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Abstract Various factors such as gonadotrophins,

growth factors, and steroid hormones play important

roles in the regulation of oocyte/follicular growth in

mammalian ovaries. In addition to these factors, there is

a bidirectional interaction between oocytes and granulosa

cells that is essential for achieving optimal oocyte

developmental competence. Oocytes play a key role in

this interaction by secreting paracrine factors that alter

the activities of neighboring cumulus cells, such as the

expression of a specific amino acid transporter, choles-

terol biosynthesis, and levels of glycolysis in the

cumulus cells. Among the known oocyte-derived factors,

growth differentiation factor 9 (GDF9) is the dominant

factor mediating the regulation by oocytes leading to

cumulus expansion and granulosa cell proliferation. GDF9

frequently interacts with other oocyte-derived factors in a

synergistic manner. It seems reasonable to speculate that

oocytes growing in vitro require interactions similar to

those in vivo. Some of the oocyte-mediated regulations

have been confirmed in vitro, providing evidence of the

usefulness of culture systems as a strong tool for such

studies. This review discusses in vitro culture of growing

oocytes in terms of oocyte–granulosa cell interactions.
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Introduction

In the mammalian ovary, numerous oocytes degenerate

either before growth or at various stages of growth [1].

Those redundant but ‘‘potential’’ oocytes can be rescued if

they are provided with suitable culture conditions that

allow them to escape degeneration and continue to grow. It

is desirable for oocytes’ health and growth to be main-

tained in culture systems, and granulosa cells around the

oocyte ought to proliferate to prevent spontaneous oocyte

denudation. On that basis, both oocytes and granulosa cells

should be functional. In addition to this, recent studies have

indicated that a bidirectional interaction between oocytes

and granulosa cells is essential for normal oocyte devel-

opment. It seems reasonable to speculate that oocytes

growing in vitro require similar interactions. In this review,

the oocyte–granulosa cell interactions are considered in

terms of culture conditions, which are presumed to be

crucial for supporting optimum oocyte growth in vitro.

Fertility of oocytes grown in vitro

We already have evidence that oocytes can grow and

mature into ‘‘normal’’ ova in vitro. Eppig and Schroeder [2]

reported the production of the first mice derived from

oocytes cultured for the latter half of their growth period.

Several other studies have also reported viable mouse off-

spring produced from a similar growth stage of oocytes

[3–6]. A combination of preantral follicle culture following

an 8-day organ culture of newborn mouse ovaries produced

the first live offspring, named Eggbert, from an oocyte

grown in vitro for the entire growth period [7]. The culture

system has since been remarkably improved [8]. Besides the

mouse, the cow is the only mammal the offspring of which
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have been born from oocytes grown in vitro from the stage

where they were approximately 75–80% of the maximum

oocyte diameter after a 14-day culture period [9, 10].

On the other hand, rat oocytes grown in vitro were able

to complete meiosis, but did not undergo preimplantation

development [11]. Similarly, pig oocytes cultured for

16 days from preantral follicles were able to mature and

undergo fertilization, but were unable to develop the male

pronucleus [12].

Basic culture conditions

Before discussing the oocyte–granulosa cell interactions, it

is useful to summarize the culture systems developed to

date and the basic conditions necessary to support the

survival of oocytes and granulosa cells. This is because if

culture conditions are suboptimal for either oocytes or

granulosa cells, no further bidirectional communication

would be expected.

Two major types of culture systems

Several different culture systems have been developed

[13]. These can be divided into two types according to

the structure of the follicles or oocyte–granulosa cell

complexes [13] depending on whether follicles/complexes

spread on a substratum (the substratum-adhering type,

Fig. 1a–d) or maintain their spherical shape (the sphere

type, Fig. 1e, f). In the former type, preantral follicles or

oocyte–granulosa cell complexes adhere to the substratum

and proliferate outward, creating a gentle swelling around

the oocyte [4, 5, 7, 14]. The simplicity of this type of

system gives it an advantage in terms of narrowing down

the basic conditions for oocyte growth regulation [15].

Alternatively, follicular cells on the substratum proliferate

to form a dome-like structure, as has been reported in the

mouse [16–18], rat [19], cow [10], and pig [20]. In the

sphere type of system, each preantral follicle or oocyte–

granulosa cell complex maintains or grows into a spherical

shape, developing an antral cavity if subjected to proper

stimulation, as has been reported in the mouse [3, 21–24],

cow [25–28], pig [12, 29], sheep [30, 31], goat [32–34],

and human [35, 36]. To achieve a 3-D culture, follicles/

complexes are often embedded in collagen- [37] or algi-

nate-based matrices [36, 38, 39].

Medium supplements affecting follicle/oocyte viability

Studies on the mitogenic effect of follicle-stimulating

hormone (FSH) and its second messenger cyclic adenosine

monophosphate (cAMP) have been conducted. While FSH

a

b

c

d

e

f

Fig. 1 Typical morphologies of oocyte–granulosa cell complexes

developed in vitro. a Mouse complexes after a 10-day culture period

on collagen-coated substratum, and b a simplified illustration.

c Bovine complexes after a 14-day culture period on collagen-coated

substratum, and d a simplified illustration. e Bovine complexes after a

16-day culture period within the collagen matrices, and f a simplified

illustration. Scale bars 100 lm (a), 200 lm (c), and 500 lm (e)
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is not indispensable to mouse oocyte growth [2], intact

preantral follicles (composed of the oocyte, granulosa cells,

theca cells, and the basement membrane) survive and grow

better in FSH-supplemented medium than in a control

medium [40, 41]. Similarly, porcine oocyte–granulosa cell

complexes survived better in a medium containing FSH

than in one without [42]. In contrast, a luteinizing hormone

(LH)-supplemented medium diminished the viability of

follicles [43].

Cyclic AMP is known to be involved in various

aspects of ovarian regulation [44]. Dibutyryl cyclic AMP

(dbcAMP), a cell-permeable analogue of cAMP, has fre-

quently been used to test its effect in culture. Mouse fol-

licle growth in vitro was promoted with dbcAMP [22].

Similarly, 4 mM hypoxanthine, a natural inhibitor of

phosphodiesterase, which degrades intracellular cAMP

[45], was beneficial to the survival of bovine oocyte–

granulosa cell complexes [25, 27]. The concentration of

hypoxanthine in mouse follicular fluid was estimated to be

2–4 mM [46].

The effects of other factors on the viability of follicles

and oocytes have been also examined. Epidermal growth

factor (EGF)-supplemented medium was twice as effective

as the control medium in promoting the survival of mouse

follicles [7]. A synergistic effect of EGF and insulin-like

growth factor I (IGF-I) on oocyte survival has been

observed in the goat [32] and pig [29]. In the pig, however,

the same combination increased apoptosis in a serum-free

medium [29].

Medium supplements affecting oocyte growth

Mouse oocytes grown in a medium containing fetal bovine

serum are more competent in embryogenesis than those

grown in a serum-free medium [47]. The addition of

dbcAMP [22] or hypoxanthine [25, 27, 42] to the medium

is also beneficial to the growth and acquisition of meiotic

competence of oocytes. Similarly, a combination of FSH

and LH can promote the acquisition of oocyte meiotic

competence [43] and developmental competence [48].

However, under culture conditions optimized without the

use of FSH, supplementary FSH can reduce oocyte

developmental competence [49].

Epidermal growth factor [7] and IGF-I [50] used in

mouse oocyte growth cultures have improved the devel-

opmental competence of oocytes. In addition, the growth of

caprine preantral follicles is improved by a synergistic

effect of IGF-I and EGF [32]. Activin A is also beneficial

to bovine oocyte growth [28], but follicle survival was

impaired after activin A-treatment in a mouse study [51].

Androgens are other biological factors that promote the

acquisition of meiotic competence in vitro [52, 53]. Con-

versely, oocytes grown in a medium containing anti-

androgenic compounds are not capable of maturation [18].

Therefore, it appears to be beneficial to add androgen to the

medium for oocyte growth, particularly when theca cells

are removed before the culture. On the other hand, exog-

enous estradiol may be unnecessary for the production of

oocytes that are capable of maturation [41, 54]. Rather,

excess exposure to estrogen during oocyte growth appears

to decrease the probability of successful fertilization [48].

However, a recent mouse study has uncovered a role for

estrogen and oocyte-derived factors together in promoting

the ability of cumulus cells to undergo expansion [55].

It is well established that c-Kit and c-Kit ligand (KL) are

involved in oocyte–granulosa cell interactions [56]. The

addition of the KL to the culture medium promotes the

growth of mouse oocytes within the cultured follicles [57,

58] and even in those without associated granulosa cells

[59]. Within the follicles, however, appropriately supple-

mented FSH is needed in the modulation by KL to promote

oocyte growth [60].

Besides biological factors present in ovaries, high con-

centrations of polyvinylpyrrolidone (PVP; molecular

weight: 360,000) improve the survival and growth of

bovine oocyte–granulosa cell complexes [10]. A calf was

produced from an oocyte grown in medium supplemented

with 4% PVP [10]. Furthermore, a combined supplement of

PVP and fibroblast growth factor-7 improved the growth of

bovine oocytes [61].

Medium supplements affecting granulosa cells

Carroll et al. [22] have reported a remarkable improvement

in the growth of mouse preantral follicles after the addition

of dbcAMP to the medium. Similarly, hypoxanthine pro-

motes the survival of intact bovine early antral follicles

[27] and helps to maintain the association between oocytes

and the surrounding granulosa cells [62]. In another study,

a specific phosphodiesterase present in granulosa cells was

targeted with two phosphodiesterase type 3-inhibitors

(PDE3-Is), org9935 and cilostamide, resulting in the pro-

motion of growth, differentiation, and survival of mouse

preantral follicles [63].

Intact mouse preantral follicles cultured in medium

without FSH show reduced survival during long-term

culture [64]. In addition, FSH plays an important role in

promoting granulosa cell differentiation in cells from pre-

antral follicles, so that these cells respond to LH stimula-

tion [65]. However, granulosa cells exposed to excess FSH

during follicle growth in vitro, show unusual expression of

LH receptors, which may impair the developmental com-

petence of oocytes [49].

Besides the factors described above, estradiol [66] and

androstenedione [67, 68] are potent stimulators of follicular

growth in vitro. IGF-I also enhances granulosa cell
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proliferation, maintenance of follicular integrity, and the

survival of oocytes in vitro [29, 32].

Medium supplements affecting antrum formation

Intact mouse preantral follicles develop into morphologi-

cally normal antral follicles in FSH-supplemented medium

and retain their spherical shape [23]. On the other hand, in

a substratum-adhering system, the spherical shape col-

lapses, instead transforming into a dome-like structure

[16, 19, 21, 40, 69]. Bovine and porcine oocyte–granulosa

cell complexes develop a dome-like structure in media

containing high concentrations of PVP [10, 20]. However,

FSH was not added to the culture medium in these studies.

It is interesting that the ‘‘mural’’ granulosa cell masses

grow in a rim pattern remotely from the oocyte at the

center, even in the absence of the dome formation [14].

Besides FSH, antral formation of mouse preantral fol-

licles is promoted by the addition of dbcAMP [69] and

androstenedione [67, 68] to the medium. Activin A has also

been shown to promote follicular antrum formation in the

rat [70] and humans [35].

Oocyte–granulosa cell interactions

The discovery and molecular characterization of oocyte-

derived factors in the 1990s showed that oocytes secrete

paracrine factors, thereby generating bidirectional interac-

tions between oocytes and granulosa cells, which are

essential for achieving optimal oocyte developmental

competence [71, 72]. Until then, many lines of experi-

mental evidence drew attention to the passive activity of

the oocyte during growth, for example, a large part of the

nutrition of growing oocytes is delivered by the associated

granulosa cells [73]. However, a recent study still identified

a role for granulosa cells in the regulation of intraoocyte

pH via gap junctions [74]. Therefore, oocytes and granu-

losa cells are both important in the elaborate mechanisms

controlling oogenesis and folliculogenesis.

Dominant roles for oocytes

In the bidirectional oocyte–granulosa cell interactions,

oocytes play a key role [75]. Using the expression of LH

receptor mRNA as a marker of the mural granulosa cell

phenotype in the mouse, Eppig et al. [76] clearly demon-

strated that paracrine factor(s) secreted by oocytes play a

dominant role in the establishment of granulosa cell phe-

notypic heterogeneity. Later, by using cumulus marker

mRNA transcripts such as Slc38a3 and Amh, Diaz et al.

[77] demonstrated that oocytes induce cumulus cell dif-

ferentiation through the SMAD2/3 signaling pathway.

Bovine oocytes are capable of determining phenotypic

differences between cumulus cells and mural granulosa

cells [78].

Mouse oocytes alter the metabolic activity of neigh-

boring cumulus cells to counterbalance oocyte-specific

metabolic deficits [79–81]. The paracrine signals secreted

by oocytes promote the expression of a sodium-coupled

neutral amino acid transporter in cumulus cells, which then

increases the oocytes’ uptake of amino acids via the

cumulus cells [79]. Oocytes apply the same strategy to

cholesterol biosynthesis [80] and the glycolytic enzymes of

cumulus cells to increase metabolism cooperatively [81].

Furthermore, bone morphogenetic protein-15 (BMP15) and

fibroblast growth factors (FGFs) secreted by oocytes

cooperate to promote glycolysis in cumulus cells [82].

Growth differentiation factor 9 and BMP15

Growth differentiation factor 9 and BMP15 represent two

major oocyte-derived factors essential for regulating folli-

culogenesis [83–85]. GDF9 and BMP15 are known to reg-

ulate the function of cumulus cells in a synergistic manner

[86–88]. Both of these factors are expressed in mouse

oocytes growing in organ-cultured ovaries [89]. The char-

acteristics of GDF9-null mice are arrested folliculogenesis

Fig. 2 Number of granulosa cells cultured for 3 or 6 days as an

oocyte–granulosa cell complex (?) or as a granulosa cell mass after

the removal of the oocyte (-) in the wells of 96-well culture

plates. a–cValues with different superscripts are significantly different

(p \ 0.05, Tukey test)
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at the primary stage and aberrant expressions of various

genes are involved in follicular functions [90].

One of most well-known activities of oocyte-derived

factors is the promotion of granulosa cell proliferation

[91–93]. In the culture of bovine oocyte–granulosa cell

complexes isolated from early antral follicles, granulosa

cell proliferation ceases after removing the oocyte (Fig. 2).

GDF9 is the major contributor to growth-promoting activity

[94]. In fact, GDF9-supplemented medium enhances the

growth of preantral follicles [95–97]. However, GDF9 does

not account for the entire mitogenic activity originating

from oocytes [98]. For example, BMP15 can promote the

growth of granulosa cells [99].

A rat study suggested an anti-apoptotic effect of GDF9

on the cultured preantral follicles, and also the involvement

of PI3/Akt pathway in the activity [100]. Using bovine

cumulus–oocyte complexes, however, Hussein et al. [101]

found that bone morphogenic proteins prevent cumulus cell

apoptosis but GDF9 does not.

Cumulus expansion-enabling activity

Cumulus expansion-enabling factors (CEEFs) were

the first oocyte-derived factors experimentally ascer-

tained to play a regulatory role in cumulus cell dif-

ferentiation [102, 103]. Later, studies utilizing GDF9

null mice [104] and an RNA interference approach

[105] confirmed that GDF9 is a mediator in oocyte

regulation of cumulus expansion. A recent study

found that the SMAD 2/3 signaling pathway was

involved in the oocytes’ cumulus expansion-enabling

process [106]. In fact, activins as well as GDF9, both

SMAD 2/3 signaling pathway activators, can act as

CEEFs [106].

Granulosa cells in mouse preantral follicles do not

expand in response to hormonal induction. The reason for

this has been identified as a lack of CEEFs from the

growing oocytes and insufficient expression of necessary

transcripts such as Tnfaip6 mRNA [107].

a

b

c

d

Fig. 3 Expansion of mouse and bovine cumulus cells observed

around maturing oocytes after growth in vitro. a Mouse complexes

after a 10-day culture period and b after maturation in vitro. c Bovine

complexes after a 14-day culture period and d after maturation in

vitro. Scale bars 100 lm (a, b) and 200 lm (c, d)
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Oocyte–granulosa cell interactions reproduced in vitro

In the author’s experiments with bovine oocyte–granulosa

cell complexes, granulosa cells proliferate better in the

presence of oocytes (Fig. 2), and, after a 14-day culture

period, cumulus cells acquire the competence to undergo

expansion (Fig. 3). These observations suggest possible

interactions between oocytes and granulosa cells as dis-

cussed above.

In mouse studies, some of the oocyte-mediated regula-

tions have been realized specifically in vitro [18, 55, 89, 108].

Therefore, culture systems for oocyte growth can provide a

strong tool for studies of the oocyte-mediated regulation of

granulosa cell differentiation, such as differentially

expressed androgen receptor protein in mural granulosa

cells and cumulus cells in follicles [18], the acquisition of

the ability of cumulus cells to undergo expansion in

response to EGF [108], and the coordinating activity of

GDF9 and BMP15 [55, 89].

Conclusions

Some of the culture systems discussed in this review have

already been used to address important questions with

regard to the oocyte–granulosa cell interactions (summa-

rized in Fig. 4). Although many other oocyte factors pre-

sumably mediate granulosa cell differentiation in vitro, the

in vitro oocyte growth systems will provide a strong plat-

form for the analysis of the activities of these factors. In the

meantime, it is clear that further improvements to existing

culture systems are necessary, because oocyte competence

does not yet match its in vivo counterparts. A greater

understanding of the oocyte–granulosa cell interactions

will benefit us in our search for the optimal conditions to

culture growing oocytes.
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