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Abstract Implantation is a process of the first feto-

maternal encounter in the uterus. A competent blastocyst

and a receptive uterus are critical for successful implan-

tation. For an acquisition of uterine receptivity, the fol-

lowing conditions need to be satisfied in the uterine

environments: the endometrial preparation with stromal

proliferation and epithelial differentiation in the pre-

receptive phase and proper interactions between the uterus

and blastocyst later in the phase. Focusing on these points

and primarily referring to the mouse in vivo evidence, this

review article has shown detailed molecular mechanisms

for successful implantation.
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Introduction

Pregnancy is a complicated physiological phenomenon

comprising a series of these processes: ovulation, fertil-

ization, implantation, embryonic growth, decidualization,

feto-placental growth and parturition. Each process is

strictly coordinated and essential for successful pregnancy.

Implantation, a process of the first feto-maternal encounter

in the uterus, consists of the following three steps: appo-

sition, adhesion, and invasion of the embryo. Successful

implantation is the result of appropriate molecular com-

munication between the uterus and the blastocyst during

these steps. Animal studies, especially mouse studies, have

taken the lead in implantation research [1]. Notably, it is no

wonder that recent studies using different kinds of geneti-

cally-altered mice have given us valuable information in

this research field. Since the current major concepts in

embryo implantation have primarily arisen from mouse

studies, here we principally refer to the mouse studies.

What are mandatory components for successful

implantations? There are two essentials. One is an

implantation-competent blastocyst because poor embryo

quality is likely to be one of the major causes of implan-

tation failure [2]. On the other hand, ‘‘uterine receptivity’’

is also a significant factor, defined as uterine capacity in

order to accommodate the competent blastocyst [1]. This

capacity allows an appropriate endometrial preparation

with stromal proliferation and epithelial differentiation

stimulated by ovarian steroids in advance before the phase

of embryo–uterine interactions (Fig. 1). In this process,

progesterone-dependent morphological changes in endo-

metrial stroma are observed, which we call ‘‘pre-decidu-

alization’’ (Fig. 1) [3]. The small spike of ovarian estrogen

is followed by an acquisition of the endometrial status, and

then, the endometrium provides the embryo with adhesion

activity. Thus, the uterus enters into the receptive phase.

This acquisition of adhesion activity in the dormant blas-

tocyst by endometrium-derived factors is called ‘‘blasto-

cyst activation’’ (Fig. 1) [1]. Further, the blastocyst

adhesion onto the uterus induces an endometrial
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attachment reaction, in which stromal cells surrounding the

blastocyst start to differentiate concurrently with polyploid

formation, which is called ‘‘decidualization’’ (Fig. 1) [3].

The receptive phase of the uterus is transient, and unless

the blastocyst adhesion occurs, the endometrium enters into

the refractory phase, when any functional blastocysts are

incapable of adhesion to the endometrium. Thus, the

endometrium can allow blastocyst adhesion in the restric-

ted period, which is usually regarded as the ‘‘implantation

window’’ (Fig. 1) [3]. This sequence of events is critical for

starting implantation.

Ovarian steroid hormones produce and maintain uterine

receptivity throughout implantation processes. Under the

influences of progesterone and estrogen, there are impor-

tant mediators for cell-to-cell communications in the

uterine microenvironments during implantation: cytokines

and growth factors such as leukemia inhibitory factor (LIF)

and heparin-binding epidermal growth factor-like growth

factor (HB-EGF). For example, maternal LIF is essential

for successful implantation [4], and HB-EGF plays a key

role in a two-way communication between the embryo and

the uterus [5]. These factors are considered to be crucial for

uterine receptivity and blastocyst activation. In this review

article, we describe the acquisition process of uterine

receptivity and embryo–uterine molecular interactions

through the major secreted mediators.

Implantation in mice and humans

Since a time-line and hormonal conditions in the peri-

implantation period look comparable between mice and

humans (Fig. 2), we have much to learn about embryo

implantation from the previous mouse studies [1]. In mice,

a vaginal plug is observed in the morning on the day after

ovulation and mating, which we define as day 1 of

pregnancy. Luminal epithelium strongly proliferates and

the uterus looks swollen under the influence of an estrogen

surge. On day 3 of pregnancy, corpora lutea are newly

formed, and start to produce progesterone. Progesterone

becomes completely dominant by the morning of day 4

when heightened progesterone makes endometrial stromal

cells proliferate, called pre-decidualization, and this phe-

nomenon is similarly observed in humans. At the same

time, the luminal epithelium ceases proliferation and dif-

ferentiates for the blastocyst attachment reaction. Late on

the morning of day 4, a small estrogen surge occurs as a

starting signal of implantation. This estrogen spike leads to

stromal edema and luminal closure placing the blastocyst

in close apposition with the luminal epithelium, and makes
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the uterus produce some blastocyst activators like osteo-

pontin (OPN) [6]. It is followed by an intimate adherence

of the blastocyst trophectoderm to the luminal epithelium,

marking the first discernible sign of implantation on the

night of day 4 (2200–2400 h). Immediately after the

implantation, stromal cells surrounding the blastocyst start

differentiation, change their stromal morphology into epi-

thelioid type with polyploidy, and form a new layer around

the embryo. This process is known as decidualization. The

attachment reaction coincides with an increased stromal

vascular permeability at the site of the blastocyst. Embryo-

derived trophoblast cells invade the endometrium, and

finally, embryo implantation is completed [1].

As described above, the present general concepts in the

embryo implantation are gained from mouse studies. Since

both in vivo and in vitro experiments, especially about

blastocyst activation and decidualization (not pre-decidu-

alization), are technically and ethically difficult to perform

in humans, mouse models are the most powerful approach

to understand embryo implantation in vivo, and are glob-

ally applied in the current research of reproduction.

Ovarian hormones: estrogen and progesterone

Estrogen and progesterone play crucial roles throughout

pregnancy. The following two processes under the control

of ovarian steroids are needed for successful implantation:

preparation of endometrial proliferation and differentiation,

and appropriate embryo–uterine communication. In the

pre-receptive phase, the endometrium must keep specific

differentiation status in which luminal epithelium ceases

proliferation and subluminal stroma start to proliferate in a

progesterone-dominant condition. Next, a small spike of

estrogen occurs just before the receptive phase. This ni-

datory estrogen with consistent influences of progesterone

gives starting signals for embryo–uterine interactions to the

uterus, the dormant blastocyst is activated, and the uterus

turns to be receptive. Thus, the implantation-competent

blastocyst and the receptive uterus are prepared through the

molecular communications between the embryo and uterus

under the influence of ovarian hormones [1].

The endometrial proliferation and differentiation in the

pre-receptive phase is influenced by ovarian hormones,

dominantly by progesterone which is known as a ‘‘hormone

of pregnancy’’. Progesterone acts on the uterus via pro-

gesterone receptors (PR) throughout the pregnancy [7]. PR

deficient mice show impaired reproductive phenotypes in

ovulation, implantation and decidualization and a compro-

mised status of endometrial proliferation and differentiation

on day 4 of pregnancy [7]. In addition, mice with deletion of

PR cochaperone FKBP52 have uterine progesterone resis-

tance and impaired induction of progesterone-responsive

genes on the morning of day 4 [8]. The mutant females also

have an impaired uterine status of proliferation and differ-

entiation in the pre-receptive phase, and further cause

implantation failure [8]. Taken together, progesterone sig-

naling is a major pathway regulating the endometrial

preparation for appropriate differentiation and proliferation

in the pre-receptive phase.

Constant influences of progesterone are essential in the

uterus during and after implantation, while transient

estrogen influences are needed for the induction of

implantation. Among the estrogen-responsive genes, it is

known that LIF and OPN are functionally important

secreted proteins during implantation [4, 6]. Estrogen

injection up-regulates both genes in the glandular epithe-

lium in the delayed implantation mouse model [6, 9]. These

findings suggest that nidatory estrogen induces LIF and

OPN in glandular epithelium, and these factors participate

in embryo–uterine interactions to continue the subsequent

implantation process. In addition, HB-EGF is the most

famous secretory factor for embryo–uterine interactions

[5]. The detailed functions of these secreted factors are

separately described in the following sections.

Leukemia inhibitory factor

The presence of various cytokines and their receptors in the

uterus and the embryo during early pregnancy suggests

their roles in implantation [1]. It is known that several

cytokines such as LIF and M-CSF are critical for normal

female fertility by studies using gene-altered mice [4, 10].

LIF, a cytokine in the interleukin-6 family, is expressed

in the uterus and plays critical roles in embryo implanta-

tion. LIF deficient mice reveal complete implantation

failure [4]. In addition, the phenotype of implantation

failure is reversed by recombinant LIF injection into the

mutant females [4, 11]. LIF null embryos can develop

normally and implant in the wild-type uteri after blastocyst

transfer to wild-type recipients; however, wild-type

embryos do not implant in LIF deficient uteri after blas-

tocyst transfer to the null females [4, 12, 13]. These find-

ings indicate that maternal LIF is critical for successful

implantation.

Then how does LIF work in the uterus during implan-

tation? Since LIF expression rapidly increases after estro-

gen injection in the uteri of ovariectomized mice, LIF is

considered to be an estrogen responsive gene in the mouse

uterus. Therefore, estrogen might be a major regulator of

uterine LIF expression during implantation [9, 14]. In fact,

LIF is expressed at the highest level on day 1 of pregnancy

when the uterus is under the influence of a preovulatory

estrogen surge. Thereafter, it is expressed in uterine glands

on the morning of day 4, and then in the stroma
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surrounding the blastocyst at the time of the attachment

reaction on the night of day 4 and persists through the

morning of day 5 [9]. Thus, LIF is expressed in day 4

pregnant uteri at two different times in two different cell

types, and its expression is at low basal levels during the

post-implantation period [9]. These findings indicate that

LIF is not required for pregnancy maintenance but for

implantation. Although previous studies show such evi-

dence, the precise effects of maternal LIF on implantation,

especially on blastocyst activation, at the molecular level

remain unclear.

In our recent study, the mice with uterine specific p53

deletion show normal implantation in spite of the reduction

of LIF expression on the morning of day 4 [15]. The

stromal LIF expression pattern surrounding the blastocyst

at the time of attachment at midnight on day 4 is normal in

the mutant females [15], suggesting that the reduced LIF

expression levels in p53-deleted uteri on the morning of

day 4 is not a limiting factor for implantation. In addition,

the CD1 mice with deficiency of PR cochaperone FKBP52

show implantation failure because of progesterone resis-

tance, and have the reduced LIF expression at glandular

epithelium on the morning of day 4 and at stroma on the

night of day 4 [16]. Progesterone supplementation to the

mutant mice can reverse both the phenotype of defective

implantation and the stromal LIF expression at midnight on

day 4, although the LIF expression at glandular epithelium

on the morning of day 4 is still reduced after progesterone

treatment [16]. These findings also suggest that the stromal

LIF at midnight on day 4 might be more important than the

epithelial one on the morning of day 4. Nonetheless, it is

controversial where and when uterine LIF is expressed

more critically on day 4 of pregnancy, and further inves-

tigations are required to clarify this issue (Fig. 3).

Recently, MSX homeobox genes are reported to be

essential transcriptional regulators which morphologically

modulate luminal epithelium and control normal implan-

tation in mice [17]. Uterine deletion of both Msx1 and

Msx2 completely inhibits blastocyst implantation [17]. LIF

reduces uterine Msx1 expression and deficiency of Msx1/2

reduces LIF expression [17]. These findings suggest that

MSXs are critical modulators in the system of uterine LIF

expression in the peri-implantation period.

LIF binds LIF receptor which dimerizes with glyco-

protein gp130, the common signaling receptor for IL-6

family cytokines, to activate several signaling pathways

including the Jak–Stat pathway, the Ras–Raf–ERK path-

way, and the PI3K–AKT pathway. In mouse embryonic

stem (ES) cells, LIF up-regulates Klf4 through Jak–Stat3

pathway and Tbx3 through PI3K–AKT pathway, and

strongly stimulates the expressions of Sox2 and Nanog to

maintain the Oct3/4 expression [18]. In contrast, LIF also

activates the Ras–Raf–ERK pathway to inhibit Tbx3

activity, suggesting that these downstream pathways of LIF

coordinately regulate the differentiation of ES cells [18].

Compared with this, LIF does not activate ERK but Stat3

in luminal epithelium on day 4 morning [19], suggesting

the tissue-selective activation of signaling pathways by

LIF.

Osteopontin

Osteopontin, known as secreted phosphoprotein 1, is a

glycoprotein and is involved in bone remodeling, leukocyte

migration and endothelial cell attachment, and apoptosis

[20]. OPN has an Arg-Gly-Asp (RGD) motif recognized

by integrins, transmembrane heterodimeric cell-adhesion
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proteins, to bridge cell-to-cell adhesion [20]. In pigs, tro-

phoblast-derived estrogen stimulates OPN secretion from

the uterus [21], and OPN bridges trophoblast-endometrial

attachment through integrin avb6 of trophoblast and avb3

of luminal epithelium [22]. OPN is also expressed in

rabbits, ewes, and humans in the peri-implantation period

[23–25]. In mice, OPN is expressed at uterine glands in an

estrogen-dependent manner immediately before implanta-

tion, stimulates integrins on the cell surface of trophoblast

to activate an intracellular PI3K/AKT signaling pathway

(Fig. 3) [6]. Since an activated blastocyst has more active

integrins on the surface of trophectoderm than a dormant

one [6], it is speculated that a major role of OPN in integrin

is to activate a blastocyst. However, OPN null females do

not show any reproductive defects and, therefore, other

integrin activators must induce blastocyst activation cor-

porately with OPN. In fact, both fibronectin and entactin,

RGD motif-containing proteins, promote mouse blastocyst

adhesion [26, 27]. Although OPN is recently reported to be

one of mediators in embryo–uterine interactions, HB-EGF

is the one which was initially identified and is the most well-

known [1], and is fully described in the section ‘‘Heparin-

binding epidermal growth factor-like growth factor’’.

Heparin-binding epidermal growth factor-like growth

factor

Hormonal preparation for the receptive status with appro-

priate endometrial differentiation enables the uterine

environment to proceed to the next phase of bidirectional

molecular communications between the embryo and

receptive uterus.

HB-EGF, one of the EGF family members, is known as

a key player in the embryo–uterine interactions with the

subsequent uterine attachment reaction [5]. It is expressed

in the luminal epithelium located around active blastocysts

some hours before the attachment [28]. HB-EGF is pro-

duced in soluble and transmembrane forms, and both forms

affect blastocyst functions in an autocrine, paracrine, and/

or juxtacrine manner [28, 29] via the EGF family of

receptors which is expressed on the cell surface of troph-

ectoderm [30, 31]. The soluble forms help to grow blas-

tocysts [28], and the cell with transmembrane ones can

adhere to the activated blastocyst [31] (Fig. 3). In addition,

a recent mouse study shows that systemic deletion of HB-

EGF leads to perinatal lethality [32], and its uterine dele-

tion defers implantation and reduces litter size [32],

emphasizing its importance in implantation.

HB-EGF and other EGF family members such as EGF,

TGFa, betacellulin, epiregulin, neuregulin, and amphireg-

ulin interact with the receptor subtypes of the ErbB family,

ErbB1, ErbB2, ErbB3, and ErbB4, which have a tyrosine

kinase domain for signal transduction. ErbBs form pri-

marily homodimers or heterodimers to be activated by the

ligands. Among these ErbB family members, ErbB1 and

ErbB4 on the cell surface of trophectoderm can interact

with uterine HB-EGF in embryo implantation in mice [30,

31]. The expression of both ErbB1 and ErbB4 is down-

regulated in dormant blastocyst but is markedly up-regu-

lated in the activated blastocyst [30, 33]. The activated

blastocyst also expresses HB-EGF, which can induce HB-

EGF transcripts in the uterus. These findings suggest the

presence of a molecular feed-forward loop between the

embryo and the uterus for the attachment reaction. More-

over, many studies also show significant roles of HB-EGF

in human implantation. For example, the endometrial

expression level of HB-EGF is the highest in the receptive

epithelium [34, 35]. The cells expressing the transmem-

brane form of HB-EGF can adhere to human blastocyst

displaying cell surface ErbB4 [36]. Taken together, HB-

EGF is critical for embryo–uterine interactions during

embryo implantation.

Conclusion

This review article described uterine receptivity and

embryo–uterine interactions through key players such as

ovarian hormones, HB-EGF, LIF and OPN. Since their

detailed mechanisms remain vague as described above,

many further investigations are required to clarify them.

New future findings are expected to be applied in a clinical

setting for infertility treatment and contraception.
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