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Deviations of the immune cell 
landscape between healthy liver 
and hepatocellular carcinoma
Nataliya Rohr-Udilova1, Florian Klinglmüller2, Rolf Schulte-Hermann3, Judith Stift4,  
Merima Herac4, Martina Salzmann5, Francesca Finotello   6, Gerald Timelthaler4,  
Georg Oberhuber4, Matthias Pinter1, Thomas Reiberger   1, Erika Jensen-Jarolim5,7,  
Robert Eferl4 & Michael Trauner1

Tumor-infiltrating immune cells are highly relevant for prognosis and identification of immunotherapy 
targets in hepatocellular carcinoma (HCC). The recently developed CIBERSORT method allows immune 
cell profiling by deconvolution of gene expression microarray data. By applying CIBERSORT, we 
assessed the relative proportions of immune cells in 41 healthy human livers, 305 HCC samples and 
82 HCC adjacent tissues. The obtained immune cell profiles provided enumeration and activation 
status of 22 immune cell subtypes. Mast cells were evaluated by immunohistochemistry in ten HCC 
patients. Activated mast cells, monocytes and plasma cells were decreased in HCC, while resting mast 
cells, total and naïve B cells, CD4+ memory resting and CD8+ T cells were increased when compared 
to healthy livers. Previously described S1, S2 and S3 molecular HCC subclasses demonstrated 
increased M1-polarized macrophages in the S3 subclass with good prognosis. Strong total immune 
cell infiltration into HCC correlated with total B cells, memory B cells, T follicular helper cells and M1 
macrophages, whereas weak infiltration was linked to resting NK cells, neutrophils and resting mast 
cells. Immunohistochemical analysis of patient samples confirmed the reduced frequency of mast 
cells in human HCC tumor tissue as compared to tumor adjacent tissue. Our data demonstrate that 
deconvolution of gene expression data by CIBERSORT provides valuable information about immune cell 
composition of HCC patients.

Hepatocellular carcinoma (HCC) represents a leading cause of cancer mortality worldwide1. Therapeutic options 
include tumor resection or ablation, transarterial chemoembolisation, liver transplantation and treatment with 
the tyrosine kinase inhibitor sorafenib2. However, HCC is often diagnosed at advanced disease stages that allow 
only palliative treatments. Therefore, investigation of new therapeutic approaches in HCC is required.

Immunotherapy with immune checkpoint inhibitors is clinically approved for treatment of melanoma, 
non-small cell lung cancer, renal and bladder cancers3. Extension of this therapeutic concept to other malig-
nancies including HCC is currently focus of basic and clinical research4–7. The immune phenotype is a relevant 
prognostic factor in various tumors8,9. The degree and distribution of immune cell infiltration might also stratify 
patients into responders and non-responders to anticancer therapies8,10–12.

Immunohistochemistry (IHC) and flow cytometry are common techniques to analyze the immune cell com-
position of tumors but these techniques have limitations. Only few immune cell types can be evaluated at once by 
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IHC and the unambiguous assignment of certain cell types by flow cytometry is usually based on several marker 
proteins, which is limited by the number of fluorescence channels. The systems biology tool CIBERSORT employs 
deconvolution of bulk gene expression data and a sophisticated algorithm for in silico quantification of many 
immune cell types in heterogeneous samples as tumor stroma13. Gene expression data can be obtained for a huge 
number of tumor samples, which allows identification of immune cell-based prognostic and therapeutic markers 
by CIBERSORT after stratification into molecular subtypes.

High resolving power is a key benefit of CIBERSORT, which enumerates 22 immune cell types at once and 
applies signatures from ~500 marker genes to quantify the relative fraction of each cell type13. The method was 
successfully validated by FACS and used for determination of the immune cell landscapes in several malignant 
tumors such as colon, lung and breast9,13–15.

Here, we used CIBERSORT for deconvolution of global gene expression data to define the immune cell land-
scape of healthy human livers, HCC and HCC-adjacent tissues. Our data also uncovered distinct immune phe-
notypes for molecular HCC subclasses.

Results
Adaptive immune cells in HCC.  The fraction of total T cells, B cells and naïve B cells was higher in HCC 
and HCC adjacent tissue (TaT) than in healthy liver tissue (Fig. 1A–C, Table 1). TaT contained even more T 
cells than HCC (Fig. 1A). Plasma cells were mainly present in healthy livers and less frequent in HCC and TaT 
(Fig. 1D). Memory B cells were not significantly altered between tissues (Fig. 1E).

The three main T cell subpopulations in tissues were CD4+ memory resting T cells, CD8+ T cells and folli-
cular helper T cells. They were increased in HCC and TaT when compared to healthy liver (Fig. 2A–C, Table 1). 
Moreover, a small fraction of CD4+ memory activated T cells was also increased in HCC and TaT (Fig. 2E). In 
contrast, gamma delta T cells and regulatory T cells were decreased in HCC when compared to healthy liver 
(Fig. 2D,F, Table 1). CD8+ T cells and Tregs were more frequent whereas follicular helper T cells were less frequent 
in TaT than in tumor tissues (Fig. 2B,C,F).

Figure 1.  Adaptive immunity cells in human HCC tumor tissue (HCC), adjacent tissue (TaT) and healthy. liver 
(HL). CIBERSORT immune cell fractions were determined for each patient; each dot represents one patient. 
Mean values and standard deviations for each cell subset including total T cells (A), total B cells (B), naïve B 
cells (C), plasma cells (D) and memory B cells (E) were calculated for each patient group and compared using 
one-way ANOVA. *p < 0.05; **p < 0.01.
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Innate immune cells in HCC.  The fraction of macrophages was higher in HCC than in healthy liver and 
TaT (Fig. 3A). In contrast, monocytes and total mast cells were decreased in HCC (Fig. 3B,C). Fractions of total 
natural killer (NK) cells, neutrophils, total dendritic cells and eosinophils were not significantly altered among 
tissues (Fig. 3D–G). Subpopulation analysis revealed that resting dendritic cells (DC) were increased in TaT, 
whereas activated DC, activated NK and resting NK fractions did not differ (Supplementary Figure 1).

M1 macrophages comprised 8.9 ± 3.5% (p < 0.001, n = 198) of total immune cells in HCC. M1 fraction was 
higher in HCC and TaT than in healthy liver (Fig. 4A). Immune-suppressive, proangiogenic M2 macrophages 
were specifically enriched in HCC (17.1 ± 7.3%, n = 198, vs 11.0 ± 10.3%, n = 16, in normal tissue, p < 0.001) but 
not in TaT (Fig. 4B). Correspondingly, the M2/M1 macrophage ratio was higher in HCC than in TaT (Fig. 4C). 
M0 macrophages comprised 0.9 ± 2.1% (p < 0.001, n = 198) of total immune cells in HCC and were comparable 
between HCC, TaT and healthy liver (Fig. 4D). Resting mast cells were strongly increased in HCC and TaT when 
compared to healthy liver, whereas activated mast cells were decreased (Fig. 4E,F).

Alternative algorithms are available for immune cell quantification. We applied two of them, xCell16 and 
EPIC17, in order to compare the results for those immune cells types which significantly differed between HCC 
and TaT. The results are shown in Supplementary Table 1 and Supplementary Table 2. EPIC allows deconvolution 
of fewer cell types as compared to CIBERSORT, so that only some correlations could be calculated. Moreover, the 
estimated fractions are referred to the total cell mixture and not only to the total immune cells, as in CIBERSORT 
results. However, data for B cells, CD8+ T cells, macrophages and NK cells calculated by EPIC all correlated with 
CIBERSORT results (Supplementary Table 1). Similarly, xCell algorithm obtained abundance scores which were 
mostly in qualitative accordance with CIBERSORT deconvolution results (Supplementary Table 2).

To further elucidate the role of mast cell activation in the HCC immune cell network, we analyzed correla-
tions of resting and activated mast cells with other immune cell populations by calculating r2 Pearson correlation 
coefficients (Supplementary Figure 2). Activated mast cells correlated positively with activated dendritic cells 
and eosinophils in healthy liver, HCC and TaT. They also correlated positively with other immune cell types of 
adaptive and innate immune responses in HCC. However, they correlated negatively with plasma cells, Tregs and 
T follicular helper cells in healthy liver but not in HCC and TaT. Furthermore, activated mast cells correlated pos-
itively with gamma delta T cells and naïve B cells in TaT. Resting mast cells correlated positively only with resting 
NK cells in healthy liver but this correlation was abolished in HCC and TaT. Instead, HCC and TaT showed a 
correlation between resting mast cells and M0 macrophages (Supplementary Figure 2).

Immune cell patterns in molecular HCC subclasses.  Molecular classification of human HCC led to 
separation of S1, S2 and S3 subclasses, which display activation of specific signaling pathways and different prog-
noses18. Whereas S1 and S2 exhibit early recurrence and poor prognosis, S3 tumors are well differentiated and 
show favorable prognosis18. Therefore, we investigated differences in immune cell patterns among HCC sub-
classes. S3 tumors exhibited increased total mast cells when compared to S1 as well as increased M1 macrophages 
and memory B cells when compared to S1 and S2 tumors (Table 2). Other innate and adaptive immunity cell 

Immune cell type

CIBERSORT fraction in % of all infiltrating immune cells

mean ± SD p-values (with Bonferroni correction)

HCC HL TaT HCC vs HL HCC vs TaT TaT vs HL

T cells total 0.466 ± 0.081 0.250 ± 0.146 0.505 ± 0.088 4e-19 8e-3 1e-21

T cells CD8+ 0.125 ± 0.067 0.060 ± 0.102 0.157 ± 0.065 2e-3 9e-3 1e-5

T cells CD4+ memory resting 0.224 ± 0.088 0.079 ± 0.057 0.248 ± 0.090 2e-8 0.205 1e-9

T cells CD4+ memory activated 0.031 ± 0.033 0.003 ± 0.007 0.024 ± 0.033 6e-3 0.507 8e-2

T cells Follicular Helper 0.077 ± 0.052 0.024 ± 0.037 0.048 ± 0.043 6e-4 5e-4 0.327

Tregs 0.010 ± 0.019 0.024 ± 0.035 0.026 ± 0.034 0.136 9e-5 1

T cells gamma delta 0.007 + 0.018 0.025 + 0.050 0.002 + 0.007 2e-3 0.346 2e-4

B cells total 0.070 ± 0.041 0.023 ± 0.022 0.068 ± 0.032 6e-6 1 7e-5

B cells memory 0.025 ± 0.035 0.010 ± 0.02 0.020 ± 0.033 0.328 0.865 1

B cells naïve 0.048 ± 0.040 0.013 ± 0.021 0.048 ± 0,037 4e-3 1 6e-3

Macrophages total 0.271 ± 0.070 0.173 ± 0.097 0.241 ± 0.065 3e-7 0.013 7e-2

M0 macrophages 0.010 ± 0.023 0.029 ± 0.052 0.011 ± 0.018 0018 1 6e-2

M1 macrophages 0.091 ± 0.036 0.032 ± 0.030 0.100 ± 0.039 7e-8 3e-1 4e-9

M2 macrophages 0.173 ±± 0.074 0.093 ± 0.086 0.129 ± 0.060 2e-4 2e-4 0,265

Mast cells resting 0.050 ± 0.052 0.006 ± 0.020 0.071 ± 0.061 1e-2 6e-2 2e-4

Mast cells activated 0.010 ± 0.022 0.204 ± 0.199 0.005 ± 0.011 5e-31 1 2e-29

Neutrophils 0.041 ± 0.034 0.078 ± 0.070 0.034 ± 0.022 0,103 1 0,674

Dendritic cells resting 0.012 ± 0.021 0.003 ± 0.005 0.017 ± 0.023 0.354 0.363 0.073

Dendritic cells activated 0.002 ± 0.005 0.003 ± 0.006 0.0 ± 0.0 1 0.080 0.204

Monocytes 0.009 ± 0.0130 0.084 ± 0.083 0.007 ± 0.011 5e-24 1 9e-23

Eosinophils 0.007 ± 0.016 0.012 ± 0.028 0.003 ± 0.007 1 0.1336 0.103

Table 1.  Comparison of CIBERSORT immune cell fractions between HCC, HL and TaT.
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fractions were similar between subclasses (Table 2). Thus, different molecular HCC subclasses were associated 
with distinct immune phenotypes. Viral status (HCV, HBV or negative) had no impact on the immune cell com-
position except for activated mast cells, which were decreased in HCV and HBV infected patients (Supplementary 
Table 3).

The immune cell composition in HCC and TaT differed substantially from that of healthy liver tissue 
(Fig. 5A–D). In particular, T cells (25.0 ± 8.6%), mast cells (19.0 ± 18.1%) and macrophages (17.3 ± 9.7%) were 
most frequent in healthy liver (n = 16) and prevailed over NK cells (8.4 ± 10.7, p = 0.04), monocytes (7.8 ± 7.9%, 
p = 0.008) and neutrophils (7.8 ± 7.6%, p = 0.02). In HCC and TaT, almost 50% of total immune cells were T cells. 
Macrophages were more frequent than mast cells (Fig. 5A–D). Activated mast cells were barely found in HCC but 
mainly in healthy liver (Fig. 5B,C). Importantly, higher relative proportion of resting mast cells in HCC showed a 
trend toward shorter survival of patients (p = 0.13, data not shown)

Total Immune cell infiltration and its correlation with immune cell types.  The extent of immune 
cell infiltration into tumors has important prognostic value in HCC and other cancers5,9,15,19. Therefore, we 
used the p-value of CIBERSORT deconvolution as a surrogate parameter for the magnitude of total immune 
cell infiltration as lower p-values are associated with higher total infiltration13,15 and assessed correlations with 
immune cell types. Indeed, CIBERSORT p-value correlated with a new CIBERSORT feature “Absolute Score”. 
The “Absolute Score” is estimated as the median expression level of all genes in the signature matrix divided by 
the median expression level of all genes in the mixture. This score is used by the CIBERSORT “absolute mode” 
(currently under development) to scale the relative cell fractions to absolute abundances (https://cibersort.
stanford.edu). As expected, we found that CIBERSORT p-values inversely correlated with the “Absolute Score” 
(Spearman-Rho correlation coefficient r2 = −0.639, p = 6e-51, n = 432).

The degree of immune cell infiltration into the tumor and surrounding tissue is an important prognostic 
factor. To characterize the interdependence between immune cell composition and the degree of immune cell 
infiltration in HCC, we calculated the correlations of 22 immune cell types with CIBERSORT p-values. Our 

Figure 2.  T cell subfractions in human HCC tumor tissue (HCC), adjacent tissue (TaT) and healthy liver. (HL). 
CIBERSORT immune cell fractions were determined for each patient; each dot represents one patient. Mean 
values and standard deviations for each cell subset including CD4 memory resting cells (A), CD8 cells (B), 
follicular helper (C), T cells gamma delta (D), CD4 memory activated (E) and Tregs (F) were calculated for each 
patient group and compared using one-way ANOVA. *p < 0.05; **p < 0.01.

https://cibersort.stanford.edu
https://cibersort.stanford.edu
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results revealed that CD8+ T cells are mainly associated with high immune cell infiltration into TaT (Fig. 6A). In 
HCC, high immune cell infiltration was mainly linked with the presence of total B cells, memory B cells, follicular 
helper T cells and M1 macrophages (Fig. 6B). On the contrary, lower immune cell infiltration in HCC was rather 
associated with the presence of neutrophils, resting NK cells and resting mast cells (Fig. 6B).

To further explore mast cells abundance in HCC, we used the “absolute mode” of CIBERSORT to quantify the 
abundances of resting, activated and total mast cells in HCC and TaT (Supplementary Table 5). Absolute values 
for total and resting mast cells were significantly diminished in HCC tumor tissue as compared to tumor adjacent 
tissue (Supplementary Table 5).

In order to verify the explorative data obtained for mast cells, we evaluated mast cell density by immunohis-
tochemistry in ten human HCC tumor tissues and ten corresponding adjacent tissues. Examples of mast cell 
tryptase staining in HCC tissue together and quantification summary are shown in Fig. 6C. In agreement with 
CIBERSORT results (Supplementary Table 5), mast cell density was reduced in HCC as compared to tumor 
adjacent tissue.

Discussion
In this study, we applied CIBERSORT to assess differential immune cell infiltration in healthy human liver, HCC 
and HCC adjacent tissue.

We observed considerable differences in immune cell composition between HCC and healthy liver whereas 
molecular HCC subclasses displayed only subtle differences. However, S3 tumors showed an enrichment of M1 
macrophages which can be tumor-suppressive and might contribute to the favorable prognosis of this HCC 
subclass20.

To our knowledge, the present study shows for the first time that the mast cells in HCC are largely inactive. 
Since mast cell activation by IgE is supposed to protect from cancer21, inactivation of mast cells in HCC may 
facilitate immune escape and thus favor tumor growth.

Although different stimuli can activate mast cells22, CIBERSORT enumerates specifically IgE activated mast cells 
because the gene expression signature used for deconvolution was obtained from mast cells stimulated by IgE13.

Mast cells are key regulators of immune effector cells23. Therefore, their activation could be a desired aim of 
immunotherapy. Mast cells are attractive targets as they are abundant and immobile in the liver and in tumors, 
relatively radioresistant and more resistant to chemotherapeutics than other rapidly dividing immune cells22.

The mechanisms behind mast cell inactivation in HCC remain unknown. Mast cell activator IgE has been 
detected in HCC, at least in patients with HBV-associated HCC24, and seems not to be a limiting factor. However, 
tumor cells might release certain metabolites that potentially inhibit mast cell activation. We hypothesize that 

Figure 3.  Innate immune response cells in human HCC tumor tissue (HCC), adjacent tissue (TaT) and healthy 
liver (HL). CIBERSORT immune cell fractions were determined for each patient; each dot represents one 
patient. Mean values and standard deviations for each cell subset including total macrophages (A), total mast 
cells (B), monocytes (C), total NK cells (D), neutrophils (E), total dendritic cells DC (F) and eosinophils (G) 
were calculated for each patient group and compared using one-way ANOVA. *p < 0.05; **p < 0.01.
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tumor cell-derived metabolites such as oxidized natural polyamines might be responsible for mast cell inhibition 
in HCC. Indeed, natural polyamines spermine and spermidine, when oxidized by polyamine oxidase, prevented 
mast cell activation by IgE in vitro25. Malignant cells contain high concentrations of polyamines26 and polyamine 
oxidase is highly expressed in the liver27 thus supporting the relevance of polyamine oxidation for HCC. In line, 
polyamine oxidase inhibitor delayed experimental tumor growth28.

When compared to EPIC and xCell, CIBERSORT is the only algorithm that allows discrimination between 
resting and IgE activated mast cells. CIBERSORT calculations were confirmed by immunohistochemical mast 
cell quantification in tumor and adjacent tissues of Austrian HCC patients, a small but completely independent 
cohort from that used for calculations. Our novel findings on mast cells in HCC provoke more detailed future 
studies to assess the potential of mast cell activation in HCC immunotherapy.

It has been previously reported, that T and B cells are present in immune cell infiltrates of HCC and that the 
degree of tumor infiltrating T and B cells correlates with improved survival of HCC patients19. Our data are in 
agreement with these findings. They also reveal that total B cells and – to a lesser extend - total T cells are sig-
nificant contributors to the total immune infiltration into HCC tumors (Fig. 6B). Moreover, we identified the 
involved T and B cell subsets as T follicular helper cells and memory B cells and provide additional important 
information on the immune cell composition of HCC adjacent tissues.

The prognostic importance of immune cell infiltration has been recognized for different solid tumor types. 
For example in colon cancer, the so called immunoscore - which reflects the type, number and distribution of 
immune cells into the tumor - has been introduced and shows prognostic value9. Recent application of the immu-
noscore in HCC revealed that increased intratumoral densities of CD3+ and CD8+ cells were linked to prolonged 
survival29,30. Interestingly, immunotherapy can modify infiltration of cytotoxic CD8+ T cells31. We could confirm 
the presence of CD8+ T cells in HCC tumors. However, tumor adjacent tissue showed even higher CD8+ T cell 
frequency (Fig. 2B) possibly indicating an impeded infiltration into the tumor.

Figure 4.  Macrophage and mast cell subfractions in human HCC tumor tissue (HCC), adjacent tissue (TaT) 
and healthy liver (HL). CIBERSORT immune cell fractions were determined for each patient; each dot 
represents one patient. Mean values and standard deviations for each cell subset including M1 macrophages 
(A), M2 macrophages (B), M2/M1 ratio (C), M0 macrophages (D), resting mast cells (E) and activated mast 
cells (F) were calculated for each patient group and compared using one-way ANOVA. *p < 0.05; **p < 0.01.
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Whereas surgical resection of human tumors provides tumor tissue and tumor adjacent tissue for research 
purposes (only if ethical issues are properly considered), the access to liver samples and datasets from healthy 
humans is much more limited. Healthy liver samples are rare and are mostly collected after a sudden death or at 

Immune cell type

CIBERSORT fraction in % of all infiltrating immune cells, 
mean ± SEM ANOVA p-value (with 

Bonferroni correction)Subclass S1 (n = 19) Subclass S2 (n = 15) Subclass S3 (n = 34)

T cells total 45.58 ± 1.20 42.18 ± 2.21 40.47 ± 1.82

T cells CD8+ 12.4 ± 1.70 9.82 ± 2.57 10.69 ± 1.03 0.534

T cells CD4+ memory resting 21.8 ± 2.02 24.2 ± 2.86 22.98 ± 1.48 0.975

T cells CD4+ memory activated 2.87 ± 0.66a 2.31 ± 0.79 1.09 ± 0.33a 0.03

T cells Follicular Helper 5.46 ± 1.19 5.05 ± 1.35 3.81 ± 0.66 0.321

Tregs 3.00 ± 0.79 0.81 ± 0.46 1.91 ± 0.49 0.191

B cells total 6.39 ± 0.93 5.90 ± 1.19 4.82 ± 0.49

B cells memory 2.26 ± 0.73 2.73 ± 1.68 5.22 ± 0.16 0.065

B cells naïve 4.10 ± 0.99 5.63 ± 1.22 4.31 ± 0.53 0.663

Macrophages total 28.14 ± 1.97 27.24 ± 1.41 28.81 ± 1.41

M0 macrophages 3.30 ± 0.92 2.28 ± 0.86 2.35 ± 0.55 0.326

M1 macrophages 9.32 ± 0.72b 9.22 ± 0.81c 12.55 ± 0.72b,c 0.003

M2 macrophages 15.51 ± 2.04 15.75 ± 1.70 13.91 ± 1.36 0.452

M1/M2 ratio 0.98 ± 0.22 0.73 ± 0.11 1.16 ± 0.17

Mast cells 6.41 ± 1.17 9.66 ± 1.47 10.49 ± 1.06 0.115

Neutrophils 4.71 ± 0.64 4.92 ± 1.17 5.49 ± 0.62 0.753

Dendritic cells 2.17 ± 0.84 1.70 ± 0.43 2.04 ± 0.39 0.951

Monocytes 0.21 ± 0.15 0.62 ± 0.21 0.48 ± 0.17 0.485

Eosinophils 1.91 ± 0.13 0 0 0.091

Table 2.  Comparison of immune cell fractions in percent between three molecular HCC subclasses. aDifferent 
at p = 0.037. bDifferent at p = 0.011. cDifferent at p = 0.018, ANOVA with Bonferroni correction.

Figure 5.  Immune cell composition in HCC tumor (HCC), adjacent tissues (TaT) and healthy livers (HL). (A) 
Composition of infiltrating immune cells in HCC, TaT and HL summarized from calculated mean values for 
each patient group. (B–D) Quantified changes of infiltrating immune cell composition between TaT and HCC 
(B), HL and HCC healthy liver and tumor tissue (C) and between HL and TaT (D).
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liver transplantation setting, which potentially influences immune infiltration. In addition, the degree of immune 
infiltration into the healthy liver seems to be lower than in liver cancer. In line, for more than the half of datasets 
from healthy livers (25 of 41), we did not obtain statistical significance of the deconvolution results (i.e. p < 0.05), 
probably because of unfavorable signal/noise ratio. However, the most differences between immune cell types 
remained valid even if less samples only from persons with sudden death were included (not shown).

In summary, we demonstrate that deconvolution of whole tissue gene expression data by CIBERSORT pro-
vides refined information on the immune cell landscape of HCC. We show that the presence of resting or acti-
vated mast cells is indicative for the presence of other immune cell types and might be relevant for HCC patient 
prognosis. Deviations of the HCC immunoprofile from healthy liver may become a valuable tool to identify novel 
targets for immunotherapies and to individualize treatment strategies in patients with HCC.

Materials and Methods
CIBERSORT is an analytical tool which accurately quantifies the relative levels of distinct immune cell types 
within a complex gene expression mixture (https://cibersort.stanford.edu)13. To characterize and to quantify each 
immune cell subtype, CIBERSORT uses gene expression signatures consistent of ~500 genes. Here, we applied 
the original CIBERSORT gene signature file LM22 which defines 22 immune cell subtypes and analyzed data-
sets from human hepatocellular carcinoma (HCC), HCC tumor adjacent tissue (TaT) and healthy livers (HL). 
Public available gene expression profiles from human normal tumor-free livers (HL, n = 41), HCC tumors (HCC, 
n = 305) and HCC tumor adjacent tissues (TaT, n = 82). All GEO numbers are given in Table 3. The data are nor-
malized using the cubic spline algorithm. All samples were analysed for immune cell profiles by CIBERSORT, the 
number of permutations being set to 10013. 22 immune cell types together with CIBERSORT metrics as Pearson 
correlation coefficient, CIBERSORT p-value and root mean squared error (RMSE) were quantified for each sam-
ple. CIBERSORT p-value reflects the statistical significance of the deconvolution results across all cell subsets and 
is useful for filtering out deconvolution with less significant fitting accuracy (https://cibersort.stanford.edu). From 
all the samples analyzed, we have selected 16/198/60 HL/HCC/TaT samples respectively which met the require-
ments of CIBERSORT p-value ≤ 0.05. The complete list of the selected samples is given in Table 3. Immune cell 
profile was calculated for each sample and mean values for each tissue type (HL, HCC and TaT) were calculated. 
One-way- ANOVA was applied to analyze the differences between healthy livers, HCC tumors and adjacent 

Figure 6.  Correlations of immune cells with CIBERSORT p-values in HCC tumor and adjacent tissues. Impact 
of individual immune cell subsets on the total immune cell infiltration within TaT (A) and HCC (B). The dotted 
line represents p = 0.002 boundary (Bonferroni correction), all the cell subsets above this line are significantly 
associated with total immune infiltration with p-values < 0.002. The X-axis shows Pearson correlation 
coefficients between cell subset and CIBERSORT p-values; positive values indicate an infiltration increase with 
increased cell subset, whereas negative values indicate an infiltration decrease. (C) mast cell tryptase staining 
in human HCC tissue and the summary of immunohistochemical evaluation in ten human HCC tumor tissues 
(HCC) and corresponding tumor adjacent tissues (TaT). Mast cell density was calculated across the slide by 
tissue morphometric analysis and expressed as percent of total cells. Two –tailed p-value p = 0.0098, Wilcoxon 
singed rank test.

https://cibersort.stanford.edu
https://cibersort.stanford.edu
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tissues. For resting and activated mast cells, Pearson correlation coefficients with other immune cells types were 
calculated using SPSS 24.0 software.

Total macrophage fraction was calculated as a sum of M0, M1 and M2 macrophage fractions. Total T cells 
were calculated as a sum of CD8+ T cells, CD4+ naïve T cells, CD4+ memory resting T cells, CD4+ memory 
activated T cells, follicular helper T cells, regulatory T cells (Tregs) and T cells gamma delta fractions.

Log-rank Mantel-Cox test was applied to compare the survival curves between the patient groups using SPSS 
24.0 and GpaphPadPrism Software.

To obtain deconvolution of expression data with EPIC17, all expression data have been concatenated in a single 
file and duplicate gene symbols have been resolved by selecting the gene with the highest mean across all samples. 
Deconvolution was then performed considering the signature matrix defined for tumor data (“TRef”). The Immune 
Infiltration was estimated by summing up the fractions of: B cells, CD4+ T cells, CD8+ T cells, macrophages, and 
natural killer (NK) cells. For comparison with CIBERSORT results, only the immune-cell fractions were extracted 
from EPIC results and re-normalized so to sum up to one. CIBERSORT fractions for naïve B cells and memory B 

Tissues Datasets used for CIBERSORT analysis References

Tumor tissues, HCC (n = 198)

GSM256426, GSM256432, GSM256445, GSM256476, GSM256483,  
GSM256504, GSM256507, GSM256524, GSM256549, GSM256593,  
GSM256598, GSM256633, GSM256645, GSM256650, GSM256657,  
GSM256663, GSM256677, GSM256686, GSM256688, GSM256703,  
GSM256721, GSM256726, GSM256439, GSM256442, GSM256480,  
GSM256588, GSM256616, GSM256702, GSM256722, GSM256434,  
GSM256468, GSM256471, GSM256496, GSM256539, GSM256546,  
GSM256558, GSM256565, GSM256570, GSM256576, GSM256584,  
GSM256595, GSM256596, GSM256625, GSM256644, GSM256659,  
GSM256665, GSM256672, GSM256679, GSM256680, GSM256681,  
GSM256693, GSM256495, GSM256556, GSM256590, GSM256651,  
GSM256697, GSM256701, GSM256428, GSM256430, GSM256443,  
GSM256457, GSM256459, GSM256460, GSM256462, GSM256463,  
GSM256464, GSM256465, GSM256467, GSM256469, GSM256470,  
GSM256472, GSM256477, GSM256481, GSM256482, GSM256484,  
GSM256485, GSM256486, GSM256488, GSM256492, GSM256499,  
GSM256505, GSM256506, GSM256508, GSM256509, GSM256510,  
GSM256511, GSM256512, GSM256513, GSM256514, GSM256515,  
GSM256517, GSM256533, GSM256534, GSM256538, GSM256540,  
GSM256542, GSM256543, GSM256547, GSM256551, GSM256553,  
GSM256555, GSM256557, GSM256560, GSM256562, GSM256566,  
GSM256567, GSM256569, GSM256573, GSM256574, GSM256577,  
GSM256578, GSM256581, GSM256582, GSM256583, GSM256585,  
GSM256587, GSM256589, GSM256591, GSM256594, GSM256600,  
GSM256602, GSM256606, GSM256607, GSM256608, GSM256611,  
GSM256613, GSM256614, GSM256615, GSM256617, GSM256619,  
GSM256620, GSM256623, GSM256624, GSM256628, GSM256630,  
GSM256631, GSM256637, GSM256638, GSM256639, GSM256640,  
GSM256643, GSM256646, GSM256647, GSM256649, GSM256652,  
GSM256656, GSM256664, GSM256674, GSM256675, GSM256682,  
GSM256683, GSM256684, GSM256689, GSM256690, GSM256692,  
GSM256695, GSM256698, GSM256711, GSM256716, GSM256720,  
GSM256728, GSM256729, GSM256440, GSM256444, GSM256450,  
GSM256458, GSM256474, GSM256478, GSM256498, GSM256518,  
GSM256535, GSM256536, GSM256550, GSM256554, GSM256559,  
GSM256561, GSM256563, GSM256564, GSM256571, GSM256579,  
GSM256580, GSM256586, GSM256592, GSM256605, GSM256609,  
GSM256610, GSM256612, GSM256627, GSM256632, GSM256634,  
GSM256635, GSM256636, GSM256641, GSM256642, GSM256673,  
GSM256687, GSM256696, GSM256724

32

Tumor adjacent tissues, TaT (n = 60)

GSM256354, GSM256362, GSM256377, GSM256408, GSM256409,  
GSM256410, GSM256415, GSM256418, GSM256367, GSM256374,  
GSM256350, GSM256355, GSM256360, GSM256368, GSM256375,  
GSM256380, GSM256381, GSM256394, GSM256401, GSM256411,  
GSM256412, GSM256416, GSM256419, GSM256342, GSM256349,  
GSM256364, GSM256369, GSM256371, GSM256379, GSM256399,  
GSM256404, GSM256405, GSM256406, GSM256407, GSM256413,  
GSM256420, GSM256423, GSM256344, GSM256351, GSM256358,  
GSM256359, GSM256366, GSM256372, GSM256376, GSM256378,  
GSM256383, GSM256384, GSM256385, GSM256386, GSM256387,  
GSM256388, GSM256389, GSM256390, GSM256393, GSM256395,  
GSM256396, GSM256397, GSM256400, GSM256402, GSM256417

32

Healthy Livers, HL (n = 16)

GSM372247, GSM372248, GSM372249, GSM372599, GSM372600,  
GSM373314, GSM373315, GSM373324

33

GSM35982 34

E-MTAB-3732_Sample_5242 (GSM155926), E-MTAB-3732_Sample_10761 
(GSM155988)

35,36

E-MTAB-3732_Sample_5273 (GSM176332), 35

E-MTAB-3732_Sample_10714 (GSM80730), 35,37

E-MTAB-3732_Sample_1396 (E-AFMX-11HL5), E-MTAB-3732_ 
Sample_8377 (E-AFMX-11HL4),

35,38

E-MTAB-3732_Sample_8656 (GSM319287) 35,39

Table 3.  List of datasets used for estimation of immune cell profiles.



www.nature.com/scientificreports/

1 0SCIenTIfIC REPOrTS |  (2018) 8:6220  | DOI:10.1038/s41598-018-24437-5

cells were aggregated into B cells, M0, M1, and M0 macrophages into macrophages, and resting and activated NK 
cells into NK cells. The agreement between EPIC and CIBERSORT results was estimated with Pearson’s correlation.

For computation of abundance scores with xCell16, all expression data have been concatenated in a single file 
and duplicate gene symbols have been resolved by selecting the gene with the highest mean across all samples. 
Abundance scores were then computed from the expression data with xCell (xCellAnalysis function run with the 
“rnaseq = FALSE” option). For comparison purposes, CIBERSORT fractions for memory CD4+ T cells, NK cells, 
and mast cells were computed aggregating the proportions of resting and activated cells.

Mast cells were evaluated immunohistochemically using staining for tryptase. After de-paraffinization, 
heat-induced epitope retrieval was performed. The slides were cooled down, washed twice with PBS and per-
meabilized by 0.2% Tween in PBS. Unspecific background was blocked by 5% FCS in PBS for 30 min at room 
temperature. First antibody mouse anti-human mast cell tryptase (clon AA1, BioRad) was diluted 1:10000 
in 5% FCS and incubated overnight. After the washing step, Dako polymer (HRP Mouse Envision Kit, Dako, 
Agilent, USA) was applied for 30 min at room temperature. DAB (Dako, Agilent, USA) chromogen/substrate 
were applied for 30 s and the slides were washed with aqua dest. Counterstaining was performed by hematoxylin 
and tryptase-positive cells were evaluated by tissue morphometric analysis of digitized slides using the Tissue 
Studio® software (Definiens, Munich, Germany). Slides were digitized using a Pannoramic Midi Slide Scanner 
(3Dhistech, Budapest, Hungary). HCC tumor tissue and corresponding tumor adjacent tissue from ten patients 
were evaluated. All the patients had histologically confirmed HCC and underwent orthotopic liver transplanta-
tion at Vienna General Hospital, Austria. Clinical data of the patients are summarized in Supplementary Table 6. 
Data analysis was performed in accordance with guidelines of the local Ethics Committee.

Data availability.  The complete list of analyzed datasets (ArrayExpress) for each group is given in Table 3. 
The immune profile datasets generated by CIBERSORT for each sample Table 3 during the current study are 
available from the corresponding author on reasonable request.
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