Skip to main content
. 2018 Apr 12;9:725. doi: 10.3389/fmicb.2018.00725

Table 2.

Performance of different machine learning methods on diatom composition.

Parameters Main dataset Validation dataset
Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC
SVM g = 0.01, c = 15, j = 2 90.38 86.43 88.40 0.77 0.93 85.33 96.67 91.00 0.83 0.97
Random Forest Ntree = 30 88.49 88.49 88.49 0.77 0.94 85.33 82.00 83.67 0.67 0.93
SMO g = 0.1, c = 4 86.25 89.00 87.63 0.75 0.87 86.67 84.00 85.33 0.71 0.85
J48 c = 0.3, m = 1 82.47 81.10 81.79 0.64 0.81 85.33 81.33 83.33 0.67 0.82
Naive Bayes Default 71.65 70.45 71.05 0.42 0.78 72.67 66.67 69.67 0.39 0.77