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Abstract

Research on spatial non-stationarity of land-cover classification accuracy has been ongoing for 

over two decades with most of the work focusing on single date maps. We extend the 

understanding of thematic map accuracy spatial patterns by: (1) quantifying spatial patterns of 

map-reference agreement for class-specific land-cover change rather than class-specific land cover 

for both omission and commission expressions of map error; (2) reporting goodness-of-fit 

estimates for the empirical models, which have been lacking in previous assessments, and; (3) 

using the empirical model results to map the locations of the relative likelihoods of map-reference 

agreement for specific land-cover change classes. We evaluated 10 map-based explanatory 

variables in single and multivariable logistic regression models to predict the likelihood of 

agreement between map and reference land-cover change (2001–2011) labels using the National 

Land Cover Database (NLCD) 2011 land cover and accuracy data. Logistic models for omission 

error had better goodness-of-fit estimates than models for commission error. For the omission 

error models, the explanatory variable, density of the mapped class-specific change in the 

immediate neighbourhood surrounding the sample pixel, produced the best model fit results (Tjur 

coefficient of discrimination, D, ranged from 0.59 to 0.98) compared to multivariable models and 

all other single explanatory variable models. Maps of the predicted likelihood of map-reference 

agreement produced from the best fitting omission error models provide a spatially explicit 

description of spatial variation of classification uncertainty at both local and regional scales. 
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Application of the models indicated higher likelihoods of agreement (>50%) comprised a greater 

proportion of the land-cover change class area than the proportion of the land-cover change class 

with lower likelihoods of agreement. NLCD users can apply reported equations to map land-cover 

change uncertainty.

1. Introduction

Comparison of mapped land-cover labels from a remotely sensed product to reference land-

cover labels acquired from higher resolution media is a standard of practice for assessment 

of land-cover thematic map accuracy (Olofsson et al. 2014; Stehman 2009; Stehman and 

Czaplewski 1998). The map and reference land-cover labels are compared using a c-x-c 

cross-tabulation matrix, which shows agreement and disagreement on a class-specific basis 

for the c mapped classes in a remotely sensed land-cover product. The cross-tabulation 

matrix is the basis for several statistics that are used to describe map accuracy, including 

overall agreement and class-specific errors of omission and commission.

Research on the spatial pattern of land-cover accuracy has been a consistent theme for 25 

years. The research has been motivated by the realization that the cross-tabulation matrix 

(hereafter, error matrix) does not provide information on spatial patterns of error and 

therefore cannot account for changes in error rates that might arise from changing landscape 

patterns across a map. Several approaches have been used to articulate the influence of 

spatial pattern on land-cover accuracy. McGwire and Fisher (2001) and Foody (2005) 

proposed construction of multiple error matrices (up to allowable precision limits) for a 

single map to uncover how error patterns change spatially. Spatial patterns of land-cover 

uncertainty have been developed from: (1) the class membership probabilities that often 

accompany classification algorithms (Bogaert, Waldner, and Defourny 2016; Brown, Foody, 

and Atkinson 2009; Loosvelt et al. 2012; Löw, Knöfel, and Conrad 2015); (2) spatial 

statistics including spatial interpolation (Comber et al. 2012; Congalton 1988; Khatami, 

Mountrakis, and Stehman 2017; Steele, Winne, and Redmond 1998); (3) and regression of 

map-reference agreement against landscape factors such as topography, roads, and land-

cover spatial patterns (Castilla et al. 2014; Moisen, Cutler, and Edwards 1999; Smith et al. 

2002; Smith et al. 2003; van Oort 2004; Yu et al. 2008). Each of these research efforts has 

shown that rates of land-cover misclassification are not constant across a map.

Past research on spatial patterns of land-cover misclassification has been constrained to 

single date maps. Research efforts to extend spatial patterns of land-cover misclassification 

to land-cover change are only now beginning to emerge (e.g. Yao, Zhang, and Zhang 2014; 

Mei and Zhang 2014). This emergence is not unanticipated because land cover is the 

principle measurement of the capital stock of natural resources from which society derives 

both necessities (e.g. clean water) and benefits (e.g. recreation), and therefore change in that 

capital stock intuitively affects provision of those necessities and benefits (Foley et al. 2005). 

Because of the importance of land-cover change to environmental sustainability and society 

writ large, the measurement, monitoring, and driving forces of land cover has become its 

own discipline (Aspinall 2006; Rindfuss et al. 2004; Turner, Lambin, and Reenberg 2007). 
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Understanding spatial patterns of land-cover change misclassification is an important 

component of the measurement and monitoring of land-cover change.

The U.S. National Land Cover Database (NLCD), a product of the MultiResolution Land 

Characteristics Consortium (MRLC) (U.S. EPA, 2017), is a monitoring programme that has 

produced land-cover products for ca. 2001, 2006, and 2011 (Homer et al. 2007; Homer et al. 

2015; Fry et al. 2011). Accuracy assessments have been produced for each product (NLCD 

2001, NLCD 2006, NLCD 2011) (Wickham et al. 2010; Wickham et al. 2013; Wickham et 

al. 2017) following well-established standards for land-cover accuracy assessment (Stehman 

and Czaplewski 1998; Stehman 2001; Stehman et al. 2003). However, no attempt has been 

made to explore spatial non-stationarity of accuracy patterns for NLCD land-cover change 

data. The objectives of this research are twofold: (1) extend the error matrix based accuracy 

results for the NLCD 2011 product (Wickham et al. 2017) by examining spatial patterns of 

land-cover change accuracy, and; (2) use the empirical models of land-cover change 

accuracy to map the uncertainty of agreement for specific land-cover change themes. Spatial 

characterization of uncertainty is likely to be valuable to data users.

2. Methods

The NLCD 2011 product includes land cover and land-cover change for the nominal dates of 

2001, 2006, and 2011 (Homer et al. 2015). The products were aligned temporally by 

identifying areas of spectral change followed by assignment of new land-cover labels for 

those pixels using a suite of modelling tools and ancillary data (Jin et al. 2013). An accuracy 

assessment (Wickham et al. 2017) was undertaken following completion of NLCD 2011, 

using design principles established at the outset of NLCD mapping (Stehman et al. 2003). 

The NLCD 2011 accuracy assessment used 8000 sample pixels (Stehman and Wickham 

2011) to report accuracy for land cover and land-cover change. The reference data were 

collected from the Google Earth™ historical image archive by a team of four 

photointerpreters, using the image date that most closely matched the Landsat TM 

acquisition to determine the reference label. We used the land-cover change data for the 

terminal NLCD dates (2001 and 2011) organized into 20 reporting themes for this analysis. 

The 20 reporting themes were loss, gain, and no change for the seven NLCD Level I classes 

(Table S1) – water, urban, forest, shrubland, grassland, agriculture, and wetland, with the 

exception that there was no urban loss reporting theme.

Consistent with studies by Castilla et al. (2014), Moisen, Cutler, and Edwards (1999), Smith 

et al. (2002, 2003), van Oort (2004), and Yu et al. (2008), logistic regression modelling was 

used to assess the spatial pattern of land-cover change uncertainty. The binary response 

variable of agreement or disagreement was regressed against land-cover spatial patterns 

metrics and other landscape factors. Unlike the previous studies cited, we applied separate 

logistic models to omission error and commission error for each of the 20 reporting themes. 

The logistic regression modelling approach used here also could have been applied to overall 

accuracy. We did not include overall accuracy as one of the themes because we anticipated 

that modelling accuracy of class-specific changes (i.e. reporting themes) would be more 

relevant to users of NLCD data.
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The omission and commission error data were constructed through a series of three database 

queries. Omission error data were based on the requirement that the map labels matched the 

reference labels, whereas the commission error data were based on the requirement that the 

reference labels matched the map labels. The initial query was used distinguish between 

omission and commission error. For the omission error tables, the initial query was based on 

the reference data. An example would be selection of all reference data that equalled urban 

gain (not urban in 2001 and urban in 2011). The second query was selection, from only 

those sample pixels identified from the first query, all pixels where the map labels also 

equalled urban gain. This subset of data represented all sample pixels where map and 

reference labels matched. The binary response variable, Agree, was set to 1 for these pixels. 

The third query added back all the reference labels that equalled urban gain (i.e. the initial 

query), and Agree was set to 0 for all the sample pixels that were added back from executing 

the third query. To create the commission error data, the initial query was based on the map 

(i.e. map labels that identified urban gain), the second query selected the reference labels 

that matched the map, and the third query added back all the map labels that equalled urban 

gain.

Logistic regression modelling (SAS Institute Inc. 2009) was implemented using the 

following steps: (1) 10 candidate explanatory variables (Table 1) were evaluated to 

determine the best single variable logistic models (based on the explanatory variable that 

yielded the smallest p-value for the test of the parameter coefficient of that variable); (2) 

multivariable models were evaluated by adding remaining candidate explanatory variables 

and non-target variables (explained below) to the best single variable models; and (3) 

evaluation of the regional variable (Table 1) in the best models realized from implementing 

steps 1 and 2. Nine of the 10 candidate explanatory variables (Table 1) were dominated by 

measures of land-cover spatial pattern because they have been shown to be informative in 

previous research (Castilla et al. 2014; Moisen, Cutler, and Edwards 1999; Smith et al. 2002, 

2003; van Oort 2004; Yu et al. 2008). The regional classification variable was included 

because the NLCD 2011 accuracy assessment was stratified into east and west regions 

(Wickham et al. 2017). Significance of the regional classification variable in the logistic 

models would indicate that there was a broad-scale geographic pattern to agreement between 

map and reference labels in addition to any local-scale patterns identified by the other 

explanatory variables.

Steps 1, 2, and 3 were implemented sequentially. In step 1, each explanatory variable was 

used in a single variable logistic regression model to evaluate its performance with respect to 

patterns of map-reference agreement. Multivariable models (i.e. greater than one explanatory 

variable) were then evaluated against the best single variable models (step 2) using the 

remaining variables listed in Table 1 (excluding the regional classification variable) and the 

non-target variables to determine if the inclusion of additional variables improved model 

performance. Multivariable models were evaluated using stepwise selection with p ≤ 0.05 

used as the significance level for entry into and remaining in the model, and were informed 

by prior examination of bivariate correlations among the explanatory variables and 

estimation of tolerance and variance inflation factors (VIF) from ordinary least squares 

regression (OLS). In step 3, the regional classification variable was then evaluated to 

determine if it should be added to the best model realized from steps 1 and 2 for each 
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reporting theme and each expression of error (omission, commission). The regional 

classification variable was used to evaluate whether separate slopes and separate intercepts 

were required for east and west regions (i.e. a region by explanatory variable interaction). 

All final models were also tested for spatial autocorrelation of the residuals using Moran’s I, 
and the resulting p-values indicated that the spatial patterns of residuals were not 

significantly different from random (Table S2). Statistical models that accounted for spatial 

correlation would have been used if Moran’s I values had not indicated a random 

distribution of residuals.

Non-target explanatory variables were evaluated for inclusion in the logistic models because 

the single date error matrices from the NLCD 2011 accuracy assessment showed high 

classification error along the forest-shrubland-grassland gradient and among the different 

classes that included a significant herbaceous component, such as pasture, grassland, and 

open urban (see Table S1) (Wickham et al. 2017). Non-target variables were defined as 

feature density (fdx) for the six NLCD level I classes other than the class of the response 

variable being evaluated in the class-specific (i.e. reporting theme) model. For the model for 

agriculture loss, for example, the non-target variables included fdx for loss, gain, and no 

change for the urban, forest, shrubland, and grassland NLCD Level I classes. The water and 

wetland NLCD Level I classes were not included because of their small sample sizes. To 

limit the number of possible non-target variables, only the non-target fdx variable matching 

the best target fdx variable realized in step 1 was included. If the best step 1, single variable 

model for urban gain, for example, included fd5 as the explanatory variable, then only the 

fd5 variable for non-target NLCD Level I classes would have been evaluated in step 2.

The logistic models included Firth (1993) adjustments where appropriate. The stratified 

random sampling used for the NLCD 2011 accuracy assessment (Wickham et al. 2017) 

focused on changes among forest, shrubland, grassland, and urban, and therefore there were 

fewer sample pixels for analysis of land-cover changes involving wetland and water, and for 

the omission error dataset for agriculture gain. When sample sizes are small, it is more 

common for complete or nearly complete separation of observations by response level 

(agree = 0; agree = 1) to occur (Figure 1). Maximum likelihood estimates of the logistic 

function are not estimable when there is complete or nearly complete separation. Therefore, 

we included Firth (1993) adjustments to reduce bias in parameter estimation by penalized 

maximum likelihood estimation. Firth adjustments were used for wetland gain (omission), 

water loss (omission), water gain (omission), and agriculture gain (omission).

We assessed model fit using percentage concordance and the Tjur (2009) coefficient of 

discrimination (D). Concordance is the comparison of the logistic model predicted outcomes 

for all possible pairs of sample pixels for which one pixel had disagreement and the other 

pixel had agreement. The pair is concordant if the agreement observation has a higher 

predicted value than its paired counterpart for which disagreement was observed. The 

percentage of concordant 0–1 (disagreement-agreement) pairs is based on the total number 

of 0–1 pairs; sample pixel pairs that are both agreement (1–1) and both disagreement (0–0) 

are not included. D (Tjur 2009) is derived by grouping the observations by their observed 

binary values (i.e. 0, 1) and calculating the absolute value of the difference of the group 
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means from the model-estimated probabilities. D is easy to calculate (Allison 2014) and, like 

the coefficient of determination (R2) for OLS, ranges between 0 and 1 (SAS 2017).

The explanatory variables from the logistic regression models that produced the best results 

for each theme were then used to produce maps of the spatial pattern of the likelihood of 

map-reference agreement (accuracy) for that theme. The slopes and intercepts from the 

logistic models were applied to every pixel for a given change theme to produce a map of 

the likelihood of map-reference agreement. The spatial pattern maps provide NLCD data 

users with pixel-by-pixel geographic information on the likelihood of map-reference 

agreement for each theme (e.g. shrubland loss).

3. Results

Several patterns emerged from the logistic regression modelling (Table 2). Single variable 

models (agreement versus a single explanatory variable) provided the best goodness-of-fit 

results. None of the multivariable models improved model performance relative to the best 

single variable models. Tjur (2009) coefficients of discrimination (D) were very high for the 

omission error models, but were much lower and more variable for commission error 

models. The percentage concordance statistics followed the same pattern. For the omission 

error models, D exceeded 0.8 for 16 of the 20 models, and concordance values exceeded 

95% in all but one case. Conversely, the commission error models had low goodness-of-fit 

measures, with D ranging from 0.04 to 0.46 and concordance ranging from 58.5% to 90.5%. 

For all omission error models except wetland loss, the variable fd3, density (proportion) of 

class-specific change in a 3-x-3 pixel window surrounding the sample pixel, was the most 

significant explanatory variable (Table 3). In the case of wetland loss, nearly identical D 
values occurred for the single variable models using fd3, fd5, and fd7. The most important 

explanatory variables for the single variable commission error models were an assortment of 

the different feature density variables (fd3, fd5, fd7, fd15, and fd21).

The distinct differences in goodness-of-fit between the omission error and commission error 

logistic regression models were evident in histograms that are useful for conceptualizing 

calculation and interpretation of D (Figure 2). The histograms for omission error had stark 

differences in the distributions of agreement as a function of the value of fd3 (Figure 2(a)), 

whereas the histograms for commission error did not (Figure 2(b)). The difference in the 

distributions can be traced back to the construction of the respective datasets. For the 

omission error sample data, the third query (see Methods) added map locations where the 

reference labels did not match the change identified in the map, and therefore fd3 tended to 

be zero (0). D tended to be high for omission-error models because the likelihood of 

disagreement increased as fd3 decreased and the likelihood of agreement increased as fd3 

increased, creating a large difference in the estimated mean probabilities of agreement 

between the two groups (agree = 0, agree = 1). Large differences in the mean probabilities 

produced high values of D.

The estimated probabilities from the best, single variable omission error models indicated 

that accuracy of the no change theme was less sensitive to its context than the loss and gain 

themes (Table 3). In other words, a higher density of no change than change (loss or gain) 
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was required to produce an equivalent likelihood of map-reference agreement. These results 

were consistent with the 2001–2011 loss, gain, and no change producer’s accuracies 

reported by Wickham et al. (2017) in that producer’s accuracies for the no change themes 

were much higher than those for the loss and gain themes. Spatial pattern was expected to be 

less influential for the no change theme because the aspatial error matrix results suggested 

there was much less improvement in accuracy that could be realized with changes in spatial 

pattern metrics.

The other explanatory variables (fv, ps, Ia, D2Rd) were either not statistically significant or 

their explanatory value was much lower than fd3 (Table S3). Heterogeneity (fv) and patch 

size (ps) tended to yield lower values of D for single variable models and did not contribute 

to improved model performance for multivariable models. Aspect (Ia) and distance between 

the sample pixel and the nearest road (D2Rd) were rarely statistically significant. The 

regional variable was significant for 5 of the 20 omission-error logistic models (Table 2). In 

all five cases, intercepts were significantly different but slopes were not statistically 

different. The estimated likelihood of agreement tended to be higher in the western region 

than the eastern region for a given value of fd3, but the rate of change in the estimated 

likelihood of agreement as fd3 varied was not significantly different across regions.

There was a scale dependency between goodness-of-fit and the size of the square pixel 

window for the omission-based, single variable logistic models that had fdx as the lone 

explanatory variable (Table 4). D values decreased, often sharply, as the area of the square 

pixel window surrounding the sample pixel increased. Median differences in D for the first 

three spatial scales was 0.09 for fd3 versus fd5 and 0.07 for fd5 versus fd7, ultimately 

resulting in an overall (fd3 versus fd21) median difference of 0.40. The main exceptions to 

this pattern occurred when Firth adjustments to the logistic model were required. Models 

requiring Firth adjustments tended to have smaller changes in D as a function of the spatial 

scale over which feature density (fdx) was measured.

Addition of fdx variables for non-target themes to the best single variable models for 

commission error yielded improvements in D of 0.00–0.16 (Table S3). Across all change 

themes, improvements in D tended to be small and did not result in substantially improved 

model fit. For shrubland gain, for example, addition of non-target themes yielded a D = 0.27, 

which was an improvement when compared to a D = 0.11 for the best single variable model 

(Table 2). In other words, despite the confusion between forest, shrubland, and grassland in 

the single date NLCD data, presence of forest or grassland was not strongly related to the 

error pattern of shrubland gain for commission error. Overall, the confusion among forest, 

shrubland, grassland, agriculture and urban in the 2001 and 2011 eras of the single date 

NLCD data (Wickham et al. 2017) was not useful in explaining spatial patterns of error 

among their associated land-cover change classes. Addition of non-target themes to target 

themes for omission-based models was not evaluated because goodness-of-fit estimates were 

already high and therefore substantial improvements in model fit were unlikely.

Application of the best omission error logistic regression models (agree = fd3) results to the 

land-cover change maps revealed local- and regional-scale geographic variation in the spatial 

pattern of the likelihood of map-reference agreement for loss and gain of forest (Figure 3), 
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shrubland (Figure S1), grassland (Figure S2), agriculture (Figure S3), and urban gain (Figure 

S4). In general, pixels with lower likelihoods of map-reference agreement (fd3 < 50%) 

formed ‘halos’ around pixels with higher likelihoods of map-reference agreement (fd3 > 

50%). Interspersion of low (fd3 < 50%) and high (fd3 > 50%) likelihoods of map-reference 

agreement across all loss and gain themes reflect the influence of edge pixels in the 

formation of ‘halos’ of low likelihoods surrounding areas of higher likelihoods, and regional 

changes in the preponderance of low and high likelihoods reflect broader scale differences in 

the patch characteristics of a particular change theme (Figure 3, Figures S1–S4). For 

example, forest loss accuracy may be higher overall along the Texas-Louisiana border than 

further west in Texas (Figure 3(a)). Across all change themes (Figure 3, Figures S1–S4), the 

percentage area representing higher likelihoods (>50%) of map-reference agreement was 

greater than the percentage area representing lower likelihoods (<50%) of map-reference 

agreement. The range of ratios across all loss and gain themes was 1.12 (agriculture loss) to 

2.85 (urban gain). The range of ratios may reflect differences in patch and edge 

characteristics across the land-cover change themes. The high ratio for urban gain may 

indicate that conversions to urban tend to have less edginess and occur in larger patches that 

have a higher proportion of interior pixels than other land-cover change themes. The ratios 

also indicate that most change pixels have a higher (>50%) likelihood of correctly capturing 

change.

4. Discussion

We found that local-scale map spatial pattern, expressed as the density of class-specific land-

cover change (e.g. urban gain) in the 3-x-3 pixel neighbourhood surrounding a sample pixel, 

was a significant predictor of omission error for land-cover change. Conversely, the map 

spatial pattern variables were statistically significant but rather weak predictors of 

commission error for land-cover change. These results suggest that the density of mapped 

change has a substantial influence on reference label assignment, but the presence of densely 

mapped change itself does not guarantee that the assigned reference label will agree with the 

map label. Relatively small increases in the density of mapped land-cover change over a 

small area increased the likelihood of map-reference agreement but did not fully explain 

spatial patterns of agreement because commission error was much less sensitive to density of 

mapped land-cover change.

The results reported here are not fully consistent with previous results where map-based 

variables were used in logistic regression models to estimate their influence on the 

likelihood of map-reference agreement for static land-cover maps. We found that 

heterogeneity (i.e. fv) and patch size (ps) were poor predictors of the likelihood of 

agreement between map and reference labels for land-cover change classes, whereas van 

Oort et al. (2004) and Smith et al. (2002), (2003)) found that these variables were significant 

predictors of the likelihood of matches between map and reference land-cover class labels 

for single date land-cover maps. Furthermore, van Oort et al. (2004) found that fd3 was a 

poor predictor of agreement between map and reference labels. It is possible that contextual 

information is used differently for collection of reference labels for land-cover change than 

for land cover. Land-cover accuracy assessment is based on the question ‘which land cover 

label, among the available set of land cover labels, is the correct or most correct label?’ For 
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land-cover change accuracy assessment, the question changes to ‘has land cover changed, 

and, if so, what are the correct or most correct before and after labels?’ The shift in the 

emphasis of the fundamental assessment question may constitute a shift in how contextual 

information is used in land-cover change accuracy assessments, but well-designed studies 

would be needed to test this conjecture.

The relationship between density of mapped change and map-reference agreement should be 

useful for scientists and practitioners that rely on NLCD land-cover change data. At a local 

spatial scale, the pattern of ‘halos’ of low likelihood surrounding areas of high likelihood is 

consistent with results from spectral-based models of higher error rates at edges between 

land-cover classes (Loosvelt et al. 2012). At a regional spatial scale, the spatial pattern of 

high and low likelihoods (e.g. ±50%) of map-reference agreement is consistent with the 

concept that error matrices vary regionally within a map (Foody 2005; McGwire and Fisher 

2001). Accuracy of NLCD 2001–2011 land-cover change varies both regionally and locally, 

and the variability appears to be attributable to spatially varying characteristics of land-cover 

dynamics.

The estimated likelihoods of map-reference agreement provide easy-to-use information to 

meet NLCD user needs for spatially referenced accuracy information. NLCD users only 

need to extract the class-specific themes reported here, use GIS neighbourhood functions to 

construct feature density maps, and apply the reported equations. User’s should recognize 

that application of the equations provide a guide to locations where change occurred with 

higher certainty. The low goodness-of-fit for the commission error models suggests that 

factors we were unable to model also contributed to the likelihood of map-reference 

agreement for NLCD Level I loss and gain themes.
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Figure 1. 
Hypothetical logistic regression model of y = agreement with an explanatory variable x. The 

open circles represent observed values of x for y = 1 (agreement) and y = 0 (disagreement). 

The line represents the modelled relationship, and the shaded band is 95% confidence 

interval. Complete (or nearly so) separation would occur if the observations at y = 0, x > 

0.375 (outside confidence interval band) were removed, requiring Firth (1993) adjustments 

to derive reliable parameter estimates.
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Figure 2. 
Stacked bar charts of shrubland loss organized by fd3 and agreement (agree = 1 if map and 

reference labels match) for (a) omission and (b) commission. Values are the proportion of 

the total sample size (omission = 616; commission = 749).

Wickham et al. Page 14

Int J Remote Sens. Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 3. 
Spatial pattern of fd3 for forest (a) loss and (b) gain. The fd3 thresholds are the values that 

most closely corresponded to ±50% likelihood of map-reference agreement (Table 3). Values 

of fd3 were grown by two pixels and re-sampled to 150 m for display. The black box 

(exaggerated for display) is the location of the cut-out in panel a. Pixels in the cut-out are 

displayed at their native 30 m resolution.
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Table 1

Spatial pattern explanatory variables.

Variable (abbreviation) Description

Feature density (fdx) The abundance (number of pixels) of a change class in square window, where X is the side length surrounding a 
sample pixel. Window side lengths were 3, 5, 7, 15, and 21 pixels, which equates to 0.81, 2.25, 4.41, 20.25, and 
36.69 ha, respectively. Abundance was specific to the change class represented by the sample pixel. For urban 
gain, for example, fdx was the number of pixels in a window of size X2 surrounding the sample pixel where the 
NLCD 2001 label was not equal to urban and the NLCD 2011 label was equal to urban

Heterogeneity (fv) The number of change classes in a 3-x-3 pixel window around the sample pixel (fv = focal variety). Values can 
range between 1 and 9, and a value of one (1) indicates homogeneity in the 0.81 ha neighbourhood surrounding 
the sample pixel. The change class was defined as the number of different class combinations from conflation of 
the NLCD 2001 and NLCD 2011 maps (e.g. urban–urban, forest–grassland, forest–urban)

Patch size (ps) The area of like-classified adjacent pixels in which the sample pixel was embedded. Adjacency was defined using 
the ‘queen’s’ rule: like-classified pixels sharing edges and corners. Like-classification was based on the combined 
NLCD 2001 and 2011 land cover labels. PS was based on the combined labels, not the reporting themes (e.g. 
forest loss). For example, if NLCD land cover labels were water (2001) and urban (2011), ps was the number of 
adjacent (queen’s rule) water–urban pixels

Aspect (Ia) Aspect was derived from a slope map developed from the 30m-x-30m pixel National Elevation Dataset (NED) 
(Gesch et al. 2002). The 0°–360° aspect map was converted to a 0–1 range (Ia = integrated aspect), where 135° 
(southeast) was set to 1 and 315° (northwest) was set to 0. Aspect increased linearly in both directions from the 
minimum value at 315° to the maximum value at 135°. True southeast (135°) was set to 1 because the local 
Landsat TM acquisition time is 10:30AM and thus southeastern aspects should be the most illuminated. We 
assumed that classification accuracy would decline as illumination declined.

Distance to nearest road 
(D2Rd)

Euclidean distance (metres) from the sample pixel to the nearest road. NAVTEQ was used as the roads data. 
Distances were not log transformed, and log transformation did not influence results.

Region (R) A classification variable (east = 1; west = 2) was used to stratify the NLCD 2011 accuracy assessment (Wickham 
et al. 2017). The east-west boundary was at approximately 100° 0′ 00″W using a boundary line based on the 
mapping zones (Homer and Gallant 2001) developed for the original NLCD 2001 project (Homer et al. 2004).
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