Skip to main content
. 2018 Apr 11;12(Suppl 1):10. doi: 10.1186/s12918-018-0529-2

Table 13.

List of model equations used in calculation of mitochondrial Fo/F1-ATPase equations (obtained from [11])

Equation Biological significance
AF1=(1.71e9)∗(ATPm)/(ADPmfpim) AF1 = affinity bracketed expression
VF1D=exp(0.112PSI) ATPase potential generated
F0/F1 ATPase phosphorylation of ADPm
f1=10.5∗AF1 Variable f1
f2=166VF1D Variable f2
f3=(4.85e12)AF1VF1D Variable f3
f4=(1e7+0.135∗AF1)∗275 Variable f4
f5=(7.74+(6.65e8)AF1)VF1D Variable f5
Jp,F1=−60∗ρF1∗((f1f2+f3)/(f4+f5)) Rate of F0/F1 ATPase phosphorylation
JH,F1=180ρF10.213+f1169VF1D/f4+f5 Proton flux due to ATPase
JH,leak=ρleak∗(PSI+24.6) Mitochondrial membrane proton leak
fPDH=1/(1+(1.1∗(1+(15/(1+(CAM/0.05))2)))) Fraction of activated pyruvate
Jred=Jred,basal+6.3944∗fPDHJgly,total NADH reduction rate
ATP/ADP antiport flux
ant1=([ATP4−]i/[ADP3−]i)∗([ADP3−]m/[ATP4−]m)∗exp(−PSI/26.7) Variable ant1
ant2=1+([ATP4−]i/[ADP3−]i)∗exp(−PSI/53.4) Variable ant2
ant3=1+([ADP3−]m/[ATP4−]m) Variable ant3
JANT=Jmax,ANT∗((1−ant1)/(ant2ant3)) Rate of Adenine Nucleotide Translocator (ANT) activity
Phosphorylation of ADPm from TCA cycle
Jp,TCA=(Jred,basal/3)+0.84∗fPDHJgly,total Unbound, 3- charged mitochondrial ADP concentration