Skip to main content
. 2018 Apr 12;9:725. doi: 10.3389/fmicb.2018.00725

Table 6.

Performance of different machine learning methods on 2D, 3D and fingerprints collectively.

Parameters Main dataset Validation dataset
Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC
SVM g = 1e-05, c = 15, j = 1 83.33 79.21 81.27 0.63 0.89 78.67 82.67 80.67 0.61 0.87
Random Forest Ntree = 60 95.19 95.02 95.10 0.90 0.99 91.33 93.33 92.33 0.85 0.98
SMO g = 0.0001, c = 5 76.80 76.98 76.89 0.54 0.76 75.33 83.33 79.33 0.59 0.79
J48 c = 0.25, m = 5 89.69 87.63 88.66 0.77 0.90 84.67 92.00 88.33 0.77 0.92
Naive Bayes Default 95.19 88.14 91.67 0.84 0.95 92.00 89.33 90.67 0.81 0.96