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Mutation hotspots at CTCF binding sites coupled to
chromosomal instability in gastrointestinal cancers
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Tissue-specific driver mutations in non-coding genomic regions remain undefined for most

cancer types. Here, we unbiasedly analyze 212 gastric cancer (GC) whole genomes to identify

recurrently mutated non-coding regions in GC. Applying comprehensive statistical approa-

ches to accurately model background mutational processes, we observe significant enrich-

ment of non-coding indels (insertions/deletions) in three gastric lineage-specific genes. We

further identify 34 mutation hotspots, of which 11 overlap CTCF binding sites (CBSs). These

CBS hotspots remain significant even after controlling for a genome-wide elevated mutation

rate at CBSs. In 3 out of 4 tested CBS hotspots, mutations are nominally associated with

expression change of neighboring genes. CBS hotspot mutations are enriched in tumors

showing chromosomal instability, co-occur with neighboring chromosomal aberrations, and

are common in gastric (25%) and colorectal (19%) tumors but rare in other cancer types.

Mutational disruption of specific CBSs may thus represent a tissue-specific mechanism of

tumorigenesis conserved across gastrointestinal cancers.
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Non-coding DNA constitutes over 98% of the human
genome and harbors numerous functional elements
essential for regulating gene expression and maintaining

chromosomal architecture1. Mutations at non-coding regions
may drive cancer by dysregulating proto-oncogenes and tumor
suppressor genes, as exemplified by recent studies demonstrating
recurrent point mutations at the TERT promoter in multiple
cancer types2,3 and TAL1 enhancer insertions in T-cell acute
lymphoblastic leukemia4. While previous pan-cancer analyses of
tumor genomes have nominated regulatory driver mutations5,6,
these studies have typically not been sufficiently powered to
identify tissue-specific non-coding driver mutations, as hundreds
of samples are usually needed to reliably identify driver mutations
in individual cancer types7. Recently, the whole-genome muta-
tional landscapes of breast8, liver9, and pancreatic10 cancer
tumors have been studied to identify cancer-specific non-coding
drivers. However, the prevalence and impact of non-coding driver
mutations is still unknown for most cancer types.

CTCF is a DNA-binding protein essential for the maintenance
of genome architecture by mediating both short and long-range
chromosomal contacts11,12. Together with the cohesin complex,
CTCF organizes chromatin into large topologically associating
domains (TADs), insulating the local chromosomal neighbor-
hoods from adjacent regions. Disruption of CTCF binding can
therefore lead to dysregulation of gene expression11,12. In cancer,
CTCF binding is disrupted through various mechanisms, such as
DNA copy number alterations spanning domain boundaries13,
microdeletions within CBSs13, and hypermethylation of CBSs14.
These alterations at CBSs may drive cancer progression by
allowing ectopic expression of oncogenes. Notably, recent studies
have reported a genome-wide elevated somatic mutation rate
across CBSs in several cancer types15–18. This suggests that
mutational and DNA repair processes may act differently at CBSs
relative to other genomic regions, thereby resulting in an overall
elevated mutational burden at such sites in cancer. However, no
study to date has rigorously tested the hypothesis that even
amidst this elevated mutational burden, positive selection may
still act on specific CBSs to drive cancer in individual tumor types.
To accurately identify such genomic sites under positive selection,
statistical tests must take into account regional biases in the
mutation burden.

Comprehensive genetic and molecular profiling have pre-
viously identified new molecular subtypes and genetic drivers of
gastric adenocarcinoma19–21. Studies have also investigated the
extent and impact of mutational signatures22,23 and epigenetic
dysregulation in gastric cancer (GC) genomes24,25. Yet, it is
unknown to what extent mutations in specific non-coding ele-
ments may drive GC, a leading cause of global cancer mortality.
Here, we performed uniform and accurate identification of
somatic single nucleotide variants (SNVs) and insertions/dele-
tions (indels) in 212 GC genomes using an ensemble mutation
calling approach. We present a comprehensive statistical
approach, incorporating both epigenetic and sequence covariates,
to identify non-coding regions with significantly higher mutation
burdens over background, indicating positive selection and a role
in gastric tumorigenesis. Performing an unbiased genome-wide
scan of focal mutation hotspots (~20 bp, as TF binding motifs are
typically <20 bp), we detect 34 significant recurring non-coding
hotspots—of these, 11 overlapped CBSs. We further characterize
these sites by analyzing CBS specific mutation biases, gene
expression of neighboring genes, chromosomal instability, and
incidence of these mutations in other cancer types. Overall, our
analyses nominate these CBS hotspots as candidate drivers of GC.
Furthermore, our analysis suggests a general link between CBS
mutations and chromosomal instability in gastrointestinal
cancers.

Results
The mutation landscape of gastric adenocarcinoma. We ana-
lyzed the whole-genome sequences of 212 gastric adenocarci-
noma tumors and matched normal samples collated from four
different sources (Supplementary Data 1; Methods). All samples
were uniformly processed using an accurate somatic mutation
calling pipeline (Supplementary Fig. 1a–b). Briefly, we trained a
random forest classifier that predicts high confidence somatic
mutation calls (SNVs and indels) by combining the outputs of
four independent mutation callers. This approach achieved >85%
accuracy on an independent test data set of curated somatic
mutations26. We excluded 20 low-quality samples with less than
400 mutation calls from the discovery cohort (Supplementary
Fig. 1c). In addition, we removed five samples with strong
enrichment of C>A substitutions, a sign of oxidative damage
during DNA preparation27,28 (Supplementary Fig. 1c). Somatic
mutations in coding (CDS) regions, immunoglobin loci, and
poorly mappable regions were also removed from further ana-
lyses. After uniform processing, samples from the four cohorts
showed comparable distributions of somatic mutation counts and
similar mutation spectra (Fig. 1a and Supplementary Fig. 1a). The
ICGC cohort had slightly fewer mutations per tumor, probably
due to the lower sequencing depth of this cohort.

A previous study identified four molecular subtypes of gastric
adenocarcinoma19: tumors that are EBV positive (EBV), tumors
with high levels of microsatellite instability (MSI), tumors that
exhibit copy number instability (CIN), and tumor that are
genomically stable (GS). We investigated the correlations between
somatic mutation rates of the four cancer subtypes and epigenetic
profiles of gastric tissue obtained from the Roadmap Epigenomics
project29. In general, somatic mutation rates were negatively
correlated with regions of open chromatin (DNaseI hypersensi-
tivity) and histone marks of active promoters (H3K4me3) and
enhancers (H3K27ac) (Fig. 1b). The depletion of somatic
mutations in regions of open chromatin is likely due to enhanced
accessibility to the DNA repair machinery30–32. Notably, somatic
mutations in the EBV subtype were less correlated with histone
features and replication timing compared to the CIN and GS
subtypes, suggesting that additional mutational biases may exist
in EBV infected tumors.

Tumors belonging to the MSI subtype displayed strikingly
different associations between epigenetic features and mutation
patterns. We observed little association between mutation rate
and open chromatin marks or replication timing in MSI tumors.
This is likely because mismatch repair (MMR) deficient MSI
tumors have lost MMR-coupled enhanced repair efficiency at
early replicating open-chromatin regions31. In addition, we found
that MSI mutation profiles showed a strong positive association
with heterochromatin (H3K9me3) and repressive domains
(H3K27me3) (Fig. 1b). This is in contrast with a previous study
by Supek et al. reporting that mutations generated after MMR
inactivation are no longer enriched in heterochromatin regions,
arguing that genome-wide regional mutation rate variation is
mostly a result of MMR31. Instead, our data suggests that, in
addition to MMR, other repair or mutational processes may
further contribute to variation of the GC mutation landscape.
Principal component analysis (PCA) on the correlation matrix
between the mutation profiles of individual tumors and the
epigenetic covariates also revealed MSI tumors as a distinct
cluster (Fig. 1c). Accordingly, we removed the small number of
MSI tumors (N= 19) from the discovery cohort to ensure all
tumors had similar mutational biases.

Statistical framework for mutational hotspot identification. To
identify positive selection in cancer genomes, it is essential to
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build an accurate background mutation rate model that corrects
for covariates (features) that impact regional mutation rate var-
iation, such as local sequence context and chromatin profiles. We
considered a range of genetic and epigenetic features that could
be correlated with GC somatic mutation rates. The features
included 33 general and 36 gastric-specific chromatin features,
133 transcription factor binding profiles, and DNA replication
timing profiles (Supplementary Data 2; Methods). To model the
effect of local sequence context on mutation rate, previous studies
have considered the single or tri-nucleotide sequence context of
each mutation5,6,8,9. However, as mutation rates may also be
influenced by wider sequence contexts33, we thus used an
expanded sequence context model that considers the effects of tri-
nucleotide (1 bp flanks) and penta-nucleotide (2 bp flanks) con-
texts on the mutation probability of each base. Least absolute
shrinkage and selection operator (LASSO) logistic regression was
used to identify the most predictive epigenetic and sequence
context features (Supplementary Fig. 2). We used these features to
estimate sample-specific background mutation probabilities, and

to identify individual focal regions (21 bp) exhibiting mutational
recurrence across samples beyond chance expectation (Fig. 2a;
Methods). Overlapping significantly mutated regions were
merged to obtain a list of unique hotspots.

Recurrent indels in gastric lineage-specific genes. We used this
statistical framework to identify somatic mutation hotspots (both
indels and point mutations) across the non-coding genome
(Fig. 2b and Fig. 3a). The top indel hotspot was located ~100 kbp
upstream of the AFDN gene, which is frequently translocated in
leukemia and down-regulated in multiple cancer types34–36. The
effect of hotspot mutations on AFDN expression could not be
tested, as we lacked paired tumor expression data for the mutated
samples. The second most significant indel hotspot was located in
an intron of the PGC gene, which encodes the precursor of gastric
proteinase pepsinogen (Supplementary Table 1). PGC is expres-
sed at 11940 TPM in the stomach, 39 TPM in the lung, and ≤2
TPM in all other tissues in the Genotype-Tissue Expression
(GTEx) project37,38. Interestingly, a recent study reported that
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LIPF, a lineage-specific gastric lipase, has broad enrichment of
indels in GC39. Hypothesizing that other lineage-specific genes
could show similar patterns of indel enrichment, we performed a
gene-based recurrence analysis to identify all genes with broad
enrichment of indels in their non-coding regions (combining
promoter, untranslated, and intronic regions for each gene;
Methods). Interestingly, the top three genes in this analysis were
all lineage-specific genes highly expressed in stomach tissue: LIPF,
PGC, and MUC6 (Fig. 2c; Supplementary Table 2). MUC6
encodes a mucin glycoprotein that is a major constituent of the
gut mucosa, and is expressed at 133 TPM in stomach tissue, 38
TPM in the pancreas, and ≤2 TPM in all other tissues in
GTEx37,38. However, consistent with the previous report39, non-
coding indels in these three recurrently mutated lineage-specific
genes were not associated with expression change (Fig. 2d–f).

Mutation hotspots enriched at CBSs in GC. We then performed
a genome-wide analysis of SNVs in non-coding regions and
identified 34 significant mutation hotspots (Bonferroni adjusted
P-value < 0.01; Fig. 3a; Supplementary Table 3). These hotspots
were enriched in conserved sequences and TF binding regions,
suggesting that many hotspot mutations may disrupt functional
elements (Fig. 3b). Strikingly, of the 34 mutation hotspots, 11
were located in CBSs (Fig. 3a, c). The majority of mutations at
CBS hotspots occurred in CIN tumors (71%, P= 0.012 by two-
sided Fisher’s exact test), which is the most common GC subtype,
accounting for ~50% of all GC cases (Fig. 3c). The remaining 23
non-CBS hotspots often overlapped gene regions, but never co-
located with TF binding regions. Furthermore, we observed a
depletion of somatic mutations at gastric-specific TFBSs among
the non-hotspot mutations (Fig. 3b). Overall, gastric tissue TFBSs
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comprises about 1% of the genome, but only 0.58% of the non-
hotspot mutations were located in these regions. A similar
depletion of mutations was observed for constitutive TFBSs
(Supplementary Fig. 3). This is striking, as two recent studies have
found that somatic mutation rates are elevated at transcription
factor binding sites (TFBSs), and that this higher overall mutation
load at TFBSs may be explained by reduced accessibility to
nucleotide-excision repair (NER) enzymes at these sites16,17. This
phenomenon is primarily observed in melanoma and lung ade-
nocarcinoma where NER plays an important role in repairing
carcinogen induced DNA lesions16. In contrast, our finding
demonstrates that NER and TF occupancy is not a cause of
regional mutational bias in GC.

To test if the 21 bp window size was adequate to capture most
mutation hotspots, we repeated the hotspot analysis using larger
41 bp windows. In general, the rankings of the hotspots remained
stable (Supplementary Fig. 4). 17/34 hotspots remained signifi-
cant and only two additional hotspots were identified (P < 0.01,
Bonferroni correction).

Differential CBS mutation load across GC subtypes. Despite the
general depletion of somatic mutations at TFBSs in gastro-
intestinal tumors, several studies have reported an increased
mutation rate specifically at CBSs in gastrointestinal
tumors15,18,40. Indeed, when we examined all CBS across the
genome, we found a 3-fold increased mutation rate at CBSs (11
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mutations/Mb) compared to their 1 Kb flanking regions (3.6
mutations/Mb). In addition, the mutation frequencies at CBSs
were very different among tumors of different molecular sub-
types. The somatic mutation rate was 7.1 and 4.7-fold higher at
CBSs compared to flanking regions in CIN and GS tumors,
respectively (Fig. 4a–e). There was no enrichment of somatic
mutations at CBSs in MSI tumors, likely due to impaired DNA
MMR. Surprisingly, EBV tumors, which are not MMR-deficient,
only had a modest 1.7-fold increase in mutation load at CBSs.
The enrichment of somatic mutations at CBSs is therefore unli-
kely the result of differential DNA repair alone.

Consistent with findings by Katainen et al. in colorectal
cancer15, we found that somatic mutations at CTCF motifs,
including the CBS hotspot mutations, were predominately A.
T>C.G and A.T>G.C substitutions (Fig. 4f), suggesting that
hotspot mutations are generated by the same mutational process
as other CBS mutations. The mutation pattern at CBS hotspots
was overall similar to that of all CBSs. However, while a
conserved base at position 9 of the 19 bp CTCF binding motif was
the most commonly mutated position at CBSs in general, the CBS
hotspot mutations had the highest enrichment in the 4 bp
sequence flanking the 5′ end of the CTCF motif. Furthermore,
C>T changes, which are relatively common among all CBS
mutations are much rarer among the CBS hotspot mutations
(Fisher’s exact test P-value= 4.4 × 10−7). These differences could
indicate a functional difference between CBS hotspot and non-
hotspot mutations.

Hotspots remain significant with a CBS-specific model. To
explicitly test if the CBS hotspots could be explained by the
genome-wide elevated mutation rate at CBSs, we constructed a
CBS-specific background mutation model. Since CBS mutation
rates varied across tumor subtypes, this model further included
the tumor subtype as a covariate. Also, since CBSs located at
chromatin loop boundaries have higher somatic mutation burden
than non-boundary CBSs15,18, the CBS-specific background
model differentiated between CBSs inside and outside chromatin
loop boundaries. CTCF loop domains have not been profiled in
gastric tissue but tend to be cell-type invariant41,42. We therefore
used a constitutive set of CTCF domains shared across three cell
lines (CM12878, Jurkat, and K562) to define CTCF loop
boundaries13,43. In addition, since the mutation spectrum at CBSs
is distinct from the overall genomic mutation spectrum, we
performed LASSO logistic regression to identify sequence context
features correlated with the somatic mutation rate at CBSs. To
identify other mutational processes that might be associated with
the occurrence of CBS mutations, we calculated the correlation
between the proportion of CBS mutations in each tumor and the
percentage contribution of each COSMIC mutation signature to
each tumor44. While CBS mutations are known to be positively
associated with signature 1715, we found that CBS mutations were
also strongly negatively associated with COSMIC mutation sig-
nature 1, an age related signature (Pearson correlation=−0.41;
Supplementary Fig. 5). Therefore, we added the percentage con-
tributions of mutation signatures 1 and 17 in each individual as
covariates. Finally, this model also corrected for replication tim-
ing and local mutation rate. With this model, 9/11 CBS hotspots
remained significant at the Bonferroni corrected significance
threshold of 0.01 and the other two were borderline with adjusted
P-values of 0.025 and 0.086 (Fig. 4g). Furthermore, seven addi-
tional CBSs became significant with the restricted hypothesis
testing (Supplementary Table 4; Supplementary Figs. 6, 7).
Mutations at these specific sites can therefore not be explained by
a genome-wide elevated mutation rate at CBS, indicating that
mutations at these focal sites are may be positively selected in
gastric tumors.

CBS hotspot mutations associated with gene expression chan-
ges. We next examined the possibility that the CBS hotspots were
associated with changes in expression of nearby genes. We
restricted the analysis to the four CBS hotspots that had at least
three mutated samples with gene expression data in the TCGA
cohort (N= 35 samples). We validated the results using expres-
sion data from the SG cohort (N= 14 samples). Since the chro-
matin structure is generally cell-type invariant41,42 and there is no
published Hi–C data from gastric tissue, we used the Hi–C data
from IMR90 cells published by Dixon et al.41 to examine the 3D
chromatin structure around each hotspot (Supplementary
Figs. 8–10). We identified the flanking TAD boundary nearest to
each hotspot, and tested the association between the mutation
status of each hotspot and the expression of genes within the two
adjacent TADs. We found genes with nominally altered expres-
sion for three of the four hotspots (Fig. 5), two of them remain
significant after correcting for multiple testing in each region.

The first hotspot we identified is located in a CBS on
chromosome 6 and has mutations in 12 samples (Fig. 5a–c).
The expression of two neighboring genes, CENPQ and MUT, ~1
Mb upstream of this hotspot was significantly elevated in the
mutated samples (P= 0.007 and 0.0021 respectively,
Benjamini–Hochberg adjusted P= 0.026 and 0.042 respectively,
two-sided Wilcoxon rank-sum test; Fig. 5a–c). A similar trend of
CENPQ expression was observed using the expression data from
the SG cohort (Supplementary Fig. 11a). CENPQ is a subunit of a
centromeric complex, and is involved in mitotic progression and
chromosomal segregation45. Interestingly, the tumor with the
highest expression of CENPQ was mutated at the highly
conserved position 9 of the CTCF motif, while the other two
tumors were mutated at position 2 of the CTCF motif. This
indicates that different mutations in the same hotspot may have
different disruptive potentials. However, a formal evaluation of
such effects requires a larger set of tumor samples with both CBS
mutations and RNA-seq data available.

The next hotspot we tested is located on chromosome 6 with 9
mutated samples. Tumors with mutations at this hotspot had
significantly lower expression of the KCNQ5 gene (Wilcoxon P=
0.0059, adjusted P= 0.047), located ~200 kb downstream of the
hotspot (Fig. 5d–f). A similar trend in KCNQ5 expression was
observed using the expression data from the SG cohort
(Supplementary Fig. 11b). A recent study by Umer et al. found
the same mutation hotspot by analyzing motif-breaking muta-
tions40. Using an electrophoretic mobility shift assay, Umer et al.
confirmed that the chr6:73,122,103 A>G mutation disrupts CTCF
binding. In addition, it has been reported that CTCF is involved
in the spatial organization of the KCNQ5 locus, and knockdown
of CTCF downregulates KCNQ5 expression46.

At the third hotspot located on chromosome 13, mutated
tumors had on average a 3-fold decrease in SPG20 expression
(Wilcoxon P= 0.045, adjusted P= 0.65; Fig. 5g–i). However,
only three tumors with expression data were mutated at this
hotspot, and the expression change was not significant after
correcting for multiple testing. A larger sample size is needed to
evaluate if this is a spurious or true correlation. A similar trend in
SPG20 expression is observed using the expression data from the
SG cohort (Supplementary Fig. 11c). SPG20 is involved in
epidermal growth factor receptor trafficking47 and was previously
found to be significantly mutated in the exome of esopheagal
cancer48.

In all three cases, we confirmed that the expression changes of
these genes were significant after correcting for variation in DNA
copy numbers and tumor purity between samples (Supplemen-
tary Fig. 12). We would expect mutations at these hotspots to be
associated with expression change of the altered allele. However,
allele-specific expression analysis is challenging to evaluate across
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distant sites. Indeed, for all three candidate CBS hotspots, we
could not unambiguously resolve the two alleles because the
maximum inter-SNP distance between hotspot and candidate
target gene were >5 kb. As CBSs are essential in maintaining the
chromosomal architecture, it is likely that these CBS hotspot
mutations cause altered expression of nearby cancer driver genes
by disrupting the local chromosomal organization. Indeed, using
the set of constitutive CTCF-CTCF loops, we observed chromatin
contacts between the KCNQ5 and SPG20 loci and their
corresponding CBS hotspots (Supplementary Figs. 9, 10). Inter-
estingly, the three genes were also differentially expressed in GC
tumors compared to normal gastric tissue. CENPQ expression
was upregulated in tumors (Wilcoxon P= 0.0028; Fig. 5c), while
both KCNQ5 and SPG20 expression was downregulated in
tumors compared to normal gastric samples (Wilcoxon P=
3.2 × 10−7 and 0.00082 respectively; Fig. 5f, i). Therefore, it is
plausible that the expression of these three genes could be altered
in GC through additional mechanisms. Indeed, KCNQ5 and
SPG20 were found to be downregulated in colorectal cancer
compared to the normal mucosa due to promoter hypermethyla-
tion49–51. These results further support the contributions of these
genes to GC tumorigenesis.

Many of the hotspot mutations were located in the 5′ flanks of the
consensus CTCF motif (Fig. 4f). Previous studies have found
increased conservation in the flanking sequences of weak CTCF and
REST binding sites, suggesting that the sequence context is important
for TF binding at these sites52,53. We examined the evolutionary
conservation54 at the CTCF binding motifs and their flanking
sequences. In general, the 5′ flanks of the CTCF motifs are not
conserved (Supplementary Fig. 13a). However, in the hotspot
upstream of CENPQ, the mutation cluster in the 5′ flank co-
occurred with conserved bases (Supplementary Fig. 13b). In addition,
we found another CBS hotspot with nine 5′-flank mutations that
coincided with a highly conserved base (Supplementary Fig. 13c).
Such hotspot mutations, affecting conserved 5′ flanks of CTCF
motifs, could disrupt context-specific binding of CTCF.

We also examined the possibility that mutations in the flanking
regions of CTCF motifs create or disrupt binding motifs of other
TFs. We used DeepBind55 to predict the binding scores of
wildtype and mutated sequences for 472 transcription factors.
However, we only found mutations at three CBS sites with
predicted change in TF binding (Supplementary Table 5). Lastly,
it is also possible that some mutations at CBS flanks are passenger
mutations arising due to the overall elevated mutation rates at
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CBSs. While our model identifies individual CBS regions with
overall mutation enrichment, it does not allow us to distinguish
between passenger and driver mutations within such regions.

CBS hotspots are often mutated in gastrointestinal cancers.
Taken collectively, 25% of all gastric tumors are mutated in at
least one of the 11 CBS hotspots, representing the second most
mutated functional region in GC after TP53 (50% of gastric
tumors). To study if these hotspots could also play a role in other
cancer types, we examined the recurrence of these 11 hotspots in
826 non-hypermutated tumors of 18 other cancer types5 (Fig. 6
and Supplementary Fig. 15). Strikingly, we found that 19% of
colorectal cancer tumors were mutated at one or more of the CBS
hotspots (Fig. 6a). Since colorectal cancer have pathological and
molecular similarities to GC56, the CBS hotspot mutations may

drive cancer progression in colorectal cancer through similar
mechanisms as in GC. The CBS hotspots were mutated at lower
frequencies in breast cancer, liver cancer, lung cancer, pancreas
cancer, and lymphoma. Interestingly, while melanoma and
bladder carcinoma also have high genome-wide mutation rates at
CBS, none of the CBS hotspots were mutated in these two cancer
types. Similarly, we found that mutations at all CBS hotspots had
previously been reported in COSMIC57 or other genome-wide
studies of gastrointestinal tumors15,40 (Supplementary Table 6).
This suggests that the CBS hotspot mutations are generated and
act in a cancer-specific manner.

CBS mutations are associated with chromosomal instability.
Enrichment of CBS mutations was highest in CIN tumors, which
are characterized by increased chromosomal aneuploidy. This
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prompted us to examine if mutations at CBSs in CIN tumors
were correlated with somatic copy number alteration (SCNA)
breakpoints. Strikingly, the distance between a CBS hotspot and
its nearest SCNA breakpoint was significantly shorter in mutated
than non-mutated tumors (P= 0.0018, two-sided Wilcoxon
rank-sum test; Fig. 7a). In contrast, non-CBS mutation hotspots
showed no such association (P= 0.53). The median distance
between CBS hotspot mutations and its nearest SCNA breakpoint
in the same sample was ~1Mbp, notably shorter than the ~2Mbp
distance for non-CBS hotspots (Fig. 7a). To study whether this
correlation between CBS mutations and SCNA breakpoints was
specific to the CBS hotspots, we extended the analysis to all CBSs.
Interestingly, we found that CBS mutations were correlated with
occurrence of nearby SCNA breakpoints in the same samples,
especially for mutations affecting CBSs at loop boundaries
(Wilcoxon P= 5.7 × 10−16; Fig. 7b). Conversely, when we
grouped 1Mb windows of the genome according to SCNA
breakpoint density, we found that the normalized CBS mutation
rate was positively associated with SCNA breakpoint density
(Fig. 7c–d). Overall, these results highlight a link between regional
chromosomal instability and mutations at both CBS hotspots and
boundary CBSs in general.

As the CBS mutation rate was also elevated in GS tumors
(Fig. 4b), we investigated if there was a similar association
between CBS mutations and SCNA in GS tumors. Although we
found that mutated CBSs also tended to be closer to SCNA
breakpoints compared to the non-mutated CBSs in GS tumors,
the difference was not statistically significant (Supplementary
Fig. 14), and the relative difference was greater in CIN (2.17-fold
difference in distance to nearest breakpoint) compared to GS
(1.58-fold difference) tumors. This may indicate that the coupling
of CBS mutations and nearby chromosomal instability is a
process that is specific to, or exacerbated in, the CIN tumors.

Discussion
In this study, we performed a comprehensive and unbiased
analysis of non-coding SNVs and indels in 212 GC genomes, the
largest studied cohort thus far. In addition to a previously iden-
tified indel enrichment at LIPF39, our analysis identified two
other gastric lineage-specific genes with broad enrichment of

non-coding indels (PGC and MUC6). Our results show that the
accumulation of indels occur in multiple lineage specific genes in
GC. Yet, indels at these three genes were not associated with
change in gene expression. The functional consequences of these
indels are therefore still unclear. Strikingly, genome-wide analysis
of somatic SNVs revealed 34 significant mutation hotspots
(Bonferroni adjusted P-value < 0.01) that were disproportionately
enriched in CBSs. Katainen et al. previously reported an increased
mutation load at CBSs in colorectal cancer15, and a subsequent
study by Kaiser et al. confirmed the general hypermutation at
CBSs in 11 cancer types18. Both studies generally discounted CBS
mutations as passengers, yet they did not rigorously explore the
hypothesis that a subset of these mutated CBSs may be under-
going positive selection within individual cancer types. Indeed, a
recent study on motif-breaking mutations identified a recurrent
CBS mutation that disrupts CTCF binding40, confirming the
motif-breaking potential of CBS mutations. Here, we used a large
cohort of GC genomes in combination with rigorous statistics, to
show that mutation rates at 11 specific CBSs are unexpectedly
high and cannot alone be explained by a genome-wide elevated
mutation burden at CBS, indicating positive selection at these
sites. Out of the four CBS hotspots we examined, three of them
were associated with nominally significant expression changes of
neighboring genes (CENPQ, KCNQ5, and SPG20), and these
associations were validated in an independent tumor cohort.
Furthermore, it is possible that mutations at these CBS hotspots
also have long-range or spatio-temporal regulatory effects on
gene expression that are not captured by bulk tumor tran-
scriptome profiling. Overall, our analyses nominate these CBS
hotspots as potential drivers in GC, and support the hypothesis
that driver mutations may arise as a by-product of the increased
mutation load at CBSs followed by positive selection at specific
CBSs. This is comparable to a model of genomic rearrangement
hotspots in breast cancer, where rearrangements initially arise
from defective homologous-recombination-repair and those
affecting cancer risk loci are subsequently positively selected,
forming rearrangement hotspots58.

We found that gastric tumors of the genomic instable subtype
(CIN) exhibited the highest mutation rate at CBSs compared to
tumors of the other GC subtypes. Furthermore, CBS mutations
were associated with the occurrence of nearby chromosomal
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breakpoints, suggesting a general link between CBS mutations
and genomic instability. A previous study has suggested a model
where genome higher-order interactions are directly poised for
chromosomal breaks59. One important open question is whether
these processes are coupled, and if so, what is the temporal order
of CBS mutations and chromosomal breaks. Interestingly,
somatic variant allele frequencies (VAFs) of the CBS hotspot
mutations supported that these were generally clonal and likely
early events in tumor evolution (Fig. 7e). Furthermore, we found
that the VAFs of CBS hotspot mutations were comparable to
non-silent coding mutations of known GC driver genes from the
same sample (paired Wilcoxon P-value= 0.49; Fig. 7f).

Previous studies found kilobase sized regions of hypermuta-
tion, termed “kataegis”, that tend to co-occur with genomic
rearrangements in cancer44,60. Importantly, our data suggest that
the mutational mechanism underlying the association between
CBS mutations and DNA breakpoints is distinct from that of
kataegis. While kataegis is characterized by C>T and C>G sub-
stitutions, CBS mutations are mostly T>G and T>C substitutions.
In addition, kataegis is defined by mutation clusters with inter-

mutation distance <1 kb. CBS hotspots are confined focal regions
of <30 bps including the CTCF motif and its 5′ flanking sequence.

Only a subset of tumor samples in our cohort had paired gene
expression data (49/187 samples). This limited our ability to test
for functional consequences of CBS hotspot mutations. Addi-
tional focused experiments involving transcriptome, copy num-
ber, and chromatin structure data should further clarify the
regulatory and functional effects of the CBS mutations. We did
not uncover a shared theme for the 23 significant non-CBS
hotspots. Among the non-CBS hotspots, seven of them are
intronic, one is downstream of a gene and the rest are intergenic.
None of the genes associated with the hotspots are known cancer
drivers. We did not observe any mutation hotspot near TERT,
confirming that the reactivation of TERT is very rare in GC3. For
the non-CBS hotspots that overlapped gene regions, focused
functional validation experiments could be performed on a case-
by-case basis.

The statistics of cancer driver identification is still limited by
our knowledge of the somatic mutation and repair processes.
Although our background model corrected for many covariates of
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the somatic mutation rate, such as epigenetic and sequence
context features, false positives and false negatives could still arise
from the current model not considering as yet unknown muta-
tional biases.

Taken collectively, 25% of GC tumors and 19% of colorectal
cancer tumors are mutated in at least one of the 11 CBS hotspots.
Overall, our analyses nominate these CBS hotspots as potentially
common drivers of gastrointestinal cancers. Furthermore, the
data supports a general link between CBS mutations and chro-
mosomal instability. This suggests that non-coding regulatory
mutations could potentially drive tumor evolution through
interfacing with cancer genome and epigenome plasticity.

Methods
GC whole-genome sequence data. We performed whole-genome sequencing of
40 gastric GC tumors and matched normal samples from patients from Singapore
(study protocol approved by National University of Singapore Institutional Review
Board). Informed consent was obtained from all participating patients. Genomic
DNA of tumors and matched normal gastric tissues was extracted (QIAGEN).
Libraries were constructed with 300–400 bp insert length, and 101 bp or 151 bp
paired-end sequencing was performed on Illumina Hiseq instruments. The tumors
were classified into four molecular subtypes as described previously by TCGA19.

We obtained WGS data of 40 GC tumors from TCGA (https://gdc.cancer.gov),
32 tumors from ICGC (https://ega-archive.org/datasets/EGAD00001003132), and
100 tumors from Wang et al. (HK)20. The molecular subtypes of tumors from the
TCGA cohort were defined by TCGA. For the HK cohort, only EBV and MSI
subtype status was available. The molecular subtypes of tumors from the ICGC
cohort were unavailable, but we identified one MSI sample from the ICGC cohort
using MSIseq61.

Alignment and somatic mutation calling. Raw sequencing data was uniformly
processed using the bcbio-nextgen pipeline (v0.9.3). Briefly, sequencing reads were
aligned to the human reference genome (hg19) using BWA62. Duplicated reads
marked by Picard were removed. Indel regions were realigned using GATK63.
Somatic mutations were called by four independent mutation callers: VarScan64,
MuTect65, VarDict66, and FreeBayes67 using default parameters of the bcbio-
nextgen pipeline. As the nature of our analyses requires high specificity in somatic
mutation calling, we developed a random forest predictor, SMuRF68, trained on
manually curated true somatic mutations to identify high confidence somatic
mutation calls from the output of the four mutation callers. For each GC WGS
sample, a set of high confidence consensus calls were obtained by running the
random forest prediction algorithm.

Additional filters to remove sequencing artefacts. False positive somatic calls
could arise from sequencing and mapping errors. More false positives tend to be
called in the non-coding regions of the genome because these regions are enriched
for repeats and low sequence complexity regions. As the downstream mutation
recurrence analysis is extremely sensitive to recurrent artefacts in somatic mutation
calling, we applied additional post-processing filters to eliminate potential false
positive calls. We removed candidate somatic mutation calls that:

1. Are found at >1% allele frequency in the 1000 Genomes Project69 (potential
germline mutations)

2. Are found in more than 10% of the matched normal samples (potential
systematic sequencing errors)

3. Are found in more than 1% of the matched normal samples and are within 20
bp to a common indel in the 1000 Genomes Project (potential errors arising
from mapping errors near indels).

In addition, we removed indel calls that overlap mono-nucleotide repeats of 8
bp or longer. The final set of somatic SNVs and indels are provided in
Supplementary Data 3 and 4.

Gene expression data. We performed RNA-sequencing on 19 matched tumor-
normal pairs. Total RNA was extracted using the Qiagen RNeasy Mini kit. RNA-
seq libraries were constructed according to manufacturer’s instructions using
Illumina Stranded Total RNA Sample Prep Kit v2 (Illumina, San Diego, CA), Ribo-
Zero Gold option (Epicenter, Madison, WI), and 1 μg total RNA. We validated the
completed libraries with Agilent Bioanalyzer (Agilent Technologies, Palo Alto,
CA), and applied the libraries to an Illumina flow cell via the Illumina Cluster
Station. RNA-seq reads (2 × 101 bp) were aligned to the human genome (hg19)
using TopHat2-2.0.12 (default parameter and—library-type fr-firststrand). Tran-
script abundances at the gene level were estimated by Cufflinks70. The normalized
counts of RNA sequencing data of 35 tumors from the TCGA cohort were obtained
from the Genomic Data Commons Portal.

Epigenomic and sequence covariates of somatic mutation rate. The somatic
mutation rate is correlated with epigenetic features such as histone modification
and chromatin accessibility30, especially those derived from the cell type of origin
of the cancer32. We compiled 36 gastric specific and 24 general chromatin features
that potentially affect mutation rate in GC. These 66 histone modification profiles
and chromatin accessibility profiles were obtained from Roadmap Epigenomics29

and in-house data. We obtained P-value signal tracks of 853 DNaseI and histone
modification profiles of 111 primary tissues and cell types from the Roadmap
Epigenomics project. Among them, 27 epigenetic profiles were derived from gastric
related tissues. For the 24 histone marks that were not assayed in gastric-related
tissues, we created meta histone modifications profiles by taking the median profile
of each mark across all tissues and cell-types assayed. In addition, we included
histone modifications profiles of H3K4Me1, H3K4me3, and H3K27Ac of 19 GC
tumor/normal samples and 13 GC cell lines (FU97, KATO3, MKN7, NCC24,
NCC59, OCUM1, RERF-GC-1B, SNU16, SNU1750, YCC3, YCC7, YCC21, and
YCC22)24,25. We used the median signal of each histone mark over all tumor
samples, all normal samples, and all cell lines, respectively.

Replication timing profiles were not available for gastric tissue. We therefore
used the mean replication timing profile of 13 cell lines (Bj, Nhek, K562, Mcf7,
Gm06990, Gm12812, Imr90, Hepg2, Helas3, Gm12801, Huvec, Gm12878, and
Gm12813) generated by ENCODE71.

Binding profiles of 132 transcription factors and a meta-profile of all TFBSs
were obtained from the Ensembl Regulatory Build72. We used generic TF binding
profiles as there is no comprehensive TF binding assay done in gastric tissue. In
total, we considered 194 candidate epigenetic covariates potentially informative of
somatic mutation rates in GC (Supplementary Data 2).

To identify sequence context features affecting somatic mutation accumulation
in GC, we considered 1-mer, 3-mer, and 5-mer nucleotide motifs centered at the
mutated site, as well as 1-bp and 2-bp left/right flank motifs of the site. All
nucleotide context features were grouped into reverse compliment pairs. As indels
tend to occur in poly-monomer sequences, especially poly-A and poly-T sequences,
we used the presence of poly-A, poly-T, poly-G, and poly-C sequences at the indel
sites as features in the indel background mutation model.

Lastly, we included local mutation rate as a covariate to account for other
unknown factors affecting mutation rate. The local mutation rate was calculated for
100 kb non-overlapping bins across the genome after masking CDS regions,
immunoglobulin loci, and poorly mappable regions (mappability score < 1 in the
ENCODE 75mers Alignability track).

PCA on the epigenetic features. The genome was divided into 1 Mb non-
overlapping windows. CDS regions, immunoglobulin loci, and poorly mappable
regions were masked from the genomic windows. Windows smaller than 250 kb
after masking were removed. We calculated the mean signal of each epigenetic
feature (in Fig. 1b) and the mutation rate of each tumor in each window. The
Pearson correlations between the epigenetic features and mutation rates of the each
tumor were calculated. To identify the contributions of epigenetic features to the
variance in the mutation rate of individual tumors, we performed PCA on the
correlation matrix between the mutation rates of individual tumors and epigenetic
features using the “prcomp function in R. The contribution of each feature to a
principal component is calculated as the feature’s loading (rotation) divided by the
sum of loadings of all features for that principal component.

Feature selection using LASSO regression. The LASSO is a regularized regres-
sion approach commonly used for automated feature selection. LASSO penalizes
the sum of the absolute size of the regression coefficients, forcing some of the
regression coefficients to shrink to zero, thereby selecting a simpler and more
interpretable model. The LASSO objective function can be written as:

min
β0 ;β

1
N

XN
i¼1

lðyi; β0 þ βTxiÞ þ λ k β k1

Where l is the negative log-likelihood function and λ is the regularization
parameter.

We used LASSO logistic regression to identify the most informative features for
modeling the somatic mutation rate in GC. As it is computationally expensive to
run a logistic regression on all positions in the non-coding genome with a large
number of predictor variables, we used all mutated sites and an equal number of
randomly sampled non-mutated sites as the input for feature selection in the
LASSO logistic regression model. We regressed the binary mutation status of each
site against the mean signal of each feature over an 11 bp region centered at the site.
The regularization parameter λ was chosen by 10-fold cross-validation such that
the error of the selected model was within one standard deviation from the
minimum error. LASSO regression and cross validation were performed using the
“glmnet” package in R.

glmnetðy � βX; family ¼ logisticÞ

We bootstrapped 100 samples with 50% of the data at each bootstrap, and
performed LASSO regression using the bootstrap samples. Assuming that the most
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informative features would be robustly selected, we used features selected in more
than 95% of the bootstrap samples for the final regression model.

Tumor-specific background mutation model. The patient specific background
mutation probabilities were estimated by fitting a logistic regression model on all
genomic sites after masking CDS regions, immunoglobin loci, and poorly map-
pable regions. Replication timing was discretized into eight equally sized bins, the
local mutation rate was discretized into ten equally sized bins, and the chromatin
features and TF-binding profiles were binarized. P-value signal tracks of the histone
modification profiles from the Roadmap Epigenomics were binarized using a cutoff
of 10−4. ENCODE TF-binding profiles were binarized according to the presence of
a peak in any cell line assayed. We performed logistic regression using the fre-
quency table of the counts of mutated and non-mutated sites for each combination
of the covariates. Separate logistic regression models were fit to estimate the
background mutation probabilities of SNVs and indels. This is to account for the
different mutational processes from which SNVs and indels arise, as well as the
different uncertainties associated with SNV and indel calls.

glm y � repþ epiþ sequenceþ pid; family ¼ logitð Þ

Here rep is the Repli-seq profile, epi represents the epigenomic features,
sequence represents the sequence context features, and pid is the patient ID.
Features used in each model are shown in Supplementary Fig. 2.

Poisson binomial model of mutation recurrence. For a specific region of interest,
the probability, pi, of mutation in tumor i is a function of the length of that region
and the expected mutation rates of individual nucleotides in that region under the
null hypothesis. Assuming qi, j is the mutation probability of nucleotide j in tumor
i, and l is the length of the region of interest:

pi ¼ 1�
Yl
j¼0

ð1� qi;jÞ

Mutation recurrence is then modeled using the Poisson binomial distribution,
which accounts for variation in mutation rate across tumors. For a specific region
of interest, the probability of having mutations in k or more individuals is given by:

Pr K � kð Þ ¼
Xn
m¼k

X
A2Fm

Y
i2A

pi
Y
j2Ac

ð1� pjÞ

Here n is the total number of tumors sequenced, k is the number of tumors with
mutations in the region of interest, Fm is the set of all subsets of k integers selected
from {1,2,…,n}, A is a subset of Fm, Ac is the complement of set A, pi is the
probability of mutation in tumor i, and pj is the probability of mutation in tumor j.
The Poisson binomial probability is calculated using an efficient and accurate
normal approximation in the “poibin” R package.

Identification of mutation hotspots. The hotspot analysis aims to identify small
focal regions with high mutation rates. We first considered all mutated 21 bp
regions by taking 10 bp flanks on each side of each mutation. Then we calculated
the mutation recurrence scores for all 21 bp regions with three or more mutated
samples (two or more for indels). The P value of mutation recurrence of each
hotspot was calculated using the Poisson binomial model described in the previous
section. The total number of hypothesis tested is equal to the number of bases in
the masked non-coding genome. We used the Bonferroni correction to adjust for
multiple testing of 2,533,374,732 hypotheses, to maintain the overall α at 0.01.

Identification of non-coding regions with indel recurrence. We scanned for
non-coding regions of genes with recurrence of indels. Gene regions were defined
by Ensembl v75 annotations. We considered the merged non-coding regions of
each gene by masking all coding regions of each gene, and extending the gene
boundaries by 1 kb to take into account its promoter region. We calculated the
mutation recurrence scores for all protein-coding genes, and their individual
merged non-coding regions, using the Poisson binomial model described in the
previous section. The Bonferroni correction was used to maintain the overall α at
0.01.

Enrichment of mutation hotspots in functional regions. We calculated the log
odds ratio of the enrichment of hotspot mutations in TF binding regions and
conserved DNA elements. Gastric-specific TFBSs were defined as a ChIP-seq peak
of a TF in any of the ENCODE cell lines that overlaps a gastric tissue DNaseI
hypersensitivity site (data from Roadmap Epigenomics). Constitutive TFBSs are
defined as TFBSs with Ptfbs > 0.75, where Ptfbs is the probability that the TFBS is
bound by a TF for any given ENCODE cell line. Ptfbs for all TFBSs were obtained
from the ENSEMBL regulatory build. Conserved elements generated by GERP73

from the alignment of hg19 to 36 mammals were downloaded from the UCSC
genome browser.

The expected fraction of hotspot (or non-hotspot) mutations in the functional
region type (p2) is the fraction of the genome that constitutes the functional region.
The observed fraction of hotspot (or non-hotspot) mutations in the functional
region is calculated by adding all mutations in the functional region type and
dividing by the total number of mutations genome-wide (p1). The log odds ratio of
the enrichment of hotspot (or non-hotspot) mutations in a functional region type
is given by,

LOD ¼ lnðp1=ð1� p1Þ
p2=ð1� p2ÞÞ

The standard error of the LOD is calculated as,

SELOD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SEp1
2

p12 � 1� p1ð Þ2 þ
SEp2

2

p22 � 1� p2ð Þ2
s

The statistical significance of the enrichment was evaluated by the Z-test.

Identification of gastric-specific CBSs. The position weight matrix of the CTCF
binding motif was obtained from JASPAR74. Genomic locations of CTCF binding
motifs were identified using the FIMO75 function of the MEME tool suite76 with a
P-value threshold of 0.01. Gastric-specific CBSs were defined as CBS motifs
overlapping both a CTCF ChIP-seq peak in at least one ENCODE cell line and a
DNaseI hypersensitivity site in gastric tissue from Roadmap epigenomics. We used
the set of constitutive CTCF–CTCF loops shared across three cell lines (GM12878,
Jurkat, and K562) obtained from the supplementary information of Hnisz et al.13

CBSs that overlap the boundaries of these constitutive CTCF loops were defined as
boundary CBSs.

The CBS-specific background model. For the CBS-specific background model, we
limited the model and search space to CBS regions and their 5 bp flanking DNA.

glm yCBS � repþ subtypeþ boundary þ sequenceþ pid
�

þmutsig1þmutsig17; family ¼ logitÞ

Here subtype is the tumor subtype, boundary indicates if the CBS is located at a
CTCF loop boundary, and mutsig1 and mutsig17 represent the percentage
contributions of signature 1 and signature 17 of the tumor. We used
deconstructSigs77 to quantify the prevalence of each of the 30 COSMIC consensus
mutation signatures in each tumor.

The P value of mutation recurrence of each CBS was calculated using the
Poisson binomial model described in the previous section. The Bonferroni
correction was applied to maintain the overall α at 0.01.

Motif analysis of hotspot mutations in the CTCF motif flanks. We extracted the
±40 bp sequence context around each mutation, and used DeepBind to predict the
binding scores of 472 TFs for the reference (ref score) and mutated sequences (alt
score) of each mutation. Since the binding scores output by DeepBind are on an
arbitrary scale and vary between different TF models, we estimated the background
distributions of the binding scores of each TF by applying DeepBind to 10,000
randomly sampled non-hotspot mutations. For a particular TF, a mutation is
predicted to be motif-disrupting if its reference sequence scores higher than 99.9%
of the random mutations, and the score difference between its alternate and
reference sequences (alt score – ref score) is smaller than 99.9% of the random
mutations for that TF. A mutation is predicted to create a motif for a specific TF if
its alternate sequence scores higher than 99.9% of the random mutations, and the
score difference between its alternate and reference sequences (alt score – ref score)
is greater than 99.9% of the random mutations for that TF.

Pan-cancer analysis of mutation recurrence at CBS hotspots. Somatic muta-
tions of 858 tumors from 22 cancer types were downloaded from the supplemen-
tary information of Weinhold et al.5 Hypermutated tumors with more than
200,000 mutations were excluded from the analysis. Cancer types with less than ten
samples were excluded from the analysis. For CBS mutation rate calculation in
Fig. 6b, CBSs were defined as CTCF motifs overlapping a CTCF ChIP-seq peak in
at least one ENCODE cell line. We further defined tissue-specific CBSs for 14/19
cancer types for which DNaseI profiles in the matched tissue types are available in
Roadmap Epigenomics. Tissue-specific CBSs were defined as generic CBSs that fall
under DNaseI peaks in the respective tissue. Supplementary Figure 15 shows the
mutation rates at tissue-specific CBSs.

Analysis of SCNA breakpoints. Copy number segmentations were generated by
CNVkit78 using default settings (bcbio-nextgen v0.9.3). SCNA breakpoints were
defined as the ends of non-diploid segments. Assuming tumor purity of 50%, the
estimated mean purity of these tumors, non-diploid segments were defined as
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segments with log2(tumor coverage/normal coverage) < log2(1.5/2) or log2(tumor
coverage/normal coverage) > log2(2.5/2).

Analysis of VAFs. The list of known GC driver genes was collated from the
Cancer Gene Census79 and the driver genes identified by TCGA19 and Wang
et al.20 We excluded TP53 from the analysis as TP53 frequently undergo deletions
and loss of heterozyosity. We identified non-synonymous and truncating muta-
tions on known GC driver genes, and compared their VAFs to the VAFs of CBS
hotspot mutations from the same samples using a matched Wilcoxon rank-sum
test. Only mutations in diploid regions in each sample were included in the
analysis.

Code availability. All R code used to generate the figures and statistics of the paper
is included in Supplementary Data 5. Source code for the ensemble somatic
mutation caller, SMuRF68, can be found at https://github.com/skandlab/SMuRF.
Source code for estimating background mutation rate from genomic covariates and
identification of non-coding mutation hotspots is available at: https://github.com/
skandlab/MutSpot.

Data availability. SG tumor data: Sequence data has been deposited at the Eur-
opean Genome–phenome Archive (EGA), which is hosted by the EBI and the
CRG, under accession number EGAS00001002872.

TCGA tumor data: https://portal.gdc.cancer.gov/projects/TCGA-STAD
ICGC tumor data: https://ega-archive.org/datasets/EGAD00001003132
HK tumor data: https://ega-archive.org/datasets/EGAD00001000782
Roadmap Epigenomics data: http://www.roadmapepigenomics.org/data/
Encode data: ftp://ftp.ensembl.org/pub/release-85/regulation/homo_sapiens/.
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