Table 6.
Performance of different machine learning methods on 2D, 3D and fingerprints collectively.
Parameters | Main dataset | Validation dataset | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sen | Spc | Acc | MCC | AUROC | Sen | Spc | Acc | MCC | AUROC | ||
SVM | g = 1e-05, c = 15, j = 1 | 83.33 | 79.21 | 81.27 | 0.63 | 0.89 | 78.67 | 82.67 | 80.67 | 0.61 | 0.87 |
Random Forest | Ntree = 60 | 95.19 | 95.02 | 95.10 | 0.90 | 0.99 | 91.33 | 93.33 | 92.33 | 0.85 | 0.98 |
SMO | g = 0.0001, c = 5 | 76.80 | 76.98 | 76.89 | 0.54 | 0.76 | 75.33 | 83.33 | 79.33 | 0.59 | 0.79 |
J48 | c = 0.25, m = 5 | 89.69 | 87.63 | 88.66 | 0.77 | 0.90 | 84.67 | 92.00 | 88.33 | 0.77 | 0.92 |
Naive Bayes | Default | 95.19 | 88.14 | 91.67 | 0.84 | 0.95 | 92.00 | 89.33 | 90.67 | 0.81 | 0.96 |