth rate) is zero. This is the point where the third and final stage of
Lynch’s mutational meltdown model begins. While our population is held at 109, we
still see the continuing decline in fitness. If the total population size were variable, it
is likely that we would see compounding decline of a mutational meltdown.
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In this section we have observed that for a finite population, having what we con-
sider to be a realistic distribution of mutational effects, the mutation–selection process
results in continuous fitness decline. Our parameter vales are very generous, overesti-
mating the number and magnitude of beneficial mutations and with a population size
of 109, making this simulation a best-case scenario for improving fitness. In terms
of Theorem 2, the downward pressure from mutations overwhelms the upward pres-
sure of selection. We observe that it problematic to define parameter settings that are
biologically realistic yet result in continuous fitness increase, supporting the modeled
buildup of very slightly deleterious mutations described in Kondrashov’s paradox.

6 Discussion

Arguably, R.A. Fisher was the singular founder of the field of population genetics.
His book, The Genetical Theory of Natural Selection, established for the first time
the connection between genetics and natural selection. Within that pioneering book,
Fisher presented his famous fundamental theorem of natural selection.

The value of Fisher’s many mathematical contributions to the biological sciences
cannot be overstated. However, because he was a pioneer who lived before the bio-
logical revolution, Fisher’s understanding of mutations was very limited, and his
formulation of his famous theorem was less than ideal. His formulation was cum-
bersome and was not suited to dynamical analysis. More importantly, his formulation
did not allow themodeling of newly arisingmutations, whichwas pivotal to his general
line of reasoning. It is for this reason that we have re-formulated his theorem - so it can
be analyzed dynamically and can incorporate continuously arising new mutations.

When we dynamically analyzed Fisher’s theorem as he originally presented it (i.e.,
apart for newly arising mutations), we observed what should be logically obvious.
When starting with pre-existing genetic variants within the population (both beneficial
and deleterious allelic variants), we saw that natural selection favored the beneficial
variants over the deleterious variants, resulting in fitness increase (see Sect. 5.1). The
more abundant were the initial genetic variants, themore rapidwas the fitness increase.
We further observed (and it should be equally obvious) that as selection eliminated the
deleterious variants and amplified the beneficial variants to fixation, genetic variation
moved toward zero and consequently selection became ineffective and fitness soon
stopped increasing (see Sect. 5.2). This was observed with both Fisher’s original
formation and with our improved formulation.

This result may be surprising for many people who have been taught that Fisher’s
Theorem guarantees unlimited fitness increase. Apart from continuously arising new
mutations, Fisher’s theorem only yields a brief period of genetic enhancement based
upon sorting through the pre-existing allelic variants. The population then quickly
approaches a natural limit and becomes static. This stasis is a fundamental element
of the formulation in Fisher’s Theorem (apart from Fisher’s unstated corollary, which
assumes a continuous supply of newly arising mutations).

Whenwemodeled Fisher’sCorollary by adding continuously arising newmutations
that have a symmetrical distribution of mutational fitness effects, we observed very
different results. Fitness increased rapidly and continuously. When mutation rate was
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high, mutations accumulated faster than they went to fixation, resulting in an on-going
increase in genetic variance and a subsequent fitness increase that was accelerating
(see Sect. 5.3). This is much closer to Fisher’s original expectations.

However, through no fault of his own, Fisher did not know the molecular nature of
mutations and incorrectly assumed that mutational effects (positive and negative),
would be effectively symmetrical and balanced. This assumption was profoundly
incorrect, and so the results seen when using a symmetrical mutation distribution have
no correspondence with biological reality. Because the premise underlying Fisher’s
corollary is now recognized to be entirely wrong, Fisher’s corollary is falsified. Con-
sequently, Fisher’s belief that he had developed a mathematical proof that fitness must
always increase is also falsified.

We next modeled Fisher’s theorem with the newly arising mutations having a more
realistic distribution. For both the bad and the good mutations, we employed the same
gamma probability distribution, but we used a deleterious:beneficial ratio of 1000:1.
This is a very generous ratio, in light of many studies (see Gibson et al. (2013);
Sanford et al. (2013); Nelson and Sanford (2013); Montanez et al. (2013)). The result
was that fitness declined continuously.Malthusian fitness declined to the point of going
below zero, meaning that the population was shrinking continuously regardless of the
carrying capacity of the environment. The net affect of the new mutations was very
consistently deleterious, and the upward pressure on fitness due to natural selection
was not sufficient to reverse the on-going mutational degeneration.

What we have discovered is that, contrary to Fisher’s claim, continuously increas-
ing population fitness is not an inherent property of life. Mutations by themselves
drive fitness down. Natural selection may or may not be able to reverse this genetic
degeneration. There are a large number of biological variables that determine whether
the fitness of a population will increase or decrease. For example, there are important
variables associated with the population itself (is it diploid? is it sexual? effective pop-
ulation size?). Likewise, there are important variables associated with the mutations
(mutation rate? mutation distribution? degree of dominance?). There are important
variables associated with how mutations interact (is there dominance? is there epis-
tasis? is there linkage?). There are important variables associated with the selection
process (proportion of offspring selectively eliminated? natural probability selection or
artificial truncation selection? howdoes environmental noise affect fitness heritability?
does selection for many mutations simultaneously result in selection interference?).

All these variables combine to determine if a population’s fitness will increase or
decrease. Unfortunately, there is no simple mathematical formula that can simultane-
ously account for all these variables simultaneously. As a general rule, the simplifying
assumptions as are required for a purely mathematical approach to population genet-
ics force researchers to ignore many variables that tend to reduce the efficiency of
selection. This can result in overly optimistic expectations regarding the net fitness
effect of the downward pressure of mutations versus upward pressure of selection.
Arguably, the only way to account for the many biological variables that simulta-
neously affect the mutation–selection process is by using comprehensive numerical
simulations (See Sanford et al. 2007a, b; Nelson and Sanford 2013). As numerical sim-
ulations become more comprehensive (hence more realistic), net gain in fitness seems
to become increasingly problematic (See Sanford et al. 2007b; Carter and Sanford
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2012; Gibson et al. 2013; Sanford et al. 2013; Nelson and Sanford 2013), consistent
with the results of this paper.

Apart from theoretical and mathematical reasons for doubting the biological valid-
ity of Fisher’s central thesis (that fitness always increases), there is now also abundant
empirical evidence against his thesis. For example, ecological observations consis-
tently show that Fisher’s thesis is not true, and that as a general rule a natural
population’s fitness is static. Essentially all natural populations have substantial genetic
variance, yet most such populations do not show continuously increasing fitness. This
is due to very lowfitness heritability, associatedwith high levels of environmental noise
(SeeMerila and Sheldon 2000; Kruuk et al. 2000, 2002). Furthermore, extinctions and
near extinctions happen all the time, which are clearly antithetical to Fisher’s thesis.
In addition, the genetic degeneration of certain organisms has been recorded within
historical time frames (Carter and Sanford 2012). Lastly, many population geneticists
have expressed grave concerns regarding possible conditions where humanmutational
degeneration overwhelms the stabilizing effect of natural selection (See Lynch 2016).
Further research is needed to help us understand exactly what biological conditions
are required to ensure a population’s fitness stability.

7 Conclusions

We have re-examined Fisher’s fundamental theorem of natural selection, focusing on
the role of newmutations and consequent implications for real biological populations.
Fisher’s primary thesiswas that genetic variation and natural selectionwork together in
a fundamental way that ensures that natural populations will always increase in fitness.
Fisher considered his theorem to essentially be a mathematical proof of Darwinian
evolution, and he likened it to a natural law. Our analysis shows that Fisher’s primary
thesis (universal and continuous fitness increase) is not correct. This is because he did
not include new mutations as part of his mathematical formulation, and because his
informal corollary rested upon an assumption that is now known to be false.

We have shown that Fisher’s Theorem, as formally defined by Fisher himself, is
actually antithetical to his general thesis. Apart from newmutations, Fisher’s Theorem
simply optimizes pre-existing allelic fitness variance leading to stasis. Fisher realized
he needed newly arising mutations for his theorem to support his thesis, but he did not
incorporate mutations into his mathematical model. Fisher only accounted for new
mutations using informal thought experiments. In order to analyze Fisher’s Theorem
we found it necessary to define the informal mutational element of his work as Fisher’s
Corollary, which was never actually proven. We show that while Fisher’s Theorem is
true, his Corollary is false.

In this paper we have derived an improved mutation–selection model that builds
upon the foundationalmodel of Fisher, aswell as on other post-Fishermodels.We have
proven a new theorem that is an extension of Fisher’s fundamental theorem of natural
selection. This new theorem enables the incorporation of newly arising mutations into
Fisher’s Theorem. We refer to this expanded theorem as “The fundamental theorem
of natural selection with mutations”.
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After we re-formulated Fisher’s model, allowing for dynamical analysis and per-
mitting the incorporation of newly arising mutations, we subsequently did a series of
dynamical simulations involving large but finite populations. We tested the follow-
ing variables over time: (a) populations without new mutations; (b) populations with
mutations that have a symmetrical distribution of fitness effects; and (c) populations
with mutations that have a more realistic distribution of mutational effects (with most
mutations being deleterious). Our simulations show that; (a) apart fromnewmutations,
the population rapidly moves toward stasis; (b) with symmetrical mutations, the pop-
ulation undergoes rapid and continuous fitness increase; and (c) with a more realistic
distribution of mutations the population often undergoes perpetual fitness decline.

In the light of Fisher’s work, and the problems associated with it, we also examined
post-Fisher models of the mutation–selection process. In the case of infinite popu-
lation models, what has commonly been observed is that populations routinely go
to equilibrium or a limit set—such as a periodic orbit. They do not show perpetual
increase or decline in fitness, but are restricted from either behavior because of the
model structure (an infinite population with mutations only occurring between pre-
existing genetic varieties). On a practical level, all biological populations are finite.
In the case of finite population models, the focus has been upon measuring mutation
accumulation, as affected by selection. Finite models clearly show that natural pop-
ulations can either increase or decrease in fitness, depending on many variables. Not
only do other finite mathematical population models show that fitness can decrease—
they often show that only a narrow range of parameters can actually prevent fitness
decline. This is consistent with very many numerical simulation experiments, numer-
ous mutation accumulation experiments, and observations where biological systems
have either a high mutation rate or a small population size. Even when large popu-
lations are modeled, very slightly deleterious mutations (VSDMs), can theoretically
lead to continuous fitness decline.

Fisher was unquestionably one of the greatest mathematicians of the twentieth
century. His fundamental theorem of natural selection was an enormous step forward,
in that for the first time he linked natural selection with Mendelian genetics, which
paved the way for the development of the field of population genetics. However,
Fisher’s theorem was incomplete in that it did not allow for the incorporation of new
mutations. In addition, Fisher’s corollary was seriously flawed in that it assumed that
mutations have a net fitness effect that is essentially neutral. Our re-formulation of
Fisher’s Theorem has effectively completed and corrected the theorem, such that it
can now reflect biological reality.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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