Skip to main content
. 2018 Apr 12;9:725. doi: 10.3389/fmicb.2018.00725

Table 1.

Performance of different machine learning methods on atom composition.

Parameter Main dataset Validation dataset
Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC
SVM g = 1, c = 9, j = 4 81.10 80.58 80.84 0.62 0.84 79.33 75.33 77.33 0.55 0.81
Random Forest Ntree = 30 83.33 84.71 84.02 0.68 0.91 79.33 77.33 78.33 0.57 0.88
SMO g = 1, c = 2 77.66 83.51 80.58 0.61 0.80 75.33 82.67 79.00 0.58 0.79
J48 c = 0.1, m = 1 75.43 80.58 78.01 0.56 0.82 80.00 76.00 78.00 0.56 0.79
Naive Bayes Default 74.57 65.46 70.02 0.40 0.80 80.00 69.33 74.67 0.50 0.82