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Summary

How the size of micron-scale cellular structures like the mitotic spindle, cytoskeletal filaments, the 

nucleus, the nucleolus and other non-membrane bound organelles is controlled despite a constant 

turnover of their constituent parts is a central problem in biology. Experiments have implicated the 

limiting-pool mechanism: structures grow by stochastic addition of molecular subunits from a 

finite pool until the rates of subunit addition and removal are balanced, producing a structure of 

well-defined size. Here, we consider these dynamics when multiple filamentous structures are 

assembled stochastically from a shared pool of subunits. Using analytical calculations and 

computer simulations, we show that robust size control can be achieved when only one filament is 

assembled at a time. When multiple filaments compete for monomers, filament lengths exhibit 

large fluctuations. These results extend to three-dimensional structures and reveal the physical 

limitations of the limiting pool mechanism of size-control when multiple organelles are assembled 

from a shared pool of subunits.

Graphical abstract

*Corresponding Author, Lead contact. lishi87@brandeis.edu. 

Author Contributions
L.M., T.J.L., D.H., P.R.J. and J.K. designed the study, did the calculations, and wrote the paper. Simulation were conducted by L.M. 
T.J.L. and D.H.

HHS Public Access
Author manuscript
Cell Syst. Author manuscript; available in PMC 2018 April 19.

Published in final edited form as:
Cell Syst. 2017 May 24; 4(5): 559–567.e14. doi:10.1016/j.cels.2017.04.011.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Size control; Organelle size; Master equation; Cytoskeleton filaments; Self-assembly

Introduction

Cells consist of organelles and other large structures whose size is often matched to the size 

of the cell. A classic example of this is the scaling of the size of the mitotic spindle with the 

size of the cell in a developing embryo (Goehring and Hyman, 2012). How organelles and 

other micron-sized structures within the cell are assembled and maintained to have a specific 

size is still not well understood.

A simple idea, which seems to provide the answer in several cases, is that the cell maintains 

a limiting pool of a diffusible molecular component that is required for assembling the 

structure. In such a case, size control is simply achieved by the structure growing until the 

limiting pool is depleted to the point when the rates of assembly and disassembly of the 

structure are matched.

The idea that a limiting pool plays a major role in size control was the subject of a recent 

review that summarized the experimental evidence for this mechanism in the assembly of 

diverse structures such as centrosomes, flagella, and the nucleus (Goehring and Hyman, 

2012). In addition, a recent in vitro study used a microfluidic system to encapsulate 

cytoplasm from Xenopus egg extracts in small droplets and showed that spindle size is 

proportional to the droplet volume, thereby suggesting that the amount of cytoplasmic 

material controls the size (Good et al., 2013). Furthermore, another study showed inverse 

scaling of the size of nucleoli with nuclear size in a developing C. elegans embryo in 

conditions when the number of nucleoli components in the nucleoplasm was fixed, also 

consistent with the limiting pool mechanism (Weber and Brangwynne, 2015).

The key idea of the limiting pool mechanism of size control is that assembly slows down as 

the free subunit pool is depleted and the size of the assembling structure increases. When the 

rate of assembly of the structure matches disassembly, the cytoplasmic (“free”) pool of the 

limiting component reaches the so-called critical concentration, which is equal to the 

dissociation constant of the assembly reaction. At this point the structure being assembled 

reaches a well-defined size. This is the expected assembly dynamics for a single structure, 
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however, what happens to these dynamics when multiple structures are assembled from a 

shared limiting pool? In this case, once the critical concentration is established, the 

molecular component that is limiting could stochastically transfer from one to another 

structure with no change to the free concentration of this component, therefore incurring no 

free-energy penalty. Notably, additional size control mechanisms can impose a free energy 

penalty for such an exchange. In this paper, we study the implications of limiting pool 

mechanism on the size-control of multiples structures growing from a shared pool of 

diffusing components, when such additional size control mechanisms are absent.

Although the key ideas of our theoretical study can be extended to three dimensional 

structures like nucleoli (Weber and Brangwynne, 2015), we focus here on the filamentous 

structures that comprise the cytoskeleton. Filamentous structures are a particularly good 

model system for investigating questions relating to size control because “size” can be 

simply defined by the length of the filament. Most cytoskeletal structures are composed of 

actin filaments and microtubules, which in turn are composed of actin monomers and tubulin 

dimers. These subunits undergo constant turnover as they are stochastically added and 

removed from the structure, yet the structures themselves can be maintained at a precise 

size. This is important since large changes in structure size can produce significant 

deviations from its normal physiological functions. For example, in yeast cells intracellular 

transport is disrupted if actin cables overgrow and buckle (Chesarone-Cataldo et al., 2011). 

In addition, experiments have shown that when filamentous structures are cut to a smaller 

size, they often grow back to their physiological length suggesting that the length is under 

tight control (Marshall et al., 2005).

In some instances, multiple filamentous structures, made from a shared pool of actin 

monomers or tubulin dimers, coexist within the cell’s cytoplasm. For example, actin cables 

and actin patches in yeast are made up of actin monomers. They have different size, shape, 

and function, yet they coexist in the same cytoplasm while exchanging actin monomers from 

an apparently common pool (Michelot and Drubin, 2011). This observation raises the 

question, how are such diverse structures assembled and maintained from a common pool of 

subunits?

Here, we consider the stochastic assembly of multiple filamentous structures from a 

common and limited pool of subunits with a specific focus on the length fluctuations of 

these assembled structures. We assumed the simple scenario when the limiting components 

are the building blocks of the filamentous structures being assembled and have no other 

effect on the length of the filaments. From this simple, analytically tractable model of 

stochastic assembly we derive general conclusions about the limiting pool mechanism, and 

describe its limitations in controlling the sizes of multiple structures within the cell.

Notably, this approach purposefully considers the limiting monomer pool to be the only 

mechanism by which filament length is controlled. Cognizant of the fact that in cells 

multiple size-regulating mechanisms might be at play, we contend that the simple, limiting 

pool mechanism discussed here is a useful “null hypothesis” against which experimental 

data can be analyzed (Marshall, 2016). To the extent that the detailed quantitative 

predictions of the limiting pool mechanism are not borne out by experiments (that is, the 
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null hypothesis can be rejected based on quantitative measurements), one can be confident 

that other size control mechanisms are at play.

Results

We consider the limiting pool mechanism of size control in the context of a simple model 

where filaments grow from a fixed number of nucleating centers within the cell by stochastic 

addition of diffusing monomers. Monomers, whose number in the cell is fixed, also 

stochastically dissociate from the filament. The number of filaments is fixed by the number 

of nucleating centers, which can be a single protein or a protein complex, and which aid in 

the formation of the filament. An example is provided by formins which help assemble 

filamentous actin structures. Formins bind to the barbed end of an actin filament and capture 

(profilin bound) actin monomers from solution, which are then incorporated into the 

growing filament (see Figure 1A). Note that the model we consider is a significant departure 

from textbook examples of stochastic filament assembly where every monomer in solution 

can serve as the site of new filament assembly. In our case filament assembly occurs only 

from nucleating centers.

We consider three different scenarios, one when there is a single nucleating center in a cell 

which contains a fixed number of monomers, the case of two identical nucleating centers, 

and of two distinct nucleating centers, which differ in the rates at which they incorporate 

monomers. An example of inequivalent nucleators is provided by the two different formins 

Bni1 and Bnr1 in budding yeast, which assemble actin filaments at different rates (Buttery et 

al., 2007). Later in this section, we turn our attention to the case of many filaments and also 

discuss how our results carry over to the case when three dimensional structures are 

assembled from a limiting pool.

A limiting-pool of monomers assembles into a single filament of a well-defined length

First we consider the case of a single nucleating center, where a single filament is assembled 

by the addition and dissociation of monomers. The total number of monomers in the cell, N, 

is fixed, and each monomer can associate to a filament with assembly rate k+, which is 

proportional to the number of free monomers in the cell. Hence, for a single filament, its 

assembly rate starts off as k+ = k′+N but as the filament grows, it decreases to k′+(N − l), 

k′+(N − l) where l is the length of the filament in units of monomers. Note that the rate 

constant k′+ is obtained by taking the second order rate constant for monomer addition, 

which has units M−1s−1, and multiplying it by the volume of the cytoplasm within which the 

free monomers diffuse. The rate of assembly is thus length dependent, and assuming a 

constant monomer dissociation rate, k−, it leads to a peaked distribution of filament lengths 

(Figure 1B).

To describe the dynamics of an individual filament, we model the growth and decay of the 

filament using the master equation formalism. The key quantity to compute is the 

probability, p(l, t), that the filament has a length l (measured here in units of monomers) at 

time t. The master equation describes the evolution of p(l, t) in time, by taking into account 
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all the possible changes of the state (length) of filament that can occur in a small time 

interval Δt. The master equation for a single filament is (for l > 0)

dp(l, t)
dt = k′+(N − l + 1)p(l − 1, t) + k_ p(l + 1, t) − k′+(N − l)p(l, t) − k_ p(l, t) . (1)

We compute the steady-state distribution of filament lengths by setting the left-hand side of 

the equation to zero and omit the time variable in p(l) to indicate the steady state nature of 

the distribution. We use detailed balance equations p(l)k+′ (N − l) = p(l + 1)k−, to obtain 

p(l) =
κd
N − le

−κd

(N − l)!  (See section “Exact solutions of filament distributions” in STAR Methods), 

where κd( ≡ k−/k+′ ) is a dimensionless dissociation constant for the chemical reaction of a 

monomer binding to filament (equal to the dissociation constant multiplied with the cell 

volume). For example, for actin cables in yeast cells we estimate κd ~ 104 and N ~ 2 × 105, 

using the measured concentration of actin in yeast (~ 10μM) (Johnston et al., 2015), the 

typical volume of a yeast cell (~ 40μm3) (Philips and Milo, 2015) and the measured rates of 

association (11.6 μM−1 s−1) and dissociation (1.4 s−1) for binding of actin monomers to actin 

filaments (Pollard, 1986) (See section “Estimates for actin cables in yeast” in STAR 

Methods for the calculations). The mean and standard deviation of the distribution are given 

by N − κd and κd, respectively. This distribution is very peaked, and the same is true for the 

distribution of free monomers, which in fact is very close to Poisson (See STAR Methods, 

“Main inferences and estimates” section). Notably, the typical length of the filament is 

essentially given by the number of available monomers unless k′+ and k_ are fine-tuned to 

be close in value (See STAR Methods, section “Fraction of monomers in filaments”).

We used stochastic simulations to analyze the time evolution of the length distribution. We 

start with a filament of zero length growing from a single nucleating center and then follow 

the growth trajectory of the length of the filament in time as monomers attach and fall off. 

After some time, we observe the filament reaching a steady state (see Figure 1B inset), when 

the length distribution of the filaments no longer changes with time. The distribution 

extracted from these simulations matches the analytic results. The time scale over which the 

steady state is reached is of order 1/k′+, which can be understood as the time it takes N 
monomers to be taken up from the pool at a rate k′+ N (see Box 1 and STAR Methods, 

section “Growth time scale τg” for a more precise calculation).

Two equivalent filaments assembling from a common limiting pool of monomers leads to 
large, anti-correlated fluctuations in their lengths

Next we turn to the case of assembly of multiple filamentous structures competing for a 

common, limited pool of monomers. We begin by considering the simplest case of two 

identical nucleating centers that are growing one filament each (Figure 1C). The results 

obtained in this simple case are also found in the more general many-filament case, which is 

described in detail in the STAR Methods.
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In the case of two identical nucleating centers, each of the two filaments adds a monomer to 

it at the same rate k′+. Therefore, the assembly rate of filaments starts off as k′+N, however 

as the two filaments grow, it decreases to k′+(N − l1 − l2), where l1 and l2 are the lengths of 

the two filaments in units of monomers. The rate of dissociation (k−) of monomers is 

assumed to be identical for both filaments.

Since there are now two filaments in the cell, we characterize the state of the system with a 

joint probability distribution p(l1, l2, t), which satisfies the master equation

dp(l1, l2, t)
dt = k′+(N − l1 − l2 + 1)(p(l1 − 1, l2, t) + p(l1, l2 − 1, t)) + k_ p(l1 + 1, l2, t) + k_ p

(l1, l2 + 1, t) − 2(k′+(N − l1 − l2) + k )p(l1, l2, t) .

(2)

At steady state, 
dp(l1, l2, t)

dt = 0 and the joint probability distribution takes on the product form 

p(l1, l2) = p(0, 0)
κd

−(l1 + l2)

(N − l1 − l2)! , which is a textbook result from queueing theory (Kelly, 1979) 

(see “Exact solutions of filament distributions” section in STAR Methods). Here κd = k−/k+′

is once again the dimensionless dissociation constant. The distribution of lengths for a single 

filament, i.e., p1(l1) and p2(l2), can be obtained from the joint distribution by summing over 

all possible lengths of the other filament (l2 and l1, respectively); we perform these 

calculations explicitly in sections “Equal nucleating centers” and “Gamma function 

representation of two filaments” of the STAR Methods.

An approximate formula for the distribution of lengths for a single filament in steady state 

can be derived from a simple argument, which also sheds light on the physics of the 

problem. In steady state the average number of free monomers left in solution is κd, and the 

distribution of free monomers is very close to Poisson with standard deviation κd, implying 

that it is very narrowly concentrated around its mean κd. (The Poisson approximation to the 

free monomer pool was previously derived (Hu and Othmer, 2011) by assuming that the 

probability of a filament having zero length is zero; we rigorously justify this approximation 

in STAR Methods, section “Equal nucleating centers”.) Hence, the total number of 

assembled monomers, i.e., the sum of the lengths of the two filaments, is to an excellent 

approximation a constant N − κd. Furthermore, monomers diffuse from one filament to 

another with equal rates (k−/2; see STAR Methods, section “Diffusion time scale τd”, for the 

derivation) independent of the lengths of individual filaments. Therefore, every possible 

configuration of filament lengths that satisfies l1 + l2 = N − κd is equally likely. The number 

of such configurations is N − κd + 1, implying that the probability distribution for a single 

filament is
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p1(l1) ≈ 1
N − κd

, (3)

i.e., it is uniform on the interval (0, N − κd). This approximation is very accurate except in a 

very narrow interval of lengths of order κd when l1 is close to N − κd, where it decays 

rapidly to zero. This effect is due to the Gaussian fluctuations of the free monomer pool 

around its mean. This simple argument can be further extended to an arbitrary number of 

filaments and is validated by our exact calculations (see STAR Methods, section “Equal 

nucleating centers”).

We also used stochastic simulations to investigate individual growth trajectories for the two 

filaments and compared the results to our analytical steady-state distributions p1(l1) and 

p2(l2) (Figure 1D). Once again, we follow the stochastic trajectory in time of the length of 

each individual filament. Initially, both filaments grow in unison (subject to small 

fluctuations) until their combined length reaches the steady state total length N − κd. After 

this rapid growth period the individual trajectories of the filaments diverge, as one grows the 

other shrinks (Figure 1D inset). These anti-correlated fluctuations in length persist 

indefinitely and eventually become of order N − κd. At the same time the length 

distributions for each filament, p1(l1) and p2(l2), settle into their steady state values, 

Equation 3.

These dynamics are illustrated in Figure 2, where we plot p1(l1, t) obtained from stochastic 

simulations. At first the mean filament length increases until the free monomer pool (or 

equivalently the total filament length) reaches its steady state (black curves). The time scale 

for this is of order 1/(2k′+), same as in the case of a single filament. After that, we observe 

the widening of the distribution at constant mean (blue curve) which eventually becomes 

uniform (red curve) at the longest times, of order N2/k− (STAR Methods, section “Diffusion 

time scale τd”). Thus, we reach the somewhat surprising conclusion that the limiting-pool 

mechanism does not control length in the case of two structures competing for the same 

monomers. In fact, this remains true even when the additional processes of catastrophe and 

rescues (to simulate microtubules undergoing dynamic instability) were included in our 

simulation analysis (Figure S1).

Once the total length of the two filaments has reached a steady state, any monomer that 

comes off a filament is rapidly taken up by one or the other filament. This is a consequence 

of the fact that in steady state the total number of monomers in the two filaments is narrowly 

distributed around its mean value. We therefore expect individual filament lengths to exhibit 

diffusive dynamics. We demonstrate this explicitly in the inset to Figure 2 where the 

variance, σ2, of the length distribution of an individual filament is seen to increase linearly 

with time until it eventually saturates. Given the diffusional law σ2 = 2Dt the initial slope of 

the σ2 curve in Figure 2 inset gives the diffusion constant D. The diffusion constant can be 

computed by taking into account that when the total length reaches steady state monomers 

exchange between the two filaments with the rate k−. A detailed analysis of all possible 

exchange processes while accounting for their probabilities leads to the exact result D = k−/2 
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(STAR Methods, section “Diffusion time scale τd”), which we also checked with stochastic 

simulations.

Two inequivalent filaments assembling from a common limiting pool of monomers results 
in only one filament having a well-defined length

Next, we consider the case of two nucleating centers with different assembly rates for 

filaments in a common pool of monomers (see Figure 3A). As in the example of two 

different formins in yeast, monomers are stochastically added to the two filaments at 

different rates: k′1,+ and k′2,+. These rates start as k′1,+N and k′2,+N but as the two 

filaments grow they decrease to k′1,+(N − (l1 + l2)) and k′2,+(N − (l1 + l2)) respectively, 

where l1 and l2 are the individual lengths of the two filaments in units of monomers. The rate 

of dissociation, k−, of monomers is assumed identical for both filaments.

As before, the joint probability distribution p(l1, l1, t), satisfies a master equation, but now 

with different assembly rates for the two filaments, namely

dp(l1, l2, t)
dt = k1, +′ (N − l1 − l2 + 1)p(l1 − 1, l2, t) + k2, +′ (N − l1 − l2 + 1)p(l1l2 − 1, t) + k

_ p(l1 + 1, l2, t) + k_ p(l1, l2 + 1, t) − (k1, +′ (N − l1 − l2) + k2, +′ (N − l1 − l2) + 2k−)p(l1, l2, t)

.

(4)

The steady state joint distribution of filament lengths is again given by a product form, from 

which the distribution of lengths of each individual filament can be computed. The exact 

calculation is in the STAR Methods (section “Unequal nucleating centers”) and here we 

provide a simple intuitive argument.

For concreteness, let us assume that the assembly rate of first filament is larger than the 

second, i.e., k′1,+ > k′2,+ (or equivalently, κd2
> κd1

, using κdi
= k−/ki, + for the 

dimensionless dissociation constants). Then over a long period of time, a larger number of 

monomers will join the first, fast assembling filament. Since the detachments rates are the 

same, the first filament will accumulate most of the monomers. Hence, p1(0) ≈ 0, implying 

that average rate of monomers leaving the first filament is k−(1 − p1(0)) ≈ k_. Next, by 

equating this rate to the rate at which monomers attach to the first filament, i.e., k′1,+ × 

(average number of free monomers), we find that the average number of free monomers is 

κd1
, and, as in the case of equivalent filaments, we expect the steady-state distribution of the 

number of free monomers to be Poisson. From this result, we can derive the distribution of 

lengths for the second, slower growing filament from the detailed balance equations 

p2(l)κd1
k′2, + ≈ p2(l + 1)k−, which leads to the conclusion that the lengths for the second 
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filament are distributed geometrically, i.e., p2(l) = 1 −
κd1
κd2

κd1
κd2

l

. Then the first filament is 

virtually unaffected by the presence of the second and the distribution of its lengths is 

peaked, as in the case of a single filament. The approximate average length of the first and 

the second filament are given by N − κd1
−

κd1
κd2

− κd1
 and 

κd1
κd2

− κd1
, respectively (STAR 

Methods, section “Unequal nucleating centers”).

Once again, to develop intuition about the assembly dynamics we used stochastic 

simulations to follow the growth of the two filaments from the two nucleating centers each 

starting from zero length (Figure 3B, inset). Just like in the case of equal nucleating centers, 

we observe that there is an initial, fast growth phase which occurs over a time of the order 

1
k′1, + + k′2, +

. After the growth phase, we observe that filament with a higher assembly rate 

grows to a steady state characterized by a large length, whereas the other filament shrinks to 

zero. When the two assembly rates are close in magnitude then we find anti-correlated 

fluctuations of lengths similar to what we observed in the case of identical nucleating 

centers. These fluctuations happen over a time scale N
κd2

(k′1, + − k′2, +) , i.e., over a time that 

is of order N, and eventually subside as the system settles into a steady state with practically 

all monomers taken up by the faster growing filament. This is illustrated in the plots of 

steady-state length distributions for the two filaments, where for the fast-assembling filament 

we observe a distribution sharply peaked around the mean while the slower assembling 

filament is characterized by a geometric distribution of filament lengths peaked at zero; see 

Figure 3B. We find wider distributions when the assembly rates are numerically close to 

each other, which results from the increased fluctuations of the filament lengths. 

Comparison of the analytical solution of Equation 4 for p1(l1) and p2(l2) (see STAR 

Methods, section “Unequal nucleating centers”) to the simulation data serves as a stringent 

test of the simulation procedure (Figure 3B).

To summarize, when considering two nucleating centers with different rates of filament 

assembly, the one with the higher rate wins and assembles a filament of well-defined length, 

while the other filament does not stably form.

Assembly of many filaments

Thus far we have only considered two filamentous structures competing for the same pool of 

monomers. In cells, though, it is common to observe multiple structures made from the same 

pool of monomers. For example, the number of actin cables in budding yeast is about ten or 

so, while the number of actin patches is of order ten to a hundred.

The key results described for two filamentous structures readily carry over to the case of 

multiple filaments. More specifically, for any finite number of filaments starting at zero 

length, growth of all filaments is strongly favored in the initial phase of assembly, and all the 

filaments quickly reach lengths of order N (the total number of monomers) over a time scale 
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which is independent of N. Then, in case of inequivalent assembly rates, the slower growing 

filaments gradually lose monomers and diminish in length to a small, geometrically 

distributed length. The duration of this phase is of order N. Furthermore, at the end of this 

phase practically all the monomers are taken up by the fast-growing filaments, and the 

number of free monomers approaches a Poisson distribution with a mean equal to the 

smallest (dimensionless) dissociation constant among all the filaments. This then implies 

that the total number of monomers assembled into the fast-growing filaments will have a 

well-defined size characterized by a peaked distribution. The lengths of individual fast-

growing filaments then undergo protracted diffusive dynamics on time scales of the order 

N2. These dynamics are generated by the stochastic swapping of monomers between 

individual filaments, and eventually lead to a broad, power-law distribution of filament 

lengths in steady state. Notably, we find that if the number of fast growing filaments is of the 

order of N, then in the limit of large N the resulting length distribution is geometric (see 

STAR Methods, section “Equal nucleating centers” for a detailed calculation for this case). 

This theoretical result might provide a link between two recent experiments on mitotic 

spindles, one which showed that the spindle size is controlled by a limiting pool mechanism 

(Good et al., 2013) and the other that found that individual microtubule lengths within the 

spindle are geometrically distributed (Brugués et al., 2012).

To illustrate our general results regarding assembly of many filaments from a common pool 

of monomers we show in Figure 4 the different phases of assembly using an example of six 

filaments with three growing at the same, fast rate and three taking up monomers more 

slowly. (See section “Aggregate distribution of multiple filaments” in STAR Methods for 

detailed calculations pertaining to the multi-filament case.)

Assembly of three dimensional structures

From the preceding analysis, we see that assembling multiple filamentous structures from a 

shared, limiting pool of monomers does not lead to precise size control of individual 

structures without additional control mechanisms. This stems from the inherent reversibility 

of the assembly process once steady state is reached. At steady state exchange of subunits 

between different structures results in structures with either very small, exponentially 

distributed sizes, or large sizes whose variability is described by a power-law distribution. 

Since the key ingredient for this result to hold, namely the reversibility of stochastic 

assembly, is not limited to one-dimensional filamentous structures, equivalent phenomena 

are expected to occur for three-dimensional structures assembled from a common and 

limiting pool of subunits.

In the case of multiple three-dimensional structures being assembled from a shared pool of 

subunits, the total mass (or equivalently, the total number of assembled subunits) of the 

structures will reach a well-defined value once the assembly rate and the disassembly rates 

are balanced, and the pool of free subunits reaches the critical concentration. As in the case 

of filamentous structures, the masses of individual structures will be broadly distributed.

To demonstrate this explicitly we have done stochastic simulations of assembly of two 

identical three-dimensional structure from a finite pool of subunits. The three-dimensional 

nature of the structures is reflected in our choice of assembly and disassembly rates, which 
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are both proportional to the radius of the growing structures (Berg and Purcell, 1977). As in 

the case of assembling filaments, the assembly rate diminishes as the structures grow and the 

free monomer pool is depleted. As before we find that after an initial, fast growth phase the 

system tends to a steady state in which individual masses undergo diffusive dynamics and 

leading to a mass distribution which is broad (Figure S2).

Discussion

The limiting pool mechanism of size control has been implicated in the assembly of a 

number of different cellular structures in different cell types (Goehring and Hyman, 2012). 

In order to understand the quantitative features of this general size-control mechanism we 

considered a simple model of stochastic growth of filamentous structures from a limiting 

pool of diffusing monomers, where the number of filaments is determined by the number of 

nucleating centers at which they assemble. While we found that the limiting-pool 

mechanism is able to precisely control the length of a single filament, it is unable to control 

individual filament lengths when multiple filaments are assembled from the same monomer 

pool, even when additional processes of catastrophe and rescues were included (Figure S1). 

At steady state exchange of monomers between different filaments results in structures with 

either very small, exponentially distributed lengths, or large lengths whose variability is 

described by a power-law distribution. Since the key ingredient for this result to hold, 

namely the reversibility of stochastic assembly, is not limited to one-dimensional 

filamentous structures, equivalent phenomena are expected to occur for three-dimensional 

structures assembled from a common and limiting pool of subunits (Figure S2). We suggest 

that when in vivo observations demonstrate that size control of multiple structures is precise, 

mechanisms beyond the limiting pool must contribute to this precision (See Box 1).

One of the consequences of our study is that a limiting pool mechanism by itself is unable to 

make steady-state structures of different and well defined sizes. Our analysis describes the 

limitations associated with the limiting-pool mechanism and underlines the necessity for the 

cell to invest in additional mechanisms to control size. In fact, there are other length-sensing 

mechanisms that have been reported in the filament literature (Andrianantoandro and 

Pollard, 2006; Chesarone-Cataldo et al., 2011; Gardner et al., 2011; Marshall et al., 2005; 

Mohapatra et al., 2015, 2016; Varga et al., 2006). In these studies specific proteins have been 

identified as being critical to length-control, and found to either modulate the assembly or 

the disassembly rate of cytoskeletal filaments in a length dependent fashion (Mohapatra et 

al., 2016). Such size sensing mechanisms might play a role in assembling three dimensional 

structures as well. For example, an autocatalytic reaction at the core was recently proposed 

to play a critical role in controlling the sizes of centrosomes (Zwicker et al., 2014), which 

could provide an additional feedback of centrosome size to the assembly rate. An interesting 

question is whether such size sensing mechanism exist in other three dimensional structures 

like the nucleoli, where only the limiting pool has been implicated as the only size control 

mechanism thus far (Weber and Brangwynne, 2015) (See Box 1).

In summary, the limiting-pool mechanism of size control can produce a single structure of a 

well-defined size. On the other hand, this mechanism is unable to maintain multiple 

structures that have a well-defined size, which assemble from a common pool of subunits. 
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Cells can get around this problem by using additional size-regulatory mechanisms 

(Mohapatra et al., 2016). Quantitative experiments that measure the size and assembly 

dynamics of intracellular structures, and how they vary with different parameters, like the 

total amount of the limiting subunit or the size of the chamber within which they are 

assembled, are needed to quantitatively define the role of the limiting-pool mechanism in 

regulating size. Such experiments can also help uncover general design principles of how 

cells regulate the sizes of their organelles.

STAR Methods

In the STAR Methods, we provide the computation and rigorous justification of several 

results from the manuscript. First, in section “Heuristic derivation of filament distributions”, 

we present an intuitive derivation of the approximate filament distributions for a general 

number of equal and unequal nucleating centers; see sections “Equal nucleating centers”, 

“Unequal nucleating centers” and “General case”. Even though our derivation is heuristic, it 

leads to explicit and accurate approximations for the range of parameters that are relevant in 

biology. The accuracy of these approximate solutions in this section is further rigorously 

validated in section “Exact solutions of filament distributions”. For a general number of 

filaments with inequivalent assembly rates, our results show that in steady state there can be 

at most one filament with well-defined length of order N, while all the other filaments are 

very small O(1); we use O(x) to denote a quantity that is of the order of x. Furthermore, any 

scenarios that grow multiple filaments of order N yield highly variable lengths whose 

standard deviation is about the same as the mean.

Section “Time dynamics” describes the time dynamics of our system. We show that 

filaments undergo three phases, namely the growth, linear adjustment and diffusion ones. 

The growth phase is relatively quick of the order τg = O(1), and at the end of this phase all 

filaments have length of the order O(N). After this phase, in the case of unequal assembly 

rates, the system will undergo a linear adjustment phase τa = O(N), during which the 

filaments with smaller assembly rates will decrease to nearly zero and will have geometric 

distributions. Next, if at the end of this phase there are multiple filaments with the highest 

assembly rate, they will converge to steady state through a slower diffusion time scale τd = 

O(N2). During this phase, the dissociated monomers will randomly transfer between the 

longest filaments, which will result in their steady state distribution being a power law. In 

order to estimate the diffusion time scale, we also compute the diffusion constant.

In the section “Main inferences and estimates”, we briefly summarize our results and make a 

number of additional inferences that are relevant for biology. We discuss the fraction of 

monomers in filamentous form, as well as provide explicit expressions for the filament mean 

and variance under different growth conditions. In addition, we briefly outline our results on 

time dynamics of the finite monomer pool mechanism.

In section “Exact solutions of filament distributions”, using Queueing Theory arguments 

(Anselmi et al., 2013), we show that the exact solution to our model admits an explicit 

representation up to a multiplicative normalization constant. However, the computation of 

the normalization constant in this solution requires a prohibitively large summation of the 
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order O(Nf), where N is the number of monomers and f is the number of filaments. In 

addition, even if one were capable of computing the sums, they provide little, if any, insight 

into the problem. To alleviate these issues, we develop intuitive and explicit representations 

of the filament distributions in terms of auxiliary random variables in section “Equal 

nucleating centers”. In addition to being computationally efficient, these explicit 

representations readily provide a rigorous justification for our heuristic approximations from 

section “Heuristic derivation of filament distributions”. Furthermore, for 2 nucleating 

centers, we present computationally suitable representation for the solutions in the section 

“Gamma function representations of 2 filaments”, which are used in Figure 1D and Figure 3 

as comparison to the stochastic simulations.

Finally, in section “Aggregate distribution of multiple filaments”, we derive the aggregate 

distributions, both for the case of equivalent and inequivalent nucleating centers.

Heuristic derivation of filament distributions

Here, we provide an intuitive derivation of the filament distributions. The accuracy of the 

derived distributions will be validated through the exact calculations in the following 

section.

Let N be the total number of monomers and f ≥ 1 be the number of filaments. Next, we use 

l1, l2, …, lf, to denote the number of assembled monomers in filaments 1, 2, …, f, 
respectively. Each monomer has a rate k′i,+, 1 ≤ i ≤ f to assemble to filament i, and can 

disassemble one monomer at a time with disassembly rates kj,−, 1 ≤ j ≤ f. In addition, we 

assume that kj,− = k−, i.e., all filaments disassemble at the same rate. Furthermore, let 

κdi
= k−/k′i, +, 1 ≤ i ≤ f, be the corresponding dissociation constants, and since they are 

chemical constants, they do not scale with N. Let p(l1, l2, …, lf) be the steady state 

probability that lengths of filaments 1, 2, …, f, are equal to l1, l2, …, lf, respectively.

Equal nucleating centers: κdi
= κd

We assume that κd ≪ N, i.e., the dissociation constant is not too large, otherwise most 

monomers would be free in steady state. Hence, when N is large and f ≪ N, the probability 

of a filament having zero length is negligible. Therefore, the rate at which monomers join 

the free monomer pool is approximately fk_. Let M be the number of free monomers in 

steady state. Now, when the number of free monomers is M = m, the rate at which 

monomers leave the monomer pool is mfk′+. By equating the rates in and out of state M = 

m, we obtain that the distribution of free monomers satisfies approximately

P[M = m]m k′+ ≈ P[M = m − 1]k− . (1)

This balance equation readily yields a Poisson distribution, i.e., P[M = m] ≈
e
−κdκd

m

m! . Note 

that the preceding derivation is exact for the case of f =1, i.e., in this case the number of free 

monomers is truncated Poisson; see section “Exact solutions of filament distributions”. 
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Otherwise, the Poisson distribution is an approximation, albeit a good one, since the rate at 

which monomers join the pool can be smaller than fk− at the boundary when some filaments 

have zero length. The rest of the derivation assumes f ≥ 2.

Next, when κd is relatively large, but still κd ≪ N, due to the Central Limit Theorem1, M is 

very concentrated around its mean, 〈M〉 ≈ κd, i.e., M ≈ κd. Therefore the total number of 

assembled monomers is approximately constant, i.e., l1 + ⋯+ lf ≈ N − κd. Furthermore, 

monomers diffuse from one filament to others with equal rates (k−/f, see section “Diffusion 

time scale τd”) independent of the lengths of individual filaments, and therefore, all states l1 

+ ⋯+ lf ≈ N − κd are equally likely; the number of configurations satisfying the preceding 

equation is 
N − κd + f − 1

f − 1 . Now, if we are interested in the filament distribution, say filament 

1, then the remaining filaments satisfy l2 + ⋯+ lf ≈ N − κd − l1, and the number of these 

configurations is 
N − l1 − κd + f − 2

f − 2 . Therefore, when f ≪ N − κd, and l1 < N − κd,

p(l1) ≈

N − l1 − κd + f − 2
f − 2

N − κd + f − 1
f − 1

≈ ( f − 1)
N − κd

1 −
l1

N − κd

f − 2
, (2)

and p(l1) ≈ 0, for l1 > N − κd. For f = 2, this expression is uniform, i.e., p(l1) ≈ 1
N − κd

 in 

interval (0, N − κd), and p(l1) ≈ 0 outside of it.

The preceding derivation assumes that f is a fixed constant, which does not scale with N. 

Now, we consider the case when the number of filaments f is of the same order as N, i.e., 

when in the limit as N grows to infinity, the ratio (N − κd)/(N − κd + f) ≈ N/(N + f) → ϕ, 0 

< ϕ < 1. Interestingly, in this case, the preceding power law distribution becomes geometric 

with parameter ϕ. Namely, for any constant l1, after canceling the common terms in the 

fraction of two binomial coefficients in Equation 2, we obtain

p(l1) ≈ ( f − 1)
(N − κd)⋯(N − κd − l1 + 1)

(N − κd + f − 1)⋯(N − κd + f − 1 − l1) .

Next, since l1 is fixed, i.e. l1 ≪ f, l1 ≪ N, and κd is a chemical constant that doesn’t scale 

with N the preceding fraction further simplifies to

p(l1) ≈ ( f − 1)
(N − κd)

l1

(N − κd + f )
l1 + 1 ≈ f N

l1

(N + f )
l1 + 1 ≈ (1 − ϕ)ϕ

l1,

1M can be viewed as sum of n independent Poisson variables with mean κd/n since the sum of independent Poisson variables is also 
Poisson; hence, when κd is large, M is approximately Gaussian.
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and hence the distribution of lengths is geometric.

Unequal nucleating centers: κd1
< min

2 ≤ i ≤ f
κdi

Let us assume that all ki,− = k_, k′1, + > max
i ≥ 2

k′i, +, and that f is finite, i.e., it doesn’t scale 

with N. Then, over a long period of time, a considerably larger number of monomers will 

join the first filament than any other filament. Hence, since the detachment rates are all the 

same, the first filament tends to accumulate most of the monomers, i.e., it gets considerably 

larger than other filaments. Therefore, in steady state p1(0) ≈ 0. This implies that the rate at 

which monomers leave the first filament is k−(1 − p1(0)) ≈ k_, and the average rate at which 

monomers are attaching to the first filament is 〈M〉k′1,+. Then, due to rate conservation, 〈M〉

k′1,+ ≈ k_, yielding M ≈ k−/k′1, + = κd1
. Now that we know the average number of 

monomers 〈M〉, we can compute pi(0), i ≥ 2, from 〈M〉k′i,+ = k_(1 − pi(0)), which gives 

pi(0) ≈ 1 − M (k′i, +/k−) = 1 − κd1
/κdi

. Furthermore, the distribution of filament i ≥ 2 

satisfies, for l > 1, pi(l)k_ ≈ 〈M〉k′i,+ pi(l − 1), implying that pi(l) is geometric, i.e.,

pi(l) ≈ pi(0)
κd1
κdi

l

= 1 −
κd1
κdi

κd1
κdi

l

. (3)

For the free monomer pool, the rate at which the monomers are arriving to the pool is

k−(1 − p1(0)) + k−(1 − p2(0)) + ⋯ + k−(1 − p f (0)) ≈ k− 1 +
κd1
κd2

+ ⋯ +
κd1
κd f

=
k−

k′1, +
(k′1, + + k′2, + + … + k′ f , +)

(4)

and, when M = m, the rate at which monomers are leaving the pool is m(k′1,+ + k′2,+ + … + 

k′f,+). Therefore, by equating these rates, we derive an approximate balance equation

P[M = m]m ≈
k−

k′1, +
P[M = m − 1], (5)

resulting in M being approximately Poisson with a mean κd1
. Finally, L1 can be computed 

from N − M − L2 − …− Lf. From this we can see that, L1 = O(N), i.e., the first filament 

takes most of the monomers.
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For f = 2, the distribution of first filament is peaked and second filament is geometric, i.e., 

p2(l) ≈ 1 −
κd1
κd2

κd1
κd2

l

.

General case: κd1
= ⋯ = κd f 1

< min
f 1 < i ≤ f

κdi

Here, we consider a general scenario where f1 filaments are growing at a fast rate with 

dissociation constant κd1
, and the remaining f2 = f − f1 are growing at slower rates; the total 

number of filaments f is finite, as in the preceding subsection. Again, we show that the 

limiting-pool mechanism can grow at most one filament of the cell size, O(N), with a well-

defined length, i.e., peaked filament distribution.

The same arguments as in the preceding section can show that each of the f2 filaments will 

have geometrically distributed and independent lengths. Hence, the total sum of filaments, 

S2, in the slower growing group will have a peaked distribution since the sum of independent 

geometric variables is peaked. In fact, as f2 increases, the distribution of S2 will approach the 

Gaussian, and it will be highly centered around its mean. Therefore, the aggregate 

distribution of all the fast growing filaments will be highly concentrated around its mean 

N − κd1
− S2 ; note that κd1

 accounts for the average number of free monomers in steady 

state. Thus, the total number of assembled monomers in the fast growing group will be 

approximately constant in steady state N − κd1
− S2 ; note that this group of filaments will 

grab nearly all monomers. Hence, if f1 = 1, the first filament will have a well-defined length, 

i.e., peaked distribution, of order O(N).

However, if f1 ≥ 2, the monomers in the first group will, similarly as in the derivation of 

Equation 2, assume any of the equally likely configurations that satisfy 

l1 + ⋯ + l f 1
≈ N − κd1

− S2 , whose number is 
N − κd1

− S2 + f 1 − 1

f 1 − 1 . Hence, if we are 

interested in a single filament distribution from this group, say filament 1, then the 

remaining filaments satisfy l2 + ⋯ + l f 1
≈ N − κd1

− S2 − l1 and the number of these 

configurations is 
N − l1 − κd1

− S2 + f 1 − 2

f 1 − 2 . Therefore, by dividing the preceding binomial 

expressions, when f 1 ≪ N − κd1
− S2 , and l1 < N − κd1

− S2 , one derives that the 

distribution of a single fast growing filament is a power law

p(l1) ≈
( f 1 − 1)

N − κd1
− S2

1 −
l1

N − κd1
− S2

f 1 − 2

. (6)
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Note that for f1 = f (f2 = 〈S2〉 = 0), the preceding distribution coincides with the previously 

derived in Equation 2 for of section “Equal nucleating centers”.

Overall, regardless of the number of filaments, there can be at most one filament of order N 
with well-defined size, i.e., peaked distribution.

Time dynamics

In this section we show that the filament time dynamics occurs on three times scales of the 

order O(1), O(N) and O(N2), respectively. First, they go through a quick growth phase where 

all filaments reach size O(N) in time τg = O(1/∑k′i +); see section “Growth time scale τg” 

in STAR methods. Then, in case of inequivalent filaments, they undergo a linear adjustment 

phase of the order τg = O(N), as described in section “Adjustment time scale τa for 

inequivalent filaments”. In this phase filament dynamics can be thought of as diffusion with 

drift. Finally, in case of two or more fastest growing filaments, they will start performing a 

random walk until they reach steady state, which will occur at a slower diffusion time scale 

τd ≈N2/(2D), where D is the diffusion constant; see section “Diffusion time scale τd”. We 

provide an expression for the diffusion constant D in section “Calculation of diffusion 

constant D”.

Growth time scale τg

Initially when the filaments start to assemble, there is a strong tendency for them to grow. In 

this section, we will estimate this growth time scale. To this end, assume f filaments that are 

growing in a pool of N monomers with possible different association rates ki, +′  and equal 

dissociation constant k−. Now, let us consider a continuous limit, where monomers are 

treated as fluid. Hence, during the initial phase while all li(t) > 0, the continuous (fluid) 

amount of free monomers m(t) satisfies

dm
dt = f k− − (k′1, + + ⋯ + k′ f , +)m, (7)

from which one easily computes, using the initial value m(0) = N,

m(t) =
f k−

k′1, + + ⋯ + k′ f , +
+ N −

f k−
k′1, + + ⋯ + k′ f , +

e
−(k′1, + + ⋯ + k′ f , +)t

. (8)

From this equation we see that the monomer pool is quickly reduced to a small fraction of N 
in time

τg = O 1
k′1, + + ⋯ + k′ f , +

. (9)
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Next, when all filaments grow at the same rate ki, +′ = k+′ , we immediately obtain by 

symmetry the continuum approximation for the individual filament lengths

li(t) = 1
f N −

k−
k+′

(1 − e
− f k+′ t

) . (10)

Hence, in the case of equal assembly rates, all filaments will quickly grow to length (N − 

κd)/f in time τg = O(1/( f k+′ )). More specifically, the time required for a filament to get very 

close to (N − κd)/f, say 90%(N − κd)/f is given by log (10)/ ( f k+′ ), i.e., τg = O(1/ f k+′ )).

Using k+′ ≈ 5 × 10−3s−1, for actin cables in budding yeast cells (see “Estimates for actin 

cables in yeast” section in STAR Methods for more details), and typical number of cables, 

i.e. f = 10, we find τg = 1/ f k+′ = 20s, i.e. less than a minute.

After this initial growth phase, in case that all assembly rates are equal, the filaments will 

undergo a random diffusion, which is described in section “Diffusion time scale τd” in 

STAR Methods. On the other hand, if some of the association rates are different, there will 

be a linear adjustment period that we describe in the next section.

Adjustment time scale τa for inequivalent filaments

In this section, we study the filament time dynamics when some of the assembly rates are 

different. It is convenient to denote the sum of all the association rates as 

k+′ = k1, +′ + ⋯ + k f , +′ . Then, the individual filament lengths satisfy

dli
dt = m(t)ki, +′ − k−, (11)

which by replacing Equation 8 from the preceding section and using integration, yields

li(t) = k_
f ki, +′
k+′

− 1 t +
ki, +′
k+′

N −
f k−
k+′

(1 − e
−k+′ t

) . (12)

The preceding equation remains true initially while all filament lengths li(t) > 0. From this 

equation we see that, after a quick growth phase of the order 1/k+′ , the individual filaments 

will reach approximately lengths Nki +′ /k+′ , and then, those with assembly rates smaller than 

the average assembly rate, i.e. ki +′ < k+′ / f , will linearly decrease until one of them reaches 

zero. At that time, say τa1
, we exclude the filaments whose length is zero, and repeat the 

preceding calculations with the remaining filaments and initial values equal to m(τa1
), li(τa1

). 

We repeat these calculations for as long as there are filaments that linearly decrease to zero. 
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There can be at most f − 1 such linear adjustment times, and since each time is of the order 

N, the entire adjustment time in the general case will be τa = O(N).

Now, in the case of two inequivalent filaments with k1, +′ > k2, +′ , the preceding analysis, for 

all t such that l2(t) > 0, specializes to

m(t) =
2k−

k1, +′ + k2, +′ + N −
2k−

k1, +′ + k2, +′ e
−(k1, +′ + k2, +′ )t

(13)

and

l2(t) = − k−
k1, +′ − k2, +′
k1, +′ + k2, +′ t +

k2, +′
k1, +′ + k2, +′ N −

2k−
k1, +′ + k2, +′ (1 − e

−(k1, +′ + k2, +′ )t
), (14)

l1(t) = k−
k1, +′ − k2, +′
k1, +′ + k2, +′ t +

k1, +′
k1, +′ + k2, +′ N −

2k−
k1, +′ + k2, +′ (1 − e

−(k1, +′ + k2, +′ )t
) . (15)

As in the preceding general case, after the initial growth τg = O 1
k1, +′ + k2, +′ , the filaments 

will reach the respective lengths 
k1, +′

k1, +′ + k2, +′ N and 
k2, +′

k1, +′ + k2, +′ N, i.e., both filaments will be 

of order N. After that, they will go through an adjustment phase τa, during which the second 

filament will linearly decrease to zero and the first will grow to include nearly all N. We can 

compute τa, by using Equation 14 and setting l2(τa) = 0; hence, by ignoring the small 

exponential term in Equation 14, τa results from solving the linear equation, which produces

τa =
k2, +′

k−(k1, +′ − k2, +′ ) N −
2k−

k1, +′ + k2, +′ ≈ N
κd2

(k1, +′ − k2, +′ ) . (16)

When k1, +′  and k2, +′  are close, this adjustment time will be very large, but will still scale 

linearly in N; one could think of this phase as diffusion with a small drift k1, +′ − k2, +′ .

Therefore, at the end of this adjustment phase, we have

l2(τa) = 0, l1(τa) = N − 2k
k1, +′ + k2, +′ , m(τa) =

2k−
k1, +′ + k2, +′ . (17)
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Finally, for t > τa, there will be a very small correction in size, such that m(t) κd1
 and 

l1(t) N − κd1
.while l2(t) = 0. This will occur very quickly in time O(1/k1 +′ ).

Diffusion time scale τd

In case of two or more fast growing filaments, after the preceding growth and linear 

adjustment phases are completed, these large filaments will perform a random diffusion until 

they reach the steady state in diffusion time τd. The diffusion constant for this random walk 

is D = (f − 1)k−/f, which will be computed in the following section. In order to reach the 

steady state, the filaments need to cover at least the total average filament length (N − κd), 

which will happen in time of the order τd ≈ N2/(2D) = N2/k_.

If we take into account the estimated in vivo rate of disassembly k− ≈ 601
s  (see “Estimates 

for actin cables in yeast” section in STAR Methods), τd ~ several days. In other words, it is 

impossible to see fluctuations in the time scale of experiments. The fraction of F-actin to G-

actin in cells and the fraction of F-actin in patches are not well characterized and could 

contribute to an error to the estimate. But, at the same time, the fact that we do not see the 

fluctuations in minutes could hint that there are additional length control mechanisms at play 

and the cables are not determined just by the limited pool of actin monomers.

Calculation of diffusion constant D

As noted earlier, in this section we will provide further arguments that the filament lengths 

perform a random walk in steady state for the case of equal nucleating centers, and compute 

its diffusion constant D. Consider the steady state time dynamics of Li(t), where Li(t) is the 

length of filament i at time t, and let all assembly and disassembly rates be equal k′i,+ = k′+ 

and k′i,− = k′−, respectively.

Using the analysis from the preceding sections (for finite f), we know that the number of free 

monomers M in steady state is approximately Poisson with mean κd and standard deviation 

κd, implying when κd ≫ 1, that P[ | M − κd | < 2 κd] ≈ 1. This and L1 + ⋯ + Lf = N − M 

yield for 1 ≪ κd ≪ N,

P[ |L1 + ⋯ + L f − (N − κd) | < 2 κd] ≈ 1. (18)

Thus, the filaments perform a random walk in steady state in a close proximity of the 

hyperplane

L1(t) + … + L f (t) ≈ N − κd, (19)

and the number of free monomers is very close to
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M(t) ≈ κd =
k−
k′+

. (20)

Next, let us pick an interval of time T, such that 1/(fk′+) ≪ T ≪ N2. Now, consider the first 

filament L1. Then, in interval (0, T), a Poisson number of monomers with mean Tk_ leaves 

L1. Each of these monomers is delayed in the free monomer pool an exponential amount of 

time with mean 1/(fk′+), and then it rejoins one of the filaments. Note that the randomly 

delayed Poisson process is again Poisson with the same rate k−. After passing through the 

free monomer pool, each of the monomers will rejoin one of the filaments with probability 

1/f. Hence, Tk_/f of these monomers will return to the first filament. Therefore, the net 

number of monomers that leaves the first filament is approximately Poisson with equal mean 

and variance given by f − 1
f Tk−.

On the other hand, the f − 1 filaments Li, 2 ≤ i ≤ f, will contribute an independent Poisson 

number of monomers of mean 
Tk−

f . Since these contributions are independent and Poisson, 

their total sum is Poisson with mean and variance equal to f − 1
f Tk−.

Thus, by summing the preceding variances for the total number of monomers that leave and 

arrive, we obtain, for 1 ≪ T ≪ N2, that

Var(L1(T) − L1(0)) ≈ 2 f − 1
f Tk− . (21)

As we can see, the net average number of monomers that leave and arrive to a filament is 

zero. Hence, the only mechanism with which the filaments change their lengths and 

approach the steady state is by performing a random walk/diffusion in the proximity of L1 + 

L2 + ⋯ Lf ≈ N − κd hyper-plane. This will happen very slowly, in time τd = O(N2); see the 

preceding section. After the system reaches the steady state, this random walk will continue 

indefinitely.

For f = 2, the variance is Tk_ and consequently the diffusion constant D is k_/2.

Main inferences and estimates

In this section, we briefly summarize our results and make a number of additional inferences 

that are relevant for biology.

Fraction of monomers in filaments

From section “Heuristic derivation of filament distributions” we see that the number of free 

monomers M for finite f is closely approximated by the Poisson distribution with mean 

M ≈ κd = k−/k+′  (recall k′+ is the assembly rate per monomer and k− is the rate of removal 
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of monomers); note that, in the case of unequal nucleating centers, κd is the smallest 

disassociation constant. Hence, the mean number of assembled monomers in all filaments is 

given by N − κd, where N is the total number of monomers. The fraction of monomers in 

filamentous form relative to the total pool of monomers is given by 

g = (N − κd)/N = 1 − k−/(Nk+′ ). Typically the initial rate of assembly, Nk′+ is much faster 

than the rate of disassembly k− (Example: In actin, k′+ = 11.6 μM−1s−1 and k− = 1.4 s−1 

(Pollard, 1986) at the barbed end of the filament); then this ratio determines the ratio of free 

monomers at steady state, which will be very small.

From limiting pool mechanism, most of the monomers are going to be in the filaments. In 

order to obtain a different fraction of monomers in the filamentous form, k′+ and k− will 

have to be fine-tuned. Such fine-tuning is not seen very often in biology, and cells probably 

get by this situation by having additional length control mechanisms.

Steady state properties in case of equal nucleating centers

From the approximate expression (Equation 2) for the distribution, or by symmetry, one 

easily computes an intuitively expected mean filament length L ≈
N − κd

f , i.e., the average 

filament lengths are equal. However, the filament distribution is flat with a very high 

variance/standard deviation. To compute the variance/standard deviation, we obtain 〈L〉2 ≈ 
(N − κd)2/(f(f + 1)) using (Equation 2), and combine it with the preceding expression for the 

mean

σL ≈
N − κd

f
f − 1
f + 1 ≈ L f − 1

f + 1 . (22)

We see, maybe somewhat surprisingly, that the standard deviation is of the same order as N 
and the mean. In the case of f = 2, the distribution is entirely flat, i.e., uniform in interval (0, 

N − κd)

p(l) ≈ 1
N − κd

, (23)

and p(l) ≈ 0 outside of it. The mean of this distribution is (N − κd)/2 and the standard 

deviation is (N − κd)/(2 3).

Interestingly, when the number of filaments scale with N, i.e., N/(N + f) → ϕ, 0 < ϕ < 1, the 

preceding power law distribution turns into geometric with parameter ϕ.

Steady state properties in case of unequal nucleating centers

Let us first consider f = 2 that are growing in two unequal nucleating centers. The 

distribution of first filament (k1, +′ > k2, +′ ; κd1
< κd2

) is peaked and second filament is 

Mohapatra et al. Page 22

Cell Syst. Author manuscript; available in PMC 2018 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



geometric, i.e., p2(l) ≈ 1 −
κd1
κd2

κd1
κd2

l

. The approximate average lengths of the first and 

second filament are respectively given by

L1 ≈ N − κd1
−

κd1
κd2

− κd1
, L2 ≈

κd1
κd2

− κd1
. (24)

The one with higher assembly rates always takes up most of the monomers, leaving not 

much for the other one. In addition, the average length of the first filament increases with N, 

while the second one remains constant. Furthermore, their variances are given by

Var(L1) ≈ κd1
+

κd1
κd2

κd2
− κd1

2 , Var(L2) ≈
κd1

κd2

κd2
− κd1

2 . (25)

Here, both variances remain constant as N increases. In either case, it is impossible to obtain 

multiple peaked distributions of individual filaments with just finite monomer pool. We need 

additional size-control mechanisms to achieve that.

Finally, if two groups of finitely many filaments f1, f2 are growing, where the first group has 

higher assembly rate kh, +′ , and the second group slower rate ks, +′ , kh, +′ > ks, +′ , then the 

second group will have f2 geometrically distributed filaments. Hence, the expected total 

number of monomers in the second group will be f 2κdh
/(κds

− κdh
), and the first group will 

have N − κdh
− f 2κdh

/(κds
− κdh

). Similarly as in the case of two filaments, the variance of 

each group remains constant as N increases. The first group will grab almost all the 

monomers, and in the case of a single filament, f1 = 1, its length will be well defined.

However, in case of multiple large filaments, f1 ≥ 2, they will have a power law distribution 

given in Equation 6, with the standard deviation of the same order as the mean, similarly as 

in Equation 22.

Overall, we show that in general there can be at most one large filament with well-defined 

size, and thus, additional size-control mechanisms may be needed to achieve multiple 

filaments of order N.

Time dynamics of the finite monomer pool mechanism

Here, we briefly summarize the main results on the time dynamics of the free monomer 

pool. As shown in section 2, the filaments undergo three phases, namely the growth, linear 

adjustment and diffusion ones.
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Initially, the environment strongly favors assembly which quickly reduces the monomer pool 

to a small fraction of N i.e., the filament lengths become (N), in time

τg = O 1
k1, +′ + ⋯ + k f , +′ . (26)

At the end of this phase, each filament will grow to the order N size

Li ≈
ki, +′ N

k1, +′ + ⋯ + k f , +′ . (27)

After that, in the case of unequal assembly rates, the system will undergo a linear adjustment 

phase for a period of time τa = O(N), during which the filaments with smaller assembly rates 

will reduce to nearly zero, and their dissociated monomers will be taken up by the fastest 

growing filaments. The filaments will follow the dynamics given by Equation 12 until one of 

them reaches the boundary value of zero length. This will happen in time (N). After this 

time, we exclude the filament of zero length, and study the dynamics of the remaining 

filaments until all of those with lower assembly rates reach zero.

For example, if there are six filaments, out of which three are assembled at a higher rate 

kh, +′ , and the other three at a slower rate ks, +′ , kh, +′ > ks, +′ . Then, the slower growing 

filaments will be reduced to zero at time

τa =
ks, +′

3k−(kh, +′ − ks, +′ ) N −
2k−

kh, +′ + ks, +′ ≈ N
3κds

(kh, +′ − ks, +′ ) , (28)

which can be computed by setting Equation 12 to zero for the slowest growing filament(s).

Following the linear adjustment period, in case of more than one fastest growing filament, 

e.g., 3 in the preceding example, the largest filaments will approach the steady state through 

a slow diffusion time scale of the order τd = O(N2). During this phase, the dissociated 

monomers will randomly diffuse between the fast growing filaments, leading to the flat, 

power law, distribution in steady state.

Estimates for actin cables in yeast

Now, we will use previously known experimental numbers to estimate the total amount of 

actin proteins N and the dissociation constant κd for actin cables in budding yeast.

Cables consist of a few actin filaments bundled together. These cables are polymerized by a 

few formins, and hence the assembly rate of cables are about 10 times more than that of 

single filaments, i.e. k+, cables′ ≈ 10 × 10μM−1s−1 (Pollard, 1986; Yu et al., 2011). Dividing 
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this rate by, 40 μm3, the average volume of an yeast cell (Philips), we get 

k+, cables′ ≈ 5 × 10−3s−1.

Also cables are degraded in about a minute (Goode et al., 2015) so considering a few (~3) 

filaments per cross section, 4 microns per filament, and 400 monomers per micron of a 

cable, we estimate a k− ≈ 60 s−1. Hence κd,cables≈ 104. Also, budding yeast contains about 

10μM free actin (Johnston et al., 2015), which translates to N ≈ 2 × 105 actin proteins.

Exact solutions of filament distributions

In this section we derive the exact expressions for the filament distributions. In addition, at 

the end of each subsection, we demonstrate how these exact expressions yield the explicit 

approximations from section “Heuristic derivation of filament distributions”.

Let N be the total number of monomers and f ≥ 1 be the number of filaments. Recall, we use 

l1, l2, …, lf, to denote the number of assembled monomers in filaments 1,2, …, f, 
respectively. Each monomer has a rate ki, +′ , 1 ≤ i ≤ f, of assembly to filament i. Here, we 

consider that each filament disassembles one monomer at a time with disassembly rates kj,−, 

1 ≤ j ≤ f. Furthermore, let κdi
: =

ki, −
k′i, +

, 1 ≤ i ≤ f, be the corresponding dissociation constants, 

and let p(l1, l2, …, lf) be the steady state probability that lengths of filaments 1,2, …, f are 

equal to l1, l2, …, lf, respectively. This model falls into the framework of Queueing Theory 

presented in (Kelly, 1979), and thus, admits a solution given by

p(l1, l2, …, l f ) = p(0)
κd1

−l1κd2

−l2⋯κd f

−l f

(N − l1 − l2 − … − l f )! , (29)

where 0 = (0,0,…,0) and p(0) is the normalization constant obtained from Σp(·) = 1. One can 

also check that Equation 29 is a solution by simply substituting it in the detailed balance 

equations. In addition, this is the unique solution since this Markov chain is aperiodic, 

irreducible and finite.

For f = 1, one can easily compute the normalization constant, and derive the filament 

distribution

p(l) = 1
Q(N + 1, κd)

κd
N − 1e

−κd

(N − l)! , (30)

where Q(N + 1, κd) = Γ(N + 1, κd)/N ! = ∫
κd

∞
tNe−tdt /N ! is the regularized Gamma function. 

Note that the steady state distribution of filament lengths can be computed exactly by using 

the detailed balance equations p(l)k+′ (N − l) = p(l + 1)k−, to obtain p(l) = p(0)κd
N − l/(N − l)!, 
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where κd ≡ k−/k+′ . Typically in cells N ≫ κd, and the normalization constant p(0) is 

numerically indistingushable from e−κd, yielding the following simple formula for filament 

distribution p(l) =
κd
N − le

−κd

(N − l)! , which is reported in the main text and plotted in Figure 1B for 

specific parameters. However, the derivation for single filament does not scale for general f 
since the number of summands grows as O(Nf). To alleviate this problem, in the following 

two subsections we derive a more intuitive representation for the filament distributions using 

the auxiliary random variable. To illustrate the idea for f = 1, we can define an auxiliary 

Poisson random variable M(κd) with mean κd. Then the preceding solution can be 

represented as

p(l) =
P[M(κd) = N − l]

P[M(κd) ≤ N] , (31)

and the number of free monomers can be shown to be truncated Poisson

P[M = m] =
P[M(κd) = m]
P[M(κd) ≤ N] . (32)

Here, it can be readily seen that P[M(κd) ≤ N] is numerically indistinguishable from 1 when 

κd ≪ N, implying that the number of free monomers is effectively Poisson, and the filament 

length is N − M. This probabilistic representation is essential for the derivations for general f 
≥ 2 in the following subsections, as well as the rigorous justifications of our heuristic 

derivations from section “Heuristic derivation of filament distributions”. Due to the inherent 

complexity of computing Equation 29, which requires O(Nf) operations, a number of 

approximate techniques have been developed in prior studies for this and related models. 

These prior techniques relied on integral/transform methods, as well as the algebraic 

computation with special type of scaling; see (Anselmi et al., 2013) and the references 

therein. In contrast to the prior techniques, our probabilistic approach appears to be new, and 

it readily yields explicit approximations for the quantities and range of parameters that are 

relevant in biology.

Equal nucleating centers: κdi
= κd

We start with a few probabilistic identities that will be used in our derivations. Let X be an 

integer valued random variable taking random values in {0,1,2..} and define an indicator/

step function 1[x ≤ n] = 1 is x ≤ n, and 1[x ≤ n] = 0, otherwise. With this notation, for any 

function f(x), we can be conveniently represent the truncated expected value as

∑
m = 0

N
P[X = m] f (m) = f (X)1[X ≤ N] . (33)
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Also, it will be convenient to write the number of combinations by defining (n)k = n(n − 1)(n 
− 2)…(n − k + 1), k ≥ 1 with (n)0 = 1. With this notation,

n
k = n(n − 1)(n − 2)…(n − k + 1)

k! =
(n)k
k! . (34)

Normalization constant—Starting with Equation 29 and Σp(n) = 1, or κd
N e−κd Σ p(n) = 

κd
N e−κd, we derive

p(0)−1κd
Ne

−κd = κd
Ne

−κd ∑
0 ≤ l1 + l2… + l f ≤ N

κd
−(l1 + l2.. f )

(N − l1 − l2…l f )!

= ∑
j = 0

N
∑

l1 + l2… + l f = j

κd
(N − l1 − l2 − ⋯ − l f )

e
−κd

(N − l1 − l2 − ⋯ − l f )!

= ∑
j = 0

N
j + f − 1

f − 1
κd

(N − j)e
−κd

(N − j)!

= ∑
j = 0

N
N + f − 1 − m

f − 1
κd

me
−κd

m!

= 1
( f − 1)! N + f − 1 − M(κd)

f − 11[M(κd) ≤ N] ,

(35)

where in the last equality, we have used Equations 33 and 34. Note that M(κd) is a Poisson 

random variable with mean κd. We introduced the notation M(κd) to differentiate it from the 

free monomer pool M, which is only approximately Poisson. In addition, in the third 

equality, we have used that the number of nonnegative solutions to l1 + l2 + ⋯ + l f = j is 

j + f − 1
f − 1 .

Filament distributions—Next, let 0i denote a vector with i zeros, and let p(0f, N) denotes 

explicitly the normalization constant for a problem with f filaments and N monomers. Then 

it is easy to see that the length distribution for one filament is given by

p(l) = κd
−1 p(0 f , N)

p(0 f − 1, N − l) . (36)

Hence, by combining the preceding expression with Equation 29, we obtain
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p(l) = ( f − 1)
(N − l + f − 2 − M(κd))

f − 21[M(κd) ≤ N − l]

(N + f − 1 − M(κd))
f − 11[M(κd) ≤ N]

. (37)

Free monomer distribution—Similarly, we can easily derive the distribution of free 

monomers

P[M = m] = P[L1 + ⋯ + L f = N − m]

= p(0) ∑
l1 + l2… + l f = N − m

κd
−(N − m)

m!

= p(0)κd
−Ne

κd N + f − 1 − m
f − 1

κd
me

−κd

m!

=
(N + f − 1 − m) f − 1P[M(κd) = m]

(N + f − 1 − M(κd))
f − 11[M(κd) ≤ N]

.

(38)

Now, we can show how the heuristic approximations from the preceding section follow from 

these exact results.

Approximation—Assume first that the number of filaments f is finite, i.e., it doesn’t scale 

with N. Since M(κd) is Poisson, its mean and standard deviation are κd and κd, respectively. 

Hence, when κd ≫ 1, M(κd) is very close to its mean, i.e., it is unlikely to deviate from it 

more than two standard deviations P[ | M(κd) − κd | ≤ 2 κd] ≈ 1. Therefore, when 1 ≪ κd ≪ N, 

we can approximate M(κd) ≈ κd, P[M(κd) ≤ N] ≈ 1 and P[M(κd) ≤ N − l] ≈ 1[l ≤ N − κd], to 

obtain

p(l) ≈
( f − 1)(N − l + f − 2 − κd)

f − 21[1 ≤ N − κd]
(N + f − 1 − κd)

f − 1

p(l) ≈ ( f − 1)
(N − l − κd) f − 21[l ≤ N − κd]

(N − κd) f − 1

p(l) ≈ ( f − 1)
N − κd

1 − 1
N − κd

f − 2
1[l ≤ N − κd],

(39)

,i.e., p(l) has approximately polynomial shape in interval (0, N − κd), and p(l) ≈ 0 outside of 

it. On the other hand, when f is large, i.e., of the order of N, similar reasoning leads to a 

rigorous justification of the geometric approximation from the end of section “Equal 
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nucleating centers”. Here, one has to be more careful in unwinding the numerator and 

denominator in Equation 37 since they will consist of a large number of products. However, 

when l is finite, the numerator and denominator in Equation 37 differ only in a finite number 

of l terms, and we only need to limit these. To this end, we use the fact that κd is a finite 

constant, i.e., κd/N → 0 as N grows, implying P[M(κd) ≤ εN] ≈ 1 for any small ε > 0 and N 
sufficiently large. Hence, for ε small and N large enough, Equation 37 simplifies to

p(l) ≈ ( f − 1)
(N − l + f − 2 − M(κd))

f − 21[M(κd) ≤ εN]

(N + f − 1 − M(κd))
f − 11[M(κd) ≤ εN]

≈ f (N ± ε)l

(N ± ε + f )l + 1

(N − l + f − 2 − M(κd))
f − 2 − l

1[M(κd) ≤ εN]

(N − l + f − 2 − M(κd))
f − 2 − l

1[M(κd) ≤ εN]

= f (N ± ε)l

(N ± ε + f )l + 1 ≈ f Nl

(N + f )l + 1 .

Regarding the free monomer pool, when f is finite, and m ≪ N, then N + f − 1 − m ≈ N, and 

Equation 38 simplifies to

P[M = m] ≈ P[M(κd) = m] . (40)

This also provides a rigorous justification for the previously derived Poisson approximation 

in Equation 3.

Unequal nucleating centers: κd1
< min

2 ≤ i ≤ f
κdi

Before proceeding with the derivations, let us observe that the following analysis can be 

easily extended to include the case when a group of filaments grow at the fastest assembly 

rate, i.e., κd1
= ⋯ = κd f 1

< min
f 1 < i ≤ f

κdi
. However, we omit this extension since it further 

complicates the notation, and just discuss it heuristically in sections “General case” and 

“Aggregate distribution of multiple filaments”.

If X1, X2, …, are independent random variables taking values in non negative integers, then

P[X1 + X2… + Xk = n] = ∑
n1 + n2 + ⋯ + nk = l

P[X1 = n1]P[X2 = n2]⋯P[Xk = nk], (41)

P[X1 + X2 ≤ N] = ∑
n = 0

N
P[X1 = n]P[X2 ≤ N − n] . (42)
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Normalization constant—As before, let M(κd1
) be a Poisson random variable with mean 

κd1
 and Li

∘, 2 ≤ i ≤ f, geometric random variables with parameters κd1
/κdi

. Note that we 

introduce the notation Li
∘ to denote a true geometric variable, and differentiate it from the 

filament length Li, which will only be approximately geometric. Furthermore, we assume 

that M(κd1
) and Li

∘ are independent. Next,

p(0)−1κd1
Ne

−κd1∏i = 2
f 1 −

κd1
κdi

= κd1
Ne

κd1∏i = 2
f 1 −

κd1
κdi

∑
0 ≤ l1 + l2…l f ≤ N

κd1

−l1⋯κd f

−l f

(N − l1 − l2…l f )!

= ∑
j = 0

N
∑

l2… + l f = j
∑

l1 = 0

N − j
∏i = 2

f 1 −
κd1
κdi

κd1
κdi

liκd1

(N − j − l1)
e

−κd1

(N − j − l1)!

= ∑
j = 0

N
P[L2

∘ + ⋯ + L f
∘ = j]P[M(κd1

) ≤ N − j]

= P[M(κd1
) + L2

∘ + ⋯ + L f
∘ ≤ N],

(43)

where in last two inequalities, we used Equations 41 and 42; this gives a compact 

representation for p(0), namely,

p(0) = 1
P[M(κd1

) + L2
∘ + ⋯ + L f

∘ ≤ N]
κd1

Ne
−κd1∏i = 2

f 1 −
κd1
κdi

, (44)

Length distribution for the first filament—Using the above expression, we can 

evaluate the length distribution for the first filament
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p1(l) = p(0) ∑
j = 0

N − l
∑

l2… + l f = j

κd1

−l1…κd f

−l f

(N − l1 − l2…l f )!

= 1
P[M(κd1

) + L2
∘ + ⋯ + L f

∘ ≤ N]
∑
j = 0

N − l
∑

l2… + l f = j
∏i = 2

f 1−
κd1
κdi

κd1
κdi

liκd1

(N − j − l1)
e

−κd1

(N − l1 − l2…l f )!

= 1
P[M(κd1

) + L2
∘ + ⋯ + L f

∘ ≤ N]
∑
j = 0

N − l
P[L2

∘ + ⋯ + L f
∘ = j]P[M(κd1

) = N − l − j]

=
P[M(κd1

) + L2
∘ + ⋯ + L f

∘ = N − l]

P[M(κd1
) + L2

∘ + ⋯ + L f
∘ ≤ N]

.

(45)

For the length distribution of the other filaments, 2 ≤ i ≤f we compute

pi(l) = p(0) ∑
0 ≤ ∑ j ≠ in j ≤ N − l

κdi
−l∏ j ≠ iκd j

−l j

(N − l1 − l2…l f )!

= 1
P[M(κd1

) + L2
∘ + ⋯ + L f

∘ ≤ N]
1 −

κd1
κdi

κd1
κdi

l

× ∑ j = 0
N − l ∑

∑h ≥ 2, h ≠ i lh = j
∏h ≥ 2, h ≠ i

f 1 −
κd1
κdh

κd1
κdh

lh

∑
l1 = 0

N − l − j κd1

(N − l − j − l1)
e

−κd1

(N − l − j − l1)!

=
P[Li

∘ = l]
P[M(κd1

) + L2
∘ + ⋯ + L f

∘ ≤ N]
∑
j = 0

N − l
P ∑

h ≥ 2, h ≠ i
Lh

∘ = j] P[M(κd1
) ≤ N − l − j]

=
P[Li

∘ = l]P[M(κd1
) + ∑ j ≥ 2, j ≠ i L j

∘ ≤ N − l]

P[M(κd1
) + L2

∘ + ⋯ + L f
∘ ≤ N]

.

(46)

Free monomer distribution—By following exactly the same steps one can easily derive 

the exact distribution for the free monomer pool
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P[M = m] =
P[M(κd1

) = m]P[L2
∘ + ⋯ + L f

∘ ≤ N − m]

P[M(κd1
) + L2

∘ + ⋯ + L f
∘ ≤ N]

. (47)

Approximations—Again, we will show how these exact results lead to the justification for 

the heuristic derivation in the preceding section. Assume that f is finite, κd1
≪ N, and 

E[Li
∘] ≤ C with (f−1)C ≪ N, then for N large and l ≪ N − κd1

− ( f − 1)C,

P[M(κd) + L2
∘ + ⋯ + L f

∘ ≤ N] ≈ 1. (48)

The numerator in Equation 46 can be also written as

p M(κd1
) + ∑

j ≥ 2, j ≠ t
L j

∘ ≤ N − l ≈ 1. (49)

Hence, we can simplify Equation 45 to

p1(l) ≈ P[N − M(κd1
) − L2

∘ − ⋯L f
∘ = l], (50)

i.e., the length of the first filament is approximately equal in distribution

L1 ≈ N − M(κd) − L2
∘ − ⋯ − L f

∘ . (51)

Furthermore, when l ≪ N − κd1
− ( f − 1)C, Equations 46, 48 and 49, yield for i ≥ 2

pi(l) ≈ P[Li
∘ = l], (52)

i.e., Li ≈ Li
∘. Hence, the other filaments are approximately geometric. Finally, the equation 

for the free monomer distribution, when in addition m ≪ N − (f − 1)C, is approximately 

Poisson

P[M = m] ≈ P[M(κd1
) = m] . (53)
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Thus the average filament lengths and average number of free monomers are given by 

L1 ≈ N − κd1
− ∑i = 2

f
κd1

κdi
− κd1

, Li ≈
κd1

κdi
− κd1

 and M ≈ κd1
. As noted earlier, in this 

scenario, 〈L1〉 = O(N) and 〈Li〉 = O(1), i ≥ 2, i.e., the first filament takes approximately all 

the monomers.

Gamma function representation of two filaments

In this section, we represent our analytical results in terms of the regularized Gamma 

function, Q(n, κd), that is more suitable for numerical evaluation. Note that Q(n, κd), for 

integer n is equivalent to the cumulative Poisson distribution function, i.e.,

P[M(κd ≤ n] = Q(n + 1, κd) =
Γ(n + 1, κd)

n! , (54)

where Γ(n + 1, κd) = ∫
κd

∞
tne−tdt is the incomplete Gamma function. Now, we will represent 

the distributions from Equations 37, 45, and 46 in terms of for Q(m, κd) for f = 2.

Equal nucleating centers: κdi
= κd—Observe that for f = 2, the Expression 37 reduces to

p(l) =
1[M(κd) ≤ N − l]

(N + 1 − M(κd))1[M(κd) ≤ N] (55)

Next, by using 〈1[M(κd) ≤ N]〉 = P[M(κd) ≤ n] = Q(n + 1, κd) and

M(κd)1[M(κd) ≤ N] = ∑
m = 1

N
m

κd
me

−κd

m! = κdP[M(κd) ≤ N − 1] = κdQ(N, κd) (56)

in the preceding expression for p(l), we obtain

p(l) =
Q(N − l + 1, κd)

(N + 1)Q(N + 1, κd) − κdQ(N, κd) . (57)

Unequal nucleating centers: κd1
< κd2

—Now for f = 2, the expressions in Equations 45 

and 46 reduce to
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p1(l) =
P[M(κd1

) + L2
∘ = N − l]

P[M(κd1
) + L2

∘ ≤ N]
, (58)

and

p2(l) =
P[L2

∘ = l]P[M(κd1
) ≤ N − l]

P[M(κd1
) + L2

∘ ≤ N]
. (59)

First, we derive a regularized gamma function representation for the denominator

P[M(κd1
) + L2

∘ ≤ N] = ∑
i = 0

N
P[M(κd1

) = i]P[L2
∘ ≤ N − i]

= ∑
i = 0

N
P[M(κd1

) = i](1 − P[L2
∘ > N − i])

= P[M(κd1
) ≤ N] − ∑

i = 0

N κd1
i e

−κd1

i!
κd1
κd2

N − i + 1

= P[M(κd1
) ≤ N] −

κd1
κd2

N + 1

e
−κd1

+ κd2 ∑
i = 0

N κd2
i e

−κd2

i!

= Q(N + 1, κd1
) −

κd1
κd2

N + 1

e
−κd1

+ κd2Q(N + 1, κd2
) .

(60)

Next, the numerator in can be represented as
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P[L2
∘ = l]P[M(κd1

) ≤ N − l] = ∑
i = 0

N − l
P[M(κd1

) = i]P[L2
∘ ≤ N − i]

= ∑
i = 0

N κd1
i e

−κd1

i! 1 −
κd1
κd2

κd1
κd2

N − l − i

= 1 −
κd1
κd2

κd1
κd2

N − l

e
−κd1

+ κd2 ∑
i = 0

N − l κd2
i e

−κd2

i!

= 1 −
κd1
κd2

κd1
κd2

N − l

e
−κd1

+ κd2
Q(N − l + 1, κd2

) .

(61)

Hence, by replacing the preceding expressions in the formula for p1(l) and rearranging the 

terms, we obtain

p1(l) =
(κd2

− κd1
)κd1

−(l + 1)κd2
−(N − l + 1)e

κd2Q(N − l + 1, κd2
)

κd1
−(N + 1)e

κd1Q(N + 1, κd1
) − κd2

−(N + 1)e
κd2Q(N + 1, κd2

)
(62)

and similarly, using

P[L2
∘ = l]P[M(κd1

) ≤ N − l] = 1 −
κd1
κd2

κd1
κd2

l

Q(N − l + 1, κd1
), (63)

we obtain

p2(l) =
(κd2

− κd1
)κd2

−(l + 1)κd1
−(N − l + 1)e

κd1Q(N − l + 1, κd1
)

κd1
−(N + 1)e

κd1Q(N + 1, κd1
) − κd2

−(N + 1)e
κd2Q(N + 1, κd2

)
. (64)

Note that we used Equations 57, 62 and 64 to verify our simulation results in Figure 1D and 

Figure 3.
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Aggregate distribution of multiple filaments

While in this paper, we primarily focus on the individual filament distributions, it may be of 

some interest to compute the aggregate distribution for all assembled monomers in a group 

of filaments. To this end, consider a similar situation as in Section “General case”, where 

two groups of finitely many filaments f1 ≥ 2 and f2 ≥ 2 are growing with dissociation 

constants κdh
 and κds

, respectively; f1 + f2 = f. Let filaments L1, ⋯, L f 1
, be part of the first 

nucleating center, and L f 1 + 1, ⋯, Lf, part of the second. Then the total number of assembled 

monomers in each nucleating center is respectively given by S1 = L1 + ⋯ + L f 1
 and 

S2 = L f 1 + 1 + ⋯ + L f , respectively. Here, we provide a heuristic derivation for the aggregate 

distribution. This can be validated using the same type of exact calculations as in section 

“Exact solutions of filament distributions”. To avoid repetitions, we avoid these calculations.

Equal assembly rates: κd = κdh
= κds

—By using the same heuristic arguments as in 

section “Equal nucleating centers”, we can easily compute, for 1 ≤ s ≤ N − κd

P[S1 = s] ≈

s + f 1 − 1
f 1 − 1

N − s − κd + f 2 − 1
f 2 − 1

N − κd + f − 1
f − 1

≈

( f − 1)
N − κd

f − 2
f 1 − 1

s
N − κd

f 1 − 1
1 − s

N − κd

f 2 − 1
,

(65)

i.e., S1 has Beta distribution on interval (0, N − κd) with parameters (f1, f2), which can be 

somewhat pointy. The mean and standard deviation are given by

s1 ≈
f 1
f (N − κd), σs1

≈
f 1
f (N − κd)

f 2
f 1( f + 1) = s1

f 2
f 1( f + 1) . (66)

We can see that the standard deviation is relatively smaller as compared to the single 

filament case, e.g., when f1 = f2, σs1
= s1

1
( f + 1) , which comes from averaging. However, 

it is still very large and of the same order as the mean.

Unequal assembly rates: κdh
< κds

—Recall from section “General case” that all 

filaments in the second group are independent and geometrically distributed with parameter 

κdh
/κds

, which easily implies that the means and variances are given by
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S1 ≈ N − κdh
− f 2

κdh
κds

− κdh

, S2 ≈ f 2

κdh
κds

− κdh

, (67)

Var(S1) ≈ κdh
+ f 2

κdh
κds

(κds
− κdh

)2 , Var(S2) ≈ f 2

κdh
κds

(κds
− κdh

)2 . (68)

Note that only the first structure can grow with N, while the second remains constant. 

Furthermore, the distribution of S2 is given by a negative Binomial

P[S2 = s] ≈ 1 −
κdh
κds

f 2
s + f 2 − 1

f 2 − 1
κdh
κds

s

, (69)

which is a pointy distribution that approaches the Gaussian as f2 increases.

Simulation protocol

We used stochastic simulations to solve the master equations in Equations 1, 2 and 4 in the 

main text. We start with a filament of zero length and then follow the stochastic trajectory of 

the filament. In the simulation, the state of the system is characterized by the filament 

length. In one step of the simulation we choose one of the set of all possible transitions from 

the current state of the system to the next. The transitions are chosen at random according to 

their relative weight, which is proportional to the rate of the transition. Once a particular 

transition is chosen the system is updated to a new state, which becomes the new current 

state. The time elapsed between two consecutive transitions is drawn from an exponential 

distribution, the rate parameter of which equals the sum of all the rates of allowed 

transitions. This process is repeated for a long enough time such that the length of the cable 

reaches steady state. We obtain many such trajectories of a single filament and then compute 

the steady state distributions of filament lengths.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1

Experimental tests of the limiting-pool mechanism

Our study makes several predictions that can be used to test the limiting pool mechanism. 

In case of a single filamentous structure assembled from a pool of monomers, the steady 

state distribution of filament length (STAR Methods, Section “Main inferences and 

estimates”) can be tested in experiments in which the total number of monomers is tuned. 

This can be achieved, for example, by using the microfluidic approach described in 

(Good et al., 2013). We observe that the mean length (N − κd) of the filament depends on 

the total number of monomers whereas the variance (κd) does not. This result can be used 

as a stringent test of the limiting-pool mechanism of size control.

Furthermore, if there are multiple identical structures being made from a common pool of 

monomers, we predict the existence of anti-correlated fluctuations of individual filament 

lengths over time. For the two filament case, we predicted that these fluctuations will be 

observed at time scales of order N2/k−, which can also be tuned by controlling the total 

number of monomers. An experiment with two inequivalent filaments assembling from a 

common monomer pool should also reveal the time scale of order N, during which the 

slower assembling filament loses the monomers it quickly accumulated in the initial 

growth phase.

One example where in vivo experiments can be used to test our predictions for the case of 

filaments is provided by fission yeast cells. These cells have two different types of actin 

structures, namely cables and patches which are assembled by different nucleating factors 

(formins and the Arp2/3 complex, respectively) (Rotty et al., 2015; Suarez et al., 2015). 

Recently it was shown that it is possible reduce the number of patches in yeast cells by 

over-expressing profilin, which is an actin-binding protein that has two specific effects on 

assembly: it significantly favors the formation of cables by increasing the assembly rates 

of formin-nucleated filaments and it inhibits Arp 2/3 mediated branching and hence 

represses the formation of patches (Rotty et al., 2015; Suarez et al., 2015). Thus, by 

regulating the level of profilin either formin or Arp 2/3 generated structures will take up 

most of the available pool of actin monomers. This observation is consistent with our 

calculations since we find that when two structures are competing for the same subunit 

pool the one that assembles faster takes up practically all subunits. Still, further 

experiments need to be performed in which size distributions of different structures are 

measured to quantitatively test predictions of the limiting monomer pool model.

Predictions of the limiting pool mechanism for the case of assembly of three-dimensional 

structures could be tested in C.elegans early embryo cells, where two nucleoli are 

assembled from a shared pool of nucleoli particles. These nucleoli grow equally in size 

up until cell division (~ about 20 minutes) (Weber and Brangwynne, 2015). 

Measurements of the nucleoli size and how they scale with the size of the nucleus are 

consistent with predictions of the limiting pool mechanism (Weber and Brangwynne, 

2015). Experiments have also revealed that during the assembly phase the size (volume) 

of the nucleolus grows with time to the fourth power (Berry et al., 2015). This 

measurement is inconsistent with the assumption of size-independent rates k′+ and k−, 
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and also with the assumption that the rates grow in proportion to the radius of the 

nucleolus, presumably due to the active role played by transcription of rRNA. Regardless, 

in steady state we still expect the assembly and disassembly rates to be balanced, and 

therefore we predict the same diffusive dynamics and large fluctuations of the sizes of 

individual nucleoli, as long as the limiting pool mechanism alone is responsible for their 

size control. Specifically, we predict that in cells engineered to have longer cell cycles 

one should observe the predicted large, anti-correlated fluctuations in individual nucleoli 

sizes.

Time scales of assembly

In the Results section, we discussed different time scales associated with growth of 

filaments from identical nucleating centers, i.e., growth and diffusion timescales and their 

dependence on the number of monomers in the pool. One can use those calculations to 

estimate timescales in the case where multiple actin cables are made from a common 

pool of actin monomers in the mother compartment of a budding yeast cell. Using 

previously published numbers for cell volume (Philips) and rates of association and 

dissociation of monomers to actin filaments (Pollard, 1986), we estimate k′
+ = 5 × 10−3 

1/s. Given that the observed number of actin cables is about ten we predict that the 

growth phase lasts for less than a minute, assuming that there are no additional length 

control mechanisms at play. (See STAR Methods, sections “Growth time scale τg” and 

“Estimates for actin cables in yeast” for details.)

In contrast, we estimate the diffusion time scale to span several days (STAR Methods, 

Section “Diffusion time scale τd”). In other words, we should never observe order-N2 

fluctuations in cable lengths on the time scale of live-cell experiments, given a division 

time of about 90 minutes. Note that for this estimate, we assume that all the actin in the 

mother compartment of the budding yeast cells are used to make cables. This is a 

reasonable assumption as these cells have very few or no patches in their mother 

compartment. A substantially smaller number of actin monomers in cables could bring 

down the estimate of the diffusion time scale considerably due to the N2 dependence of 

this time scale.

Of course, there could be other reasons why large length fluctuations of cables are not 

observed in live cell experiments: other length-control mechanisms could be at play, 

which may reduce length fluctuations, and even lead the system to an altogether different 

steady state. Indeed, several actin and formin binding proteins have been shown to play 

an important role in controlling cable length (Chesarone-Cataldo et al., 2011; Mohapatra 

et al., 2015, 2016).
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Figure 1. Growth of a filament from a single nucleating center and two nucleating centers in the 
presence of a limiting pool of monomers
(A) Schematic showing the growth of a single filament (pink) from a single nucleating 

center (green) in a pool of monomers (in red). (B) (Inset) Numerical simulation of the 

growth trajectory of a single filament from the nucleating center (gray). After a fast growth 

phase, the size attains a steady state. By considering several such trajectories, we compute 

the probability distribution of filament lengths numerically, and a peaked distribution of size 

is obtained (in red). The parameters used for simulations are k+′ = 0.5N free
−1 s−1, k− = 10 s−1 

and N = 1000, where Nfree is the number of free monomers in solution and is equal to N − l 
where l is the length of the filament in monomers. The simulation results are compared with 

the analytical results (blue) obtained in STAR Methods, section “Exact solutions of filament 

distributions”. (C) Schematic showing the growth of filaments (pink) from two nucleating 

centers (green) in a pool of monomers (in red). (D) (Inset) Numerical simulation of the 

growth trajectory of the two individual filaments (red and black) and the sum of their lengths 

(gray). After an initial growth phase where the two filaments grow roughly in unison and the 

total length of the two filaments reaches steady state, we observe anti-correlated fluctuations 
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in the individual lengths. These fluctuations lead to individual filaments having a uniform 

distribution of lengths (red and black) in simulations; we compare these to results obtained 

analytically (blue) in STAR Methods, section “Gamma function representation of two 

filaments”. The parameters used for simulations are k1, +′ = k2, +′ = k+′ = 0.5N free
−1 s−1, k− = 10 

s−1 and N = 1000, where Nfree is the number of free monomers in solution and is equal to N 
− l1 − l2, where l1 and l2 are the lengths of the two filaments.
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Figure 2. Evolution of probability for individual filament lengths in the case of identical 
nucleating centers
In the initial growth phase (black), the distribution of individual filament lengths starts off as 

a peaked distribution whose mean increases, until the total length reaches a steady state. The 

growth phase is followed by the slow phase of monomers swapping which leads to anti-

correlated fluctuations are seen in the individual trajectories, which is translated into the 

increase in the width of the filament length distributions while the mean stays unchanged 

(blue). The final, steady state distribution (red) is flat. (Inset) Plot of variance of the 

distribution (σ2) vs. time of simulation. The variance initially increases linearly with time, 

but later saturates. Time was varied from 0 – 20000 s in steps of 100 s. From the slope of the 

linear part plot of, we find a diffusion constant D = 5 monomer2/s using the relation σ2= 

2Dt. The parameters used for simulations were k+′ = 0.5N free
−1 s−1, k− = 10 s−1, N = 1000 and 

Nfree = N − l1 − l2, is the number of free monomers in solution and l1 and l2 are the lengths 

of the two filaments.
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Figure 3. Growth of filaments from two inequivalent nucleating centers in a limiting pool of 
monomers
(A) Schematic showing the growth of filaments (pink) from two distinct nucleating centers 

(green) in a pool of monomers (in red). (B) (Inset) Numerical simulation of the growth 

trajectory of the filaments from the nucleating centers. Shown are trajectories for 10% 

difference in assembly rate (dark) and 1% difference (light). After a growth phase, where 

both filaments accrue monomers, the faster growing filaments attains a steady state by taking 

up most of the free monomers, while the slower filament shrinks. The faster growing 

filament attains a peaked distribution of size (black) and the slower one attains a geometric 

distribution (red). The parameters used are k1, +′ 10 % = 0.55N free
−1 s−1, k1, +′ 1 % = 0.505N free

−1 s−1, 

k2, +′ 1 % = 0.5N free
−1 s−1, k− = 10 s−1, N = 1000 and Nfree = N − l1 − l2, is the number of free 

monomers in solution and l1 and l2 are the lengths of the two filaments. The simulations are 

overlaid on the results obtained analytically (blue and green) in STAR Methods, section 

“Gamma function representation of two filaments”.
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Figure 4. Growth dynamics of multiple filaments from two types of inequivalent nucleating 
centers
(A) Schematic showing six nucleating centers in a pool of monomers where the first three 

nucleate filaments that grow at a high association rate k′h,+ and the remaining three at a 

slower rate k′s,+ (k′h,+ > k′s,+); all filaments disassemble with the same rate k−. (B) After a 

rapid assembly phase lasting approximately 1/(3(k′h,+ + k′s,+)), the fast and slow growing 

filaments reach the average length of Nk′h,+/(3(k′h,+ + k′s,+)), and Nk′s,+/(3(k′h,+ + k′s,+)), 

respectively. (C) After this rapid assembly phase, the slower growing filaments slowly 

decrease to nearly zero length over a period of time of order N /(3κds
(k′h, + − k′s, +)), where 

κds
= k−/k′s, + is the (dimensionless) dissociation constant for the slow growing filaments. 
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At the end of this phase, the three slow growing filaments are geometrically distributed with 

parameter κdh
/κds

, the free monomer pool approaches a Poisson distribution with mean κdh
, 

and nearly all the monomers, N − κdh
− 3κdh

/(κds
− κdh

), are taken by the fast growing 

filaments, and are equally distributed among them. (D) Finally, the sizes of the three largest 

filaments decorrelate on a slow, diffusion time scale which is of order N2, during which the 

monomers randomly exchange between these large filaments.
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