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A B S T R A C T

Results of cost effectiveness analyses (CEA) studies are most useful for decision makers if they face only one
constraint: the health care budget. However, in practice, decision makers wishing to use the results of CEA
studies may face multiple resource constraints relating to, for instance, constraints in health care inputs such as a
shortage of skilled labour. The presence of multiple resource constraints influences the decision rules of CEA and
limits the usefulness of traditional CEA studies for decision makers. The goal of this paper is to illustrate how
results of CEA can be interpreted and used in case a decision maker faces a health care input constraint.

We set up a theoretical model describing the optimal allocation of the health care budget in the presence of a
health care input constraint. Insights derived from that model were used to analyse a stylized example based on a
decision about a surgical robot as well as a published cost effectiveness study on eye care services in Zambia.

Our theoretical model shows that applying default decision rules in the presence of a health care input
constraint leads to suboptimal decisions but that there are ways of preserving the traditional decision rules of
CEA by reweighing different cost categories. The examples illustrate how such adjustments can be made, and
makes clear that optimal decisions depend crucially on such adjustments.

We conclude that it is possible to use the results of cost effectiveness studies in the presence of health care
input constraints if results are properly adjusted.

1. Introduction

Health economic evaluations aim to inform decision-making about
new health care technologies in order to make more efficient use of
scarce resources (Drummond et al., 2015). Although the starting point
for economic evaluations is that resources are scarce and thus that there
is a limit to what can be spent on health care, other constraints besides
the health care budget might be relevant in this context (Hauck et al.,
2016; Vassall et al., 2016). Consequently, while in the long run many
constraints can (in theory) be resolved by a more efficient allocation of
resources, ignoring such constraints in economic evaluation might
seriously hamper the usefulness and credibility of economic evaluations
in health care decision making (Eddama and Coast, 2008). In the short-
run, there are numerous constraints involved, consisting of supply-side
(e.g. workforce shortages), demand-side (e.g. obstacles of access to
healthcare) and healthcare system constraints (e.g. regulatory con-
straints). One particular type of constraints relevant for economic
evaluations are constraints related to health care inputs. Constraints
related to health care inputs usually are an indicator of market failure
which may be caused by the fact that markets for health care inputs are
heavily regulated with the aim to solve problems of information

asymmetry (Dranove, 2011; Nicholson and Propper, 2011; Scott
Morton and Kyle, 2011). As a result, markets for health care inputs are
often characterized by monopsony buyers and/or monopoly producers.
Monopoly producers usually force prices to be too high (which is often
the case in medicines) and monopsony employers may force prices of
labour to be too low. Consequently, the market price or market salary of
inputs for economic evaluations do not reflect true opportunity costs
which violates the standard model of cost effectiveness analysis
(Drummond et al., 2015).

While previous research has focused on the impact of constraints on
estimates of costs and benefits of health care interventions (Hauck
et al., 2016; Vassall et al., 2016) it is not always realized that such
constraints may also influence how optimal decisions conditional on
those estimates should be made. The default decision rules of cost ef-
fectiveness analyses where cost effectiveness ratios are compared to a
threshold level of cost effectiveness, are derived from an optimization
problem with only one constraint: the health care budget (Karlsson and
Johannesson, 1996; Weinstein and Zeckhauser, 1973). The theory be-
hind this is that most constraints can be resolved and the only relevant
constraint in the long run is the health care budget. However, as some
constraints can be persistent and difficult to resolve in some settings,
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the rather abstract long run view typically taken in cost effectiveness in
which the only constraint is the health care budget might not be the
most appropriate view (Adang, 2008; Van de Wetering, Woertman and
Adang, 2012). Often, decision makers have to take many constraints as
given and do not have the discretion to relax those constraints (Adang,
2008; Eddama and Coast, 2008; Hauck et al., 2016; Van de Wetering
et al., 2012). For instance, decision makers making decisions about
technologies within a single disease programme often need to make use
of highly specific health care inputs which might be constrained and
decisions about expanding or contracting certain health care services
might crucially depend on the availability of such constrained health
care inputs. For example, treatment for anxiety and depression consists
mainly of pharmacological treatments and talking therapies. In many
settings, human resources (ie therapists) are constrained, since training
therapists takes time and money (and often therapists may have to pay
the costs of their own training) (Haby et al., 2004). Even if talking
therapies might seem more cost-effective in some circumstances, in the
presence of a constraint on the number of therapists it might be more
efficient to provide pharmacological treatments. More generally, in low
and middle income countries (LMIC) there is often a lack of supply of
skilled doctors and nurses which might influence costs and health ef-
fects of delivering a particular health care technology (Fulton et al.,
2011; World Health Organization, 2006). Increasing the size and skills
of the workforce is often not that easy (Wyss, 2004) and raising wages
to increase the workforce in low income countries might have limited
success as it is difficult to compete with wages in Western countries
(Robinson and Clark, 2008). In these settings, human resource con-
straints limit the usefulness of CEA studies for decision makers as ap-
plying the standard decision rules could result in suboptimal decisions.

In case of multiple constraints, the default decision rules of cost
effectiveness do not apply anymore and decision rules become more
complex (Stinnett and Paltiel, 1996). As a solution to this, some studies
have advocated the use of mathematical programming to arrive at an
optimal allocation of resources in the presence of multiple constraints
(Epstein et al., 2007; Feenstra et al., 2011; Stinnett and Paltiel, 1996).
In these studies, numerous constraints were considered varying from
demand and supply constraints to equity constraints. A drawback of
mathematical programming is that the analytical capabilities for these
techniques are substantial and that it is difficult to translate insights
from such studies, in which usually lots of interventions are included, to
simple cost effectiveness studies where only a few interventions are
compared and central outcomes expressed in incremental cost effec-
tiveness ratios (ICER). The goal of this paper is to show how health care
input constraints may affect the decision rules of cost effectiveness
analysis and to illustrate how results of CEA studies can be interpreted
and used in case a decision maker faces a health care input constraint.
As a starting point we take the most popular form of economic eva-
luation in which ICERS of interventions are estimated from a health
care perspective and compared to a threshold level of cost effectiveness.
The results of such incremental analyses are used to inform decision
makers who usually have to take many constraints as given. Note that
our analyses is closely related to the literature in cost benefit analyses
that deals with estimating shadow prices in the presence of market
failures (Drèze and Stern, 1990). Also note that in this paper a health
care perspective is taken where the health care budget is assumed
exogenous to the decision problem (Meltzer, 1997; van Baal et al.,
2016). However, insights that we gain in this paper also apply if the
perspective is broadened to a wider societal perspective.

2. Stylized example

To motivate the analysis, consider the following stylized but rea-
listic example. A regional health authority at some time in the near
future is planning investment in a fleet of surgical robots for some high-
volume operation (say knee replacements). The robots require capital
investment but will reduce inpatient admissions and outpatient

attendances, thus saving on staff time (Barbash and Glied, 2010;
Hughes, Camp, O'hara, & Adshead, 2016). The health authority is
constrained in terms of medical expertise. (Perhaps this may because
the country's medical schools do not train enough doctors and the
country has historically made up the shortfall by importing doctors
from low-income countries, but popular resistance to immigration now
makes this impossible: but these details need not concern us.) The
health authority has two options for how they conduct operations:

• Option T (traditional, non-robot supported surgery) produces op-
erations at unit cost of $10k of which $8k consists of spending on
human resources;

• Option R (robot supported surgery) produces operations at a unit
cost of $20k of which $5k consists of spending on human resources.

Assume that operations produced by the traditional and robot-sup-
ported surgery are comparable in terms of quality of life, and specifi-
cally, that both produce 1 QALY. Assume also that the workforce can
perform all said interventions, and that there is a waiting list: hence
there is no shortage of patients to treat. If we have a health care budget
of $2m and we are not concerned about the shortage of medical staff we
would simply invest the whole budget in T which results in 200 op-
erations and hence 200 QALYs and $1.6m would be spent on human
resources. Now suppose the shortage of doctors means that only $1m
can be spent on human resources. What would then be the optimal
allocation of resources? Spending the entire budget on T is not an op-
tion anymore because it is only possible to provide 1,000,000/
8000=125 patients T leaving a slack in the budget of $750k. However,
spending the entire budget on R is possible but results in even fewer
operations (100). So, here the optimal solution is a mix of T and R. As is
well-known (Crown et al., 2017), this can be found graphically (see
Fig. 1). In this figure, the axes represent the number of units of T and R
purchased. As both T and R produce the same number of operations and
hence of QALYs, the total number of QALYs produced at point x is
simply the Manhattan distance between x and the origin (i.e. the
number obtained by counting along the T axis from the origin and then
up in the vertical direction until x is reached). The feasible region is the
area to the left of both constraints with the solid line representing the
general constraint and the dashed line representing the human resource
constraints. The optimal solution is the point A which corresponds to a
mix of approximately 55 patients treated with the robot and about 90
patients being treated traditionally leading to 3200/22 or about 145
QALYs.

Now suppose that a new technology arrives on the marketplace – a
new generation robot which partially automates surgery (as opposed to

Fig. 1. Budget lines for interventions T and R given a total health care budget of 2m
dollars and a human resource budget of 1m dollars.
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merely supporting it) and so reduces the need for surgeon time. This
robot, R2, is more costly than R – it costs $25k per operation, but only
$1k of this is spent on human resources. How should we assess how
much this technology is worth for investment purposes?

We can also address this question graphically. To do this, we can
relax each of the budget constraints in turn by $100k and see what
happens to number of QALYs produced. As shown in Fig. 2, the number
of QALYs produced increases by 60/22 (to 3260/22 QALYs at point B)
and 200/22 (to 3400/22 QALYs at point C) for the general and human
resource specific budget constraints specifically. These numbers are a
measure of the health displaced by the consumption of the general
budget and also the human resource specific budget at the current
optimum.

What does this tell us about the cost-effectiveness of investing in
R2? At the margin, each operation conducted by R2 will reduce the
general budget by $25K and hence cost 15/22 QALYs and the human
resource budget by $1K and hence cost 2/22 QALYs. Hence, each op-
eration conducted by the automating robot produces 1 QALY – but
results only in the displacement of 17/22 ((15+2)/22) QALYs, and so
we can conclude that investing in the R2 robot is worthwhile.

Our point here is that this is an environment where human resource
constraints compel the implementation of a mix of interventions. When
making decisions about new technologies in such an environment, de-
cision makers should take account of the impact on both the general
(money) budget and also on the availability of this skilled staff. In the
remainder of the paper we present some formal analysis of this pro-
blem, and show how the optimal decision rule in this context can be
seen as a generalisation of the familiar decision rule of checking whe-
ther the ICER is above or below a threshold. We show how our analysis
can be applied in the stylized example of this section, and produces the
same results, though by a more direct route.

3. Theoretical framework

To formally derive decision rules for cost effectiveness analysis in
the presence of a health care input constraint we will formally derive
them from an optimization problem. Here, we will make a distinction
between spending on two different health care inputs, which allows us
to express constraints in terms of health spending. Note that health care
input constraints can also be modelled by capacity constraints using
volume indicators (e.g. number of doctors/nurses or time available
from doctors/nurses) (Feenstra et al., 2011). However, as will become
clear, by expressing the health care input constraint in terms of
spending it is easier to make the link with standard cost effectiveness
studies and the way in they are currently presented and used.

Consider two different patient populations and let i and j indicate
the interventions for these two patient groups (both i and j are assumed
to be greater or equal to zero). Health (denoted h) and health care
spending (denoted c) are a function of these interventions. The health
care budget (denoted B) is the sum of spending on two types of health
care inputs (denoted x and y) and spending on interventions i and j can
be broken down by spending on these inputs
( = +c i j c i j c i j( , ) ( , ) ( , )x y ). As a starting point, let us assume that the
health care budget can be spent freely on both health care inputs. To
solve this optimization problem we will define a Lagrangian function L:

= + − −Max L h i j λ B c i j c i j( , ) [ ( , ) ( , )]x y (1)

First order conditions for interventions i and j of this optimization
problem are:
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These first order conditions can be rearranged to obtain expressions
which resemble the standard decision rules of cost effectiveness:
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can be interpreted as the ICERs for spending

on interventions i and j and 1/λ the threshold level of cost-effectiveness
(often referred as k (Claxton et al., 2010; Claxton et al., 2011)) which
makes sense as λ equals the shadow price of the health care budget: the
amount of QALYs that can be obtained by increasing the budget with
one unit. Equation (3) makes clear that at the optimum the marginal
cost effectiveness should be equal in both patient groups. The model
summarized in equation (1) also provides us insights in the allocation of
the two health care inputs. In case the health care budget can be spent
freely a change in spending on input x is compensated by a change in
spending on input y: = −dc dcx y. As a consequence, at the optimum the
marginal returns to spending on input x should equal the marginal
returns to spending on input y:

=dh
dc

dh
dcx y (4)

This is equivalent to saying that the marginal cost-effectiveness of
all health care inputs should be equal if the health care budget can be
spent freely on these different health care inputs. To better understand
the nature of health care input constraints and the impact on the de-
cision rules of cost effectiveness let us drop the assumption that the
total health care budget can be spent freely. Suppose now that spending
health care input x is constrained and spending on y is not constrained
as long as total health spending does not exceed the budget. For in-
stance, we can think of spending on x as spending on constrained
human resources (denoted Bx) such as for instance spending on doctors
which is constrained due to a shortage of doctors. The Lagrangian
function L can now be written as:

= + − − + −Max L h i j λ B c i j c i j λ B c i j( , ) [ ( , ) ( , )] [ ( , )]x y x x x (5)

Subject to suitable continuity and convexity assumptions, first order
conditions for an optimum are now:
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Fig. 2. Perturbing the general and human resource specific budget constraints one at a
time changes the optimum solution.
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The big difference with equation (2) is that there is an additional
lamda (λx) which can be interpreted as the shadow price of the con-
strained health care inputs within the health care budget. The shadow
price of the health care budget can now be interpreted as the shadow
price of spending on y. Furthermore, if the total health care budget
cannot be allocated without restrictions it does not necessarily follow
that these shadow prices are equal. This gives the situation in which
health care input constraints apply:

> > <λ λ dh
dc

dh
dc

dc
dh

dc
dh

implying andx
x y

x y

(7)

Health care input constraints can thus be understood as meaning
that the marginal benefits of spending on those inputs are higher than
those of spending on other health care inputs. In other words, we can
only speak of health care input constraints if reallocating spending from
other health care inputs to the constrained inputs would result in health
gains. Note that our definition of HRC is distinct from that of allocative
inefficiency. Conditional on the human resources available it may well
be the case that the production of health is efficient. If >λ λx it would
be desirable to reallocate the total health care budget towards more
spending on x and less on y which reduces λx and increases λ. However,
in practice this might not be possible because of a shortage on specific
health care inputs. As a consequence, cost-effective interventions that
require a lot of those inputs cannot be implemented forcing the health
care budget to be spent on interventions that seem less cost-effective
but require less of the constrained inputs. This has clear implications for
the decision rules of cost effectiveness analyses. In the presence of an
input constraint ICER expressions become more complicated and look
like the following:
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Equation (8) illustrates that costs in the ICER need to be expressed
in one common numeraire by weighing the costs of the constrained
input more heavily than costs of the unconstrained health care inputs.
Note that (8) collapses to equation (3) in case there is no input con-
straint as λx equals zero in that case. The implication of (8) is simple:
standard CE ratios give a biased estimate of cost effectiveness with the
bias becoming stronger a) the more constrained inputs an intervention
uses b) the bigger the difference in shadow prices between the different
health care inputs. Practically speaking, erroneously applying (3) in-
stead of (8) may lead to different ordering of interventions in terms of
cost effectiveness, potentially wrong decisions and counterintuitive
results (see next section). For instance, an increase of the budget on
other inputs than the constrained input leads to a substitution from
interventions that seem more cost effective according to (3) but which
require more constrained inputs towards interventions that require
fewer constrained inputs but that have a higher ICER as estimated by
(3).

A difficulty is that equation (8) suggest that two thresholds are
needed, while in practice it is already challenging to estimate one
threshold: the threshold of the overall health care budget. However,
there is a way around this by looking at the linear special case of the
model in equation (5) which assumes constant returns to scale and
perfect divisibility. At an optimum in which a mix of interventions are
used and at which demand constraints on both interventions are non-
binding, (8) specialises as follows:

= + + − − + − −Max L i j λ B s i t j λ B p i q j[ ] [ ]x x (9)

Here, in equation (9) interventions i and j produce one unit of health
at constant marginal costs: s and t denote the total per health unit costs
of intervention i and j while p and q denote the constrained health care
input cost per health unit. In this case (6) and (6a) collapse to:
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which allows to express one threshold as a function of the other and
calculate the ratio of thresholds as needed in (8):
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Equation (11) can be used to re-analyse and interpret CEA studies in
the presence of a health care input constraint given estimates of p, q, s
and t. Applying our model to the example of the previous section,
s=20, t=10, p=5 and q=8, hence the expression given in equation
(11) equals 10/3. It can be seen that this is indeed equal to the ratio of
the marginal valuation of the human resource specific (200/22) and
general (60/22) budget constraints as calculated by the graphical
method of the previous section. Also note that given this linear model it
is simple to solve for i and j.

4. Applying insights from the theoretical model

To illustrate how to incorporate the insights gained from the theo-
retical model in practice we will re-analyse a published economic
evaluation comparing two eye care services in Zambia: cataract surgery
and refractive error correction, compared to the situation before using
these services (Griffiths et al., 2014). This study concluded that both
eye-care services would be highly cost-effective in Zambia as the ICER
estimates for these estimates are below the often mentioned threshold
of GDP per capita (which equalled US$ 1160 for Zambia): the estimated
cost effectiveness equalled $259.15 per QALY gained for cataract sur-
gery and $375.00 per QALY gained for refractive error correction. Ex-
pected QALY gains per patient equalled 0.36 for cataract surgery and
0.19 for refractive error correction. Given the crisis in the workforce
shortage, this study reported that only 45% of cataract patients and
36% of refractive error patients received the expected care. However,
costs that were allocated to those who attended the facilities but did not
receive the expected care were excluded in the calculations. By defi-
nition, this leads to an underestimation of ICERs. Therefore, we re-
calculated the ICERs using the information regarding costs and health
effects as presented by the authors. As such, in contrast to the original
calculations, the total overhead costs are reallocated to only those pa-
tients who received the care to obtain the actual costs per actually
treated patient. The adapted cost estimates lead to a higher cost-ef-
fectiveness ratio: changing from $259.15 to $369.17 per QALY gained
for cataract surgery and from $375.00 to $631.58 per QALY gained for
refractive error correction.

In the absence of any health care input constraints the decision rules
of cost effectiveness would imply that first all patients who need cat-
aract surgery would be treated before any patients who refractive error
correction are to be treated. In this study, 77 patients received the
cataract surgery and 41 patients a refractive error correction. However,
almost 100 patients who needed cataract surgery did not receive cat-
aract surgery. One of the reasons mentioned in the study is a shortage of
workforce of delivering cataract surgery implying a health care input
constraint. To explore the impact of this constraint for ICER estimates
and optimal decisions in this example, we first estimated total costs and
total labour costs for each of the two interventions based on the data
presented in the study. Although the information presented in the study
did not allow a precise estimation of labour cost per patient for the two
interventions, we made a rough estimate of $20 per patient for cataract
surgery and $10 per patient for the refractive error correction. These
labour costs per patient translate into $55.6 (20/0.36) and $52.6 (10/
0.19) labour costs per QALY gained. Assuming that optimal use of the
constrained resource was being made in the trial on which the eco-
nomic evaluation was based and plugging in these values in equation
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(9) yields a λ
λ
x ratio of 89.7 and adjusted ICER estimates of $5355 for

both eye-care interventions. These values are substantially higher than
the original ICERs and suggest that the GDP per capita threshold would
be too lenient for interventions that require even a low amount of la-
bour. Note that the ICER estimate of $5355 can also be used as a
threshold level of cost-effectiveness to which new eye-care interven-
tions could be judged.

To better understand the impact of health care input constraints we
then estimated how much health could have been gained if there were
no shortages of skilled labour. Based on the number of patients the total
budget spent on these two interventions is $15,153.- of which $1950.-
is spent on labour and total QALYs gained equal 35.5. Given that cat-
aract surgery is more cost effective and that not all patients who need
cataract surgery are treated because of labour shortages, we then as-
sumed that not more than $1950.- can be spend on labour. To quantify
the impact of HRC we estimated how many QALYs would be gained if
the total budget ($15,153.-) could be spend freely (ignoring the labour
budget constraint of $1950.-). In that situation all the budget would be
spend on cataract surgery (treating 114 patients) resulting in 41.05
QALYs gained. The health care input constraint in this example results
in a loss of almost 6 QALYs (more than 10% lower health gains).
Furthermore, the labour budget constraints also implies that expansion
of the health budget without relaxing the labour constraint should re-
sult in an expansion of refractive error corrections at the expense of
cataracts. Obviously, this is a short-term optimal solution as an optimal
long-term solution would be to invest in a more skilled labour force.

5. Conclusions and recommendations

In this paper, we illustrated how the presence of health care input
constraints influences the decision rules of cost effectiveness and of-
fered practical solutions to re-analyse and interpret cost effectiveness
studies in such circumstances. In standard cost effectiveness analyses, it
is implicitly assumed that opportunity costs are equal everywhere in the
health care sector and that it does not matter from what health care
inputs resources are drawn from when ‘old’ technologies are replaced
by ‘new’ technologies. However, in the presence of health care input
constraints, it is important to realize from where health care resources
are being drawn from. Consequently, conventional ICERs need be ad-
justed by taking into account that some costs will have larger dis-
placement effects in terms of health forgone than other costs. In our
examples, we showed using how to adjust ICERs from published studies
in the presence of a health care input constraint in specific cases. These
examples revealed that optimal decisions may depend crucially on such
adjustments.

A limitation of our theoretical model is that we assumed our
spending function to be additive, whereas in some cases it might be
more realistic to assume that health care inputs are multiplicative.
However, adding non-linear constraints to the model would complicate
the analysis substantially. It should be noted that the additivity as-
sumption is in line with standard cost effectiveness analyses which
looks at changes in spending at the margin where additivity might
suffice. In this paper, we stressed the impact that health care input
constraints have on decision rules. However, also the estimation of costs
and benefits of technologies might be influenced by health care input
constraints. Currently, many cost effectiveness studies ignore such
constraints when estimating costs and benefits of health care technol-
ogies (Vassall et al., 2016). While this offers relevant information of the
efficiency of new technologies under ideal circumstances (which might
be achievable in the long run), it does not give insights into how these
technologies might work out in practice. Given that usually investments
are needed in order to reach those ideal circumstances, it might not
always be cost-effective to operate technologies under ideal circum-
stances. Related literature in the area of economic evaluation deals with
issues related to constraints with respect to implementation of health

care technologies in practice (Fenwick et al., 2008; Hoomans and
Severens, 2014). Note that although our starting point was that of in-
cremental economic evaluations targeted at decision makers who might
not have the discretion to relax health care input constraints, such
constraints itself signal that the health system needs strengthening in
terms of health care inputs (Morton et al., 2016).

In the presence of health care input constraints conventional ICERs
presented in economic evaluations become less informative for decision
makers. Therefore, less focus should be placed on only estimating and
presenting this conventional ICER. Rather, it is better to present results
in a manner that aligns with relevant constraints. For instance, in the
context of human resource constraints it is important that results of
economic evaluations need to be presented so that decision makers can
see how much human resources costs are required to gain QALYs. In
specific cases, depending on the availability of data, it is possible to
adjust conventional ICERs. Key for our proposed adjustments of con-
ventional ICERS is that constraints are expressed in monetary costs
rather than units of health care inputs such as number of doctors or
nurses. As such, our proposed approach is less flexible than a more
general mathematical programming approach. But, it is easier to un-
derstand and is a more natural extension of cost effectiveness results.
However, even in the absence of suitable data for ICER adjustments, the
issue of how health care input constraints might affect optimal deci-
sions needs to be discussed properly in applied cost effectiveness ana-
lysis. Crucial is that opportunity costs and thresholds are constraint
specific and that opportunity costs are higher (and thresholds lower) for
the constrained health care input. Furthermore, a scarcity of estimates
of threshold levels of cost effectiveness should not be an excuse to ig-
nore health care input constraints when making policy recommenda-
tions. Rather, we advise to make use of rules of thumb. For instance,
new technologies that are cost-effective compared to currently funded
programs but require lots of skilled labour should not automatically be
funded. Vice versa, new technologies that are not cost-effective com-
pared to currently funded programs but require less skilled labour can
be attractive. Before applying such rules of thumb, one must start by
identifying health care input constraints by focusing on a criterion like
the presence of skilled labour. Tools like to OneHealth Tool promoted
by the WHO for strategic health planning may help in identifying health
care input constraints as this tool makes use of several coverage in-
dicators that identify ‘bottlenecks’ in the delivery of health care services
(Avenir Health, 2012).

Although the insights from our theoretical model apply to any
health care input shortage the relevance of accounting for health care
input constraints in decision rules is most easily demonstrated for the
cost effectiveness analysis of task shifting. The motivation for in-
vestigating the cost effectiveness of task shifting usually is the presence
of human resource constraints and the idea that highly skilled/trained
labour (which is scarce) can be made more productive if some of their
tasks can be shifted to other less scare labour forces (often also less
skilled) (Fulton et al., 2011). However, published literature on task
shifting considers task shifting only worthwhile in case it does not result
in health losses and also results in cost savings (Griffiths et al., 2014;
Mdege et al., 2013; Vaughan et al., 2015). So the standards appear to be
higher for these type of interventions than for standard health care
technologies while our model indicates the reverse: interventions that
free up constrained health care inputs should be judged against a higher
threshold rather than a lower threshold.

We conclude that it is possible to use the results of cost effectiveness
studies in the presence of health care input constraints. In the presence
of health care input constraints, the issue of opportunity costs expressed
in health foregone becomes even more important as they differ between
health care inputs. We showed how to adjust conventional ICERs for
such differences in opportunity costs between health care inputs in
specific cases. These adjustments are crucial as applying the default
decision rules of cost effectiveness analysis without such adjustments
might lead to health losses.
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