Table 1.
Performance of different machine learning methods on atom composition.
Parameter | Main dataset | Validation dataset | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sen | Spc | Acc | MCC | AUROC | Sen | Spc | Acc | MCC | AUROC | ||
SVM | g = 1, c = 9, j = 4 | 81.10 | 80.58 | 80.84 | 0.62 | 0.84 | 79.33 | 75.33 | 77.33 | 0.55 | 0.81 |
Random Forest | Ntree = 30 | 83.33 | 84.71 | 84.02 | 0.68 | 0.91 | 79.33 | 77.33 | 78.33 | 0.57 | 0.88 |
SMO | g = 1, c = 2 | 77.66 | 83.51 | 80.58 | 0.61 | 0.80 | 75.33 | 82.67 | 79.00 | 0.58 | 0.79 |
J48 | c = 0.1, m = 1 | 75.43 | 80.58 | 78.01 | 0.56 | 0.82 | 80.00 | 76.00 | 78.00 | 0.56 | 0.79 |
Naive Bayes | Default | 74.57 | 65.46 | 70.02 | 0.40 | 0.80 | 80.00 | 69.33 | 74.67 | 0.50 | 0.82 |