
The Adverse Outcome Pathway: A Multifaceted Framework 
Supporting 21st Century Toxicology

Gerald T. Ankleya,* and Stephen W. Edwardsb

aUS Environmental Protection Agency, Office of Research and Development, Mid-Continent 
Ecology Division, Duluth, MN, USA

bUS Environmental Protection Agency, Office of Research and Development, Integrated Systems 
Toxicology Division, RTP, NC, USA

Abstract

The adverse outcome pathway (AOP) framework serves as a knowledge assembly, interpretation, 

and communication tool designed to support the translation of pathway-specific mechanistic data 

into responses relevant to assessing and managing risks of chemicals to human health and the 

environment. As such, AOPs facilitate the use of data streams often not employed by risk 

assessors, including information from in silico models, in vitro assays and short-term in vivo tests 

with molecular/biochemical endpoints. This translational capability can increase the capacity and 

efficiency of safety assessments both for single chemicals and chemical mixtures. Our mini-review 

describes the conceptual basis of the AOP framework and aspects of its current status relative to 

use by toxicologists and risk assessors, including four illustrative applications of the framework to 

diverse assessment scenarios.

Keywords

Adverse Outcome Pathway; Chemical Assessment; Human Health; Environment

1.1 Changing Face of Regulatory Toxicology: A Brief Synopsis

The past decade has witnessed an unprecedented expansion in the variety and volume of 

molecular and biochemical data available for taxa ranging from bacteria to humans. This has 

fueled significant advances in fields such as evolutionary biology, agricultural sciences, and 

biomedical diagnostics and technology. Other disciplines also have started to seize the 

opportunities provided by new data streams and tools to address past and present challenges. 
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Toxicology is one of the disciplines that stands to significantly benefit from these new 

sources of biological knowledge.

Toxicology is among the most applied of the biological sciences, driven largely by mandates 

to assess specific aspects of chemical safety relative to human health and the environment. 

Historically this has been achieved mostly through the generation of data for a relative 

handful of high priority/visibility chemicals using well-defined animal models and apical 

endpoints. However, increasing societal awareness of, and concern for the number of 

chemicals with limited or no hazard/risk information has resulted in legislative mandates 

such as the REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) 

program in Europe and recent revisions to the Toxic Substances Control Act (TSCA) in the 

US, which require consideration of the possible health and ecological effects of a much 

larger chemical universe than in the past [1, 2]. There also is an increasing emphasis on 

understanding the effects of a wide variety of chemical mixtures on human health and the 

environment; for example, in North America the Great Lakes Restoration Initiative has 

identified complex mixtures of “chemicals of emerging concern” as one of the highest 

priority stressors in the lakes [3].

These types of newer regulatory programs and monitoring initiatives highlight the necessity 

of identifying and developing rapid, cost-effective approaches for predicting the potential 

toxicity of substances to augment (or replace) the in vivo test methods that traditionally have 

supported chemical risk assessments [4]. These approaches may include in silico models, in 
vitro assays (including those conducted in a high-throughput [HPT] format), and short-term 

in vivo tests with molecular/biochemical endpoints (including ‘omics) indicative of 

perturbation of biological pathways.

A critical challenge to using alternative tools and data types for chemical safety assessment 

involves translation of this information into apical responses applicable to risk assessment, 

such as impacts on survival, reproduction, induction of cancer, etc., in individuals and, in the 

case of ecological effects, populations. The adverse outcome pathway (AOP) framework was 

developed to address this translation challenge [5]. Herein we describe the conceptual basis 

and current status of the AOP framework, provide examples of its use in different types of 

chemical assessments, and touch on several recent developments relevant to the future of the 

framework.

1.2 Definition and Attributes of the AOP Framework

The AOP framework reflects an evolution of prior pathway-based concepts, most notably 

mechanism or mode of action, for assembling and depicting toxicological data across 

biological levels of organization [5–7]. An AOP consists of a series of measurable key 

events (KEs) linked to one another by key event relationships (Figure 1). The first KE 

generally is a molecular initiating event (MIE), which captures the interaction of a chemical 

with a biological macromolecule, that triggers subsequent KEs which could result in an 

adverse outcome (AO) at the individual or population level [8, 9]. Explicit in an AOP is that 

the KEs are causally linked to one-another, an attribute that can be formally assessed using 

weight-of-evidence analyses [10, 11]. An important property of AOPs is that they are 
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chemically-agnostic, capturing response-response relationships that result from a given 

perturbation of a MIE that could be caused by any of a number of chemical (or even non-

chemical) stressors [8].

The AOP framework provides a connection between mechanism-based effects 

measurements and apical outcomes on two levels. First, in assembling evidence supporting 

the proposed mechanism, AOPs provide the understanding needed to interpret data from 

measurements of KEs as they relate to an apical endpoint of regulatory concern (Figure 1-

top). Having a structured framework for this purpose is important because the predictive 

utility of early KEs for the eventual AO can be limited for a variety of reasons. For example, 

homeostatic mechanisms will serve to obviate AOs in many cases, but modulating factors 

such as genetic differences, pre-existing disease, and alterations from other environmental 

stressors can magnify responses in some situations. Because of this, it is important to 

capture and organize existing knowledge and make it available for interpretation of these 

new data streams. In fact, once the factors influencing the propagation of the signal from the 

early KEs to the final AOs are sufficiently described, using early KEs as the primary assay 

for toxicity has the advantage of them being measurable in either in vitro or in vivo systems 

within hours to days, as opposed to the weeks, months or even years it can take for apical 

AOs to manifest.

The second role for the AOP is to serve as a scaffold for assembling data associated with a 

given outcome in an organized manner (Figure 1-bottom). By assembling these data in the 

context of an AOP, it allows for different measures of pathway perturbation to be compared 

with one another with regard to their predictive capacity for an AO, rather than an a priori 
selection of one measurement as the “gold standard”. Having all information in a structured 

framework also enables defined approaches for integrated toxicity assessments that 

incorporate information from multiple endpoints to improve the prediction of an AO.

AOPs are deliberate simplifications of normal biological pathways intended to facilitate 

depiction and ready communication of what can be very complex processes. A common 

misconception about AOPs is that they can depict KEs along a given pathway only in a 

linear manner, thus ignoring potentially important interactions between pathways [12]. 

Linear AOPs, however, can be assembled to produce AOP networks that capture shared 

nodes and interactions among pathways [8, 13, 14]. Furthermore, it is possible to assemble 

quantitative AOPs (qAOPs) that consider quantitative relationships between KEs, including 

feedback models designed to reflect system regulation, to predict AOs [15]. For example, 

Conolly et al. [16] recently described a qAOP that utilizes a feedback-controlled 

hypothalamic-pituitary-gonadal axis model to enable predictions of reproductive capacity in 

fish exposed to chemicals that inhibit sex steroid synthesis. Basically, the AOP framework is 

capable of capturing sufficient complexity to ensure application to a variety of assessment 

scenarios/challenges.

AOPs have received substantial attention as an organizing framework for toxicologically-

relevant biological information, for example, in the extant scientific literature (Figure 2). A 

pragmatic example of interest in the AOP framework involves the Organisation for 

Economic Cooperation and Development (OECD) which, starting in 2012, has supported 
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activities of a workgroup of international experts to publish harmonized guidance for the 

description, evaluation, and technical review of the scientific robustness of AOPs [6, 17, 18]. 

The AOP framework is envisioned by the OECD as a critical tool supporting the mutual 

acceptance of toxicological data by diverse regulatory authorities. To further enhance 

harmonization, the OECD also has helped facilitate development of an internationally 

accessible and searchable source of AOP information [19], that includes the AOP Wiki [20], 

an interactive knowledgebase for describing, displaying, and archiving AOPs and AOP 

networks. The AOP Wiki currently contains more than 200 AOPs at different stages of 

development, which describe processes/endpoints relevant both to human health and the 

environment.

1.3 Examples of AOP Uses

The AOP framework is intended to be flexible relative to potential research and regulatory 

applications. Below we provide four comparatively brief, illustrative examples of application 

of the concept to diverse assessment scenarios.

1.3.1 Case Example 1: Predicting Skin Sensitization

Skin sensitization involves covalent modification of cellular proteins in skin by electrophilic 

compounds, which subsequently can enhance reactions to allergens. As such, this is an 

important endpoint for safety assessments involving personal care products, which 

historically has been evaluated using in vivo assays. However, legislation in the European 

Union dictated moving away from whole animal tests for evaluating sensitization, resulting 

in the need for an alternative assessment approach [21]. This has been addressed by 

developing an AOP for skin sensitization that includes description of several intermediate 

KEs related to induction of inflammatory cytokines and proliferation of T-cells [20 (AOP 

40), 22]. This AOP, which has been supported by extensive technical review [23, 24], 

provides the basis for identifying and validating a suite of in vitro assays reflecting these 

intermediate KEs. Data from this assay suite for test chemicals of interest can be assessed 

using modeling approaches such as Bayesian network analysis to combine/weight data from 

different biological levels of organization, captured in the AOP, to produce categorical 

predictions of the potential for skin sensitization [25, 26]. This effort shows how capturing 

pathway-based data in an AOP can facilitate the use of alternative data streams as a 

replacement for conventional test methods [27].

1.3.2 Case Example 2: Prioritizing Endocrine Disrupting Chemicals

Chemicals that exert adverse effects in humans and wildlife through their ability to alter 

endocrine function have been a topic of scientific and regulatory concern for almost 25 years 

[28]. The US Environmental Protection Agency (USEPA) has a legislated mandate to 

develop a screening and testing program to identify potential adverse endocrine-mediated 

effects of more than 10,000 chemicals [29], a task that cannot plausibly be accomplished in 

a reasonable timeframe solely through in vivo testing [30, 31]. To address this challenge, in 
vitro HTP data and models are being used to prioritize the list of target chemicals for those 

likely to act via endocrine MIEs of regulatory concern, such as activation or antagonism of 

estrogen or androgen receptors and inhibition of specific enzymes involved in sex steroid or 
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thyroid hormone synthesis. Browne et al. [30] recently described this approach using 

estrogen receptor activation as an example. In this context the AOP framework provides 

demonstrable linkages between in silico or in vitro measures of bioactivity and potential 

adverse effects in vivo [31], thus supporting both identification of assays suitable for 

detecting MIEs of concern, and providing conceptual “phenotypic anchoring” supporting 

their use in the prioritization process.

1.3.3 Case Example 3: Evaluating Pesticide Toxicity to Pollinators

Key pollinator species, such as honeybees, have experienced significant worldwide declines, 

resulting in concerns for possible effects on global food production. In the US, for example, 

a national strategy has been developed to assess the significance and causes of pollinator 

declines [32]. A number of chemical and non-chemical stressors have been proposed as 

contributing to declines, one of the more prominent of which are neonicotinoid pesticides 

[33, 34]. However, significant uncertainties exist as to the biological plausibility of a link 

between the molecular action (MIE) of neonicotinoids—activation of the nicotinic 

acetylcholine receptor—and impacts on honeybee colonies. To help assess the veracity of 

hypothesized effects of neonicotinoids on honeybees, LaLone et al. [14] assembled an AOP 

network based on molecular, biochemical, physiological, behavioral, and population data 

from more than 220 papers in the open literature. Not only were they able to demonstrate a 

plausible linkage between perturbation of nicotinic acetylcholine receptor signaling and 

adverse effects in honeybees, but the analysis highlighted areas of uncertainty that would 

benefit from focused research and/or monitoring [14]. In this example, the AOP framework 

supported integration of a complex, biologically-diverse dataset in the context of evaluating 

causal relationships among endpoints at different levels of organization, and served as a 

basis for generating hypotheses to test these interactions.

1.3.4 Case Example 4: Evaluating Hazards of Complex Chemical Mixtures

Newer approaches being advocated/used in predictive toxicology for single chemicals can, 

in conjunction with the AOP framework as a translator, also be employed to help assess risks 

of complex mixtures of chemicals. A significant challenge in assessing complex mixtures is 

predicting the possible biological effects of hundreds or even thousands of contaminants, 

many of which may be unknown. Schroeder et al. [35] recently described how suites of HTP 

assays can be used to measure diverse bioactivities of complex contaminant mixtures in 

surface waters to effectively augment more targeted instrumental analyses. Measurements 

from HTP assays often correspond to MIEs or early KEs (e.g., receptor activation, enzyme 

inhibition, etc.), so it is possible to query/cross-reference knowledgebases such as the AOP 

Wiki to translate bioactivity data generated from complex mixtures into potential hazards in 

exposed organisms, such as fish [35, 36]. The AOP framework also can serve as the basis for 

translating molecular/biochemical data from field-collected animals exposed to complex 

mixtures into endpoints useful for inferring hazard/risk [37]. Miller et al. [38] recently 

described a study in which an AOP construct was linked to a population model for white 

suckers, a large cyprinid species indigenous to the Great Lakes, to predict population status 

based on observed changes in sex steroid synthesis in fish exposed to a complex pulp and 

paper mill effluent. In this application, it was not necessary to know the identity of the 

chemicals responsible for decreasing steroid synthesis, only that they consistently affected 
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an early KE in an AOP relating depressed steroid synthesis to decreased egg production and, 

hence, population status [20 (AOP 25); 38].

1.4 Concluding Thoughts

The AOP concept has matured from a largely conceptual construct to an increasingly 

practical and sophisticated knowledge-assembly/communication tool with multiple 

applications. In addition to the types of uses illustrated above, the AOP framework is being 

applied to more novel scenarios, such as consideration of contaminant interactions with 

environmental variables associated with climate change [39], evaluation of environmental 

and/or human health effects of nanomaterials and ionizing radiation [40–43], chemical life-

cycle assessment and alternatives analysis [44, 45], and the design of hypothesis-driven 

environmental monitoring programs [46]. Furthermore, AOPs are being considered by the 

biomedical community as a means to support drug discovery/development and understand 

disease initiation/progression [e.g., 47–50].

In addition to novel applications, innovative scientific approaches are being identified/

employed in support of basic AOP development. For example, recent efforts have focused on 

the identification, development and evaluation of new AOPs based on ‘omic and/or HTP 

data, systems/network modeling, and/or repositories of curated toxicity information [52–55]. 

Increasing the “library” of available AOPs is critically important to supporting the varied 

applications of the framework in the future.

Many of the technical and practical advancements in the AOP framework have occurred as a 

result of recommendations from different international fora [e.g., 15, 53, 56, 57], including a 

recent SETAC Pellston meeting in Cornwall, ON, Canada (April 2017). This meeting 

utilized a novel “horizon scanning” approach to identify upcoming/priority issues for AOP 

development and use based on input from the broader scientific and regulatory communities 

[12]. Topics included development and practical implementation of AOP networks and 

qAOPs, case examples of regulatory use of AOPs, and development of a roadmap for a long-

term, sustainable model supporting AOP development and use [58].

Evolution of the AOP concept thus far has been facilitated through the individual and joint 

efforts of a variety of research and regulatory organizations around the world, representing 

governmental, business, and academic interests. It is this multi-sectorial interest that has 

advanced the AOP concept and hopefully will continue to support its development as a 

flexible and practical tool supporting 21st century toxicology.
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Figure 1. 
Depiction of the role of the adverse outcome pathway (AOP) framework in linking various 

data streams to outcomes relevant to regulatory decision-making for chemicals. MIE – 

Molecular Initiating Event, KE – Key Event, KER – Key Event Relationship, AO – Adverse 

Outcome
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Figure 2. 
Temporal citation analysis of an initial paper describing the adverse outcome pathway 

(AOP) framework (Ankley et al. 2010). “Final” data for 2017 are extrapolated from 6-month 

values. Analysis was conducted using the Web of Science (Clarivate Analytics).
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