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Abstract
Cognitive training has been suggested as a possible remediation of decline in brain structure with older age. However, it is
unknown whether training effects are transient or enduring, as no studies have examined training-induced plasticity
relative to decline in older adults across extended periods with multiple intervention phases. We investigated the temporal
dynamics of brain plasticity across periods on and off memory training, hypothesizing that (1) a decline in white matter
(WM) microstructure would be observed across the duration of the study and (2) that periods of memory training would
moderate the WM microstructural decline. In total, 107 older adults followed a 40-week program, including 2 training
periods separated by periods with no intervention. The general decline in WM microstructure observed across the duration
of the study was moderated following the training periods, demonstrating that cognitive training may mitigate age-related
brain deterioration. The training-related improvements were estimated to subside over time, indicating that continuous
training may be a premise for the enduring attenuation of neural decline. Memory improvements were largely maintained
after the initial training period, and may thus not rely on continuous training to the same degree as WM microstructure.

Key words: aging, cognitive training, memory, plasticity, white matter microstructure

Introduction
Experience-dependent brain plasticity is well documented in
both young and older adults (Draganski et al. 2004; Boyke et al.
2008; Scholz et al. 2009). Targeted cognitive training has thus
been suggested as a possible remediation of decline in brain
structure with older age. Although the evidence for a lifelong
potential for plasticity provides a promising outlook, the pre-
mises for, and limitations of, plasticity is far from fully under-
stood. Studies of young adults indicate that neural alterations
do not persist in the absence of exercise (Draganski et al. 2004),
and that structural changes recede during subsequent training
on the same skill (Driemeyer et al. 2008). Thus, training effects
may not last beyond the intervention periods, and the learning
of new skills may be more effective for the mitigation of decline
relative to sustained training on the same tasks. In older adults,

brain aging itself is likely to influence the time course of plas-
ticity, such that training effects need to be measured in relation
to general decline over time. However, no studies have exam-
ined training-induced plasticity relative to decline in older
adults across extended periods with multiple intervention
phases. Hence, it is unknown whether repeated cognitive inter-
ventions can systematically moderate the magnitude of brain
deterioration in aging, and whether continuous training is a
premise for the attenuation of neural decline. White matter
(WM) microstructure is highly susceptible to age-related deteri-
oration (Sexton et al. 2014; Bender et al. 2016), and short-term
changes in WM have been observed across periods of less than
3 months in healthy older adults (Engvig et al. 2012). Can WM
trajectories be modified, and if so, by what means?
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Evidence suggests that both young and older adults can ben-
efit from memory strategy training (Cavallini et al. 2003; Engvig
et al. 2012; de Lange et al. 2017). As this type of training has
been shown to influence WM microstructure in older adults
(Engvig et al. 2012; de Lange et al. 2017), we investigated
whether periods of memory strategy training could modify tra-
jectories of WM decline in 107 older adults (mean age ± SD =
73.2 ± 2.9), by using an ABAB/BABA design as illustrated in
Figure 1. The training aimed to improve serial verbal recollec-
tion memory by implementing the mnemonic technique
Method of Loci (MoL). An active control group focusing on popu-
lar science was included during the first 10-week period to
investigate the specificity of the memory-training effects. All
participants were examined with magnetic resonance imaging
(MRI) and cognitive testing, with a 10-week interval between each
assessment. Microstructural changes were measured using the dif-
fusion tensor imaging (DTI) derived metrics fractional anisotropy
(FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffu-
sivity (AD). We hypothesized that (1) a decline in WM microstruc-
ture would be observed over 40 weeks, (2) memory training
would moderate the WM microstructural decline, and (3) training
effects on WM microstructure would subside in the absence of
training, but (4) would be reinvoked with a new training period.

Materials and Methods
Sample

The sample was drawn from the project “Neurocognitive
Plasticity” at the Center for Lifespan Changes in Brain and
Cognition (LCBC), Department of Psychology, University of Oslo.
All procedures were approved by the Regional Ethical
Committee of Southern Norway, and written consent was
obtained from all participants. Participants were recruited
through newspaper and webpage adverts, and were screened
with a health interview. Participants were required to be
between 70 and 80 years old, healthy adults, right handed, flu-
ent Norwegian speakers, and have normal or corrected to nor-
mal vision and hearing. Exclusion criteria were history of injury
or disease known to affect central nervous system (CNS) func-
tion, including neurological or psychiatric illness or serious
head trauma, being under psychiatric treatment, use of psycho-
active drugs known to affect CNS functioning, and MRI

contraindications. All scans were evaluated by a neuroradiolo-
gist and deemed to be free of significant injuries or conditions.
For inclusion in the study, participants were required to score ≥
26 on the Mini Mental State Examination (MMSE) (Folstein et al.
1975) and have scores less than 2 standard deviations below
mean on the 5min delayed recall subtest of the California
Verbal Learning Test II (CVLT II) (Delis et al. 2000). Three indivi-
duals were excluded based on these criteria. All participants
further had to achieve an IQ above 85 on the Wechsler
Abbreviated Scale of Intelligence (WASI) (Wechsler 1999). A
total of 125 participants fulfilled the inclusion criteria. Sample
demographics are shown in Table 1.

Design and Training Intervention

Pools of around 20 participants were recruited at a time, and
the participants were assigned to 1 of 3 intervention groups at
registration. The data collection was on-going and continuous
for the 3 conditions simultaneously, ensuring that participants
from all 3 experimental groups were scanned and tested inter-
changeably and thus reducing the possibility of group differ-
ences with regard to the assessment and scanning conditions.
Although group assignments based on date do not comply with
suggested criteria for randomization of participants (Schulz
and Grimes, 2002), practical considerations forced a compro-
mise due to the extensive data collection with strict time inter-
vals and assessments locked to specific dates across 40 weeks.
Group 1 (ABAB) started with 10 weeks of memory training
(N = 57), and moved on to a subsequent rest period with no inter-
vention followed by a second training period, and then a final
rest period. Group 2 (BABA) started with 10 weeks of rest (N = 50),
and moved on to the first training period followed by a rest
period and a subsequent training period. The participants allo-
cated to groups 1 and 2 completed scanning and cognitive testing
at 5 occasions, with a 10-week interval between the assessment
sessions. An active control group (group 3, AC, N = 18) was
included during the first period in order to investigate the specific
cognitive effects of the memory training. The active control parti-
cipants completed scanning and cognitive testing at 2 occasions,
with a 10-week interval between the assessment sessions.

The memory-training program aimed at improving serial
verbal recollection memory by implementing the mnemonic
technique MoL (Bower 1970), which has been shown to improve
serial recall substantially in older adults (Engvig et al. 2010; de
Lange et al. 2016). The training program included a single
course session each week and home assignments involving
memorizing word lists. The first group session included a pre-
sentation of the project, an introduction to the MoL with
instructions, and an initial word list task consisting of 15
words. The following weekly group sessions included updating
of the strategy, clarification of instructions and a word list task,
which was increased by 5 words each week to ensure a contin-
uous challenge. However, the participants were encouraged to
individually adjust the difficulty level, with the aim of achiev-
ing a challenging but manageable training level across all the
participants. Individual adjustment involved increasing/
decreasing the number of words on the tasks to a sufficiently
challenging level, performing the tasks within individual time
limits and recollection of the word lists in reverse order.
Although the exact number of words was subject to individual
adjustment, all participants completed the training with a
weekly increase in number of words. Eight home assignments
were sent out weekly, with a minimum requirement that 4 be

Figure 1. The course of the training program depicted for each of the 3 groups.

In total, 71 participants completed the full study. Drop-out rates are provided in

the Supplementary Material.
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completed. The home assignments consisted of word lists with
various themes and followed the level of difficulty set in the
group session the same week. The tasks included options for
individual adjustment including increasing/decreasing the
number of words, performing the tasks within individual time
limits and recollection of the word lists in reverse order. The
home assignments were completed online. All responses in
addition to time spent on the tasks were registered to a data-
base. The proportion of tasks completed across participants
was 74% during the first training period, and 69% during the
second period. The 2 training periods followed the same struc-
ture and included the same strategy training. The initial level
of difficulty in the second training period corresponded to the
middle level of the first period. The weekly increase in number
of words in the lists was doubled during the last 3 weeks of the
second training period. Thus, the final level of difficulty was
higher in the second training period. The participants were
instructed not to practice any memory training in the rest peri-
ods. The active control group program involved popular scien-
tific lectures once a week. Eight home assignments were sent
out weekly. The home assignments were completed online,
and involved tasks related to the weekly popular scientific
themes. The proportion of tasks completed across participants
in the active control group was 70%. None of the tasks or lec-
tures in the active control program involved any specific form
of memory training. Contact with staff, group meetings and the
number of tasks were matched between the training group and
the active control group. Independent sample t-tests (2-sided)
showed that the number of tasks completed did not differ
between the training group and the active control group (mean ±
SD = 57.6 ± 15.1 (range = 76) for the training group, and 55.5 ±
21.1 (range = 72) for the active control group, t(60) = −0.45 P =
0.7). We have recently investigated the influence of number of
tasks completed on memory improvement and WM microstruc-
ture in the same sample. Number of tasks did not influence
memory improvement or WM microstructural change during the
first 10-week period (de Lange et al. 2017). Test sessions and time
intervals were held identical for all participants, in order to
ensure that test–retest effects would not differ across the groups.

Image Acquisition and Data Processing

A Siemens Skyra 3 T MRI scanner with a 24-channel head-coil
was used (Siemens Medical Solutions; Erlangen, Germany). A
diffusion-weighted echo-planar imaging (EPI) sequence was
applied for each subject (FOVxy = 252 × 256mm, dimensions =
128 × 130 × 70, voxel size = 1.9626 × 1.9626mm2, slice thickness =
2mm, repetition time = 9300ms, echo time = 87ms). Overall,

64 unique diffusion-weighted volumes were collected at b-value =
1000 smm−2 in addition to 2 nondiffusion-weighted (b-value =
0 smm−2) volumes, one acquired with an opposite k-space tra-
versal direction for the purpose of correcting susceptibility arte-
facts. All scan-sets were manually checked for gross motion
artefacts. The susceptibility-induced field was estimated using
the FSL tool topup (Andersson et al. 2003) and corrected for
along with subject motion and eddy current-induced fields
using the eddy tool (Andersson and Sotiropoulos 2016). Signal
dropout caused by subject motion during the diffusion encod-
ing was detected and corrected using the eddy tool, as imple-
mented in FSL (Andersson and Sotiropoulos 2016). Each
acquired slice was compared with a model free prediction, and
if the observed signal was statistically different (3 standard
deviations) from the prediction, it was replaced by the latter.
An average of 0.38, 0.38, and 0.40 slices per volume across sub-
jects were replaced in groups 1, 2, and 3, respectively. The num-
ber of slices replaced did not differ between groups (one-way
analysis of variance, F(2, 467) = 0.23 P = 0.79). Nonbrain tissue
(skull, etc.) was removed using Brain Extraction Tool (Smith
2002), employing a mask based on the nondiffusion-weighted
volume. FA images were created by fitting a tensor model to
the preprocessed diffusion data using FMRIB’s Diffusion
Toolbox (FDT) (Behrens et al. 2003). All participants’ FA data
were then processed with the FSL software package TBSS
(Smith et al. 2006). TBSS is documented to be relatively robust
to potential partial volume effects, as it assesses diffusion indi-
ces only in the estimated centers of WM tracts (Smith et al.
2006; Berlot et al. 2014). The subjects FA images were aligned
into a common space using the nonlinear registration tool
FNIRT (Andersson et al. 2010) which uses a b-spline representa-
tion of the registration warp field (Rueckert et al. 1999). Next,
the mean FA image was calculated and thinned to create a
mean FA skeleton, which represents the centers of all tracts
common to the group. The threshold for the mean FA skeleton
was set at 0.2, resulting in a mask of 137 832 voxels. Each parti-
cipant’s aligned FA data were then projected onto this skeleton.
The nonlinear warps and skeleton projection stages were
repeated using the MD, RD, and AD measures.

Statistical Analyses

The Time Course of WM Microstructural Changes
For each subject at every time point, the average MD, RD, AD,
and FA values were calculated within the mean FA skeleton
mask. The time course of WM microstructural changes was
analyzed using a nonlinear mixed effects model, using the
default covariance pattern (http://uk.mathworks.com/help/

Table 1 Sample demographics.

Group 1 Group 2 Group 3
ABAB (28 F/29M) BABA (34 F/16M) AC (11 F/7M)
M ± SD M ± SD M ± SD

Age 72.8 ± 2.6 73.5 ± 3.2 73.5 ± 2.9
Education 15.4 ± 3.6 14.2 ± 2.6 16.2 ± 2.7
MMSE 28.6 ± 1.3 28.8 ± 1.1 28.2 ± 1.5
IQ 120.3 ± 11.8 117.8 ± 10.9 121.3 ± 5.6
CVLT learning 45.7 ± 10.9 46.6 ± 10.5 50.0 ± 10
CVLT recall 9.7 ± 3.5 9.8 ± 2.8 11.4 ± 3.3
MRI scan interval (days) 75.8 ± 8.3 76.6 ± 3.1 77.3 ± 1.2

Group 1 (ABAB) started with a training period, while Group 2 (BABA) started with a rest period. Group 3 (AC) completed the active control program. A one-way analysis

of variance (Bonferroni corrected) showed no differences between the groups on the above measures.
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stats/nlmefit) as implemented in Matlab. The model applied a
continuous function to describe the estimated time course of
WM microstructural changes across the duration of the study.
Training effects were modeled as improvements relative to a
general decline over time, in contrast to modeling each interval
as a separate slope. This approach was chosen to enable an
overall description of the entire trajectory including both age-
related changes and training effects. The function used to
describe the time course of microstructural changes is provided
below. For simplicity, we refer only to MD in the text.

β β β β
β β β

( ) = + × + × + ×
+ × + × + × ( )

β β−( − ) −( − )t tMD e e

age sex motion 1

t t
0 1 2 4

6 7 8

3
2

5
2

Several terms appear in this expression, each of which
describe different characteristics of MD evolution (t = time).
The first term β0 is an intercept, describing the value of MD at
the beginning of the study (time point 0). This term was mod-
eled as the sum of a fixed effect and a random effect for each
subject, describing an overall group effect while allowing for
individual variation in baseline MD across subjects. The second
term β1 models a linear change in MD over the duration of the
study. The terms β2 and β4 model improvements in MD relative
to the estimated linear change in MD (β1). These improvements
can occur at any time between time points 1 and 5, and be
either positive or negative. β3 and β5 model the times at which
the improvement phases occur. β1, β2, and β4 were modeled as
the sum of a fixed effect and a random effect, allowing both the
slope and the improvements to vary across subjects. The
remaining beta terms modeled the fixed effects of age, sex, and
motion across all time points, and were included to account for
variation in WM microstructure as a function of these variables.
Motion was estimated as the mean of the average Root Mean
Square displacement value across each diffusion-weighted volume
derived from the eddy procedure (Andersson and Sotiropoulos
2016). Missing data were handled within the Matlab LME frame-
work using the method of Little and Rubin (Little and Rubin 2014).
In general, the nonlinear model was shown to improve with the
inclusion of β2 and β4 relative to a more basic model describing
only the intercept (β0) and slope (β1) (increased log-likelihood, and
AIC differences > 2 (Burnham and Anderson 2003), despite the loss
of degrees of freedom in the more complex model (425 vs. 419). For
MD, the log-likelihood increased from 4184.1 to 4185.4, and the
Akaike information criteria (AIC) decreased from −8339.1 to
−8342.8. For FA, the log-likelihood increased from 1492.7 to 1499.9,
and the AIC decreased from −2971.8 to −2969.4).

To investigate whether the general WM trajectories across
the duration of the study resembled the WM changes observed
in normal aging, we compared the estimated annual percent-
age change in the current sample with the annual percentage
change in an independent nontraining sample of older adults,
who were followed for a substantially longer interval of 3.2
years (N = 38). An independent samples t-test (2-sided) was
used to compare the change in the current sample to the
change in the matched sample (sample details and results are
provided in the Supplementary Material).

Memory Improvement
Memory performance was measured using an experimental
word-list test developed to measure verbal recollection. The
test enabled the MoL to be applied, such that the measure of
memory performance was closely related to the utilized tech-
nique, and thus convenient for measuring training gains (see

de Lange et al. (2017) for details). The total number of words
recalled from the word-list test was used as the measure of
memory performance. In a similar fashion to microstructural
changes, memory trajectories were analyzed using a nonlinear
mixed effects (NLME) model, as implemented in Matlab. First,
improvements relative to the intercept were estimated across
the duration of the study, using the following function:

β β β β
β

( ) = + × + × + ×
+ × ( )

β β−( − ) −( − )tMemory e e age

sex 2

t t
0 1 3 5

6

2
2

4
2

The terms β1 and β3 model changes in memory performance
relative to the intercept (β0), while β2 and β4 model the times at
which the changes occur. The intercept (β0) and improvement
phases (β1 and β3) were modeled as random factors. The remain-
ing beta terms model the fixed effects of age and sex across all
time points. Next, we calculated the difference between the esti-
mated performance at the time points of improvement and the
estimated performance before each improvement phase.

To assess possible transfer effects during the first 10-week
period, repeated measure ANCOVAs were run using interven-
tion group as between-subject factor, and change in perfor-
mance on the following tests as dependent variables: The
Wechsler Digit Span test, a working memory test where the
participants were asked to render a sequence of numbers for-
ward and backward, the Rey–Osterrieth Complex figure test
(RCFT), measuring visual recollection (Lezak 2004), an experi-
mentally developed paired-words test, where the participants
were asked to recall pairs of unassociated words, and the CVLT
learning and recall trials. The memory training did not influ-
ence performance on the Digit Span test, the RCFT or the
paired-words test. However, performance on the CVLT learning
and 30-min recall improved to a larger extent in the training
group relative to the control group, reflecting a near-transfer
effect. The results are provided in the Supplementary Material.

Results
The Time Course of Microstructural Changes

The time course of MD is shown in Figure 2. The slope function
(β1) estimated a positive slope, indicating a general increase in
MD across the duration of the study. An improvement in MD

Figure 2. The MD values for each subject (total n = 107) are plotted separately at

each time point. The slope is displayed as a solid line, and the mean values across

all subjects are displayed as red crosses. The full model is displayed as a solid

curved line. The dotted line marks the intercept of the model at time point 0. The

data is modeled according to Equation 1 (see Materials and Methods). MD = mean

diffusivity.
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(decreased MD relative to the slope, β2) was estimated to begin
during the first training period (between time points 1 and 2),
and to wear off during the subsequent rest period (between
time points 2 and 3). The model further found a second
improvement in MD (β4), which was estimated to begin during
the second training period (as shown by the turning point in
the curve between time points 3 and 4), followed by a return
towards the slope in the final rest period (between time points
4 and 5). A summary of the results is presented in Table 2.

The time courses of AD, RD, and FA are shown in Figure 3.
The time courses of AD and RD showed similar results to those
of MD, with a positive slope, indicating an increase in these
metrics across the duration of the study. An improvement in
AD and RD (decreased AD and RD relative to the slope, β2) was
estimated to begin during the first training period (between
time points 1 and 2), and to wear off during the subsequent rest
period (between time points 2 and 3). The model further found
a second improvement in AD and RD (β4), which was estimated
to begin during the second training period (as shown by the
turning point in the curve between time points 3 and 4), fol-
lowed by a return towards the slope in the final rest period
(between time points 4 and 5). The time course of FA showed
variations corresponding to the opposite of those of MD, AD
and RD. The slope function demonstrated a negative slope,
indicating a general decrease in FA across the duration of the
study. An improvement in FA (increased FA relative to the
slope, β2) was estimated to begin during the first training period
(between time points 1 and 2), and to wear off during the sub-
sequent rest period (between time points 2 and 3). The model
further found a second improvement in FA (β4), which was esti-
mated to begin during the second training period (as shown by
the turning point in the curve between time points 3 and 4), fol-
lowed by a return towards the slope in the final rest period
(between time points 4 and 5).

To compare the magnitude of WM microstructural changes
in the 2 improvement phases, we first calculated the mean dif-
ferences in MD and FA during each of the phases estimated by
the model, and then calculated their z-score difference using
the following equation:

(δ − δ ) +δ δ/ SE SE .1 2
2 2
1 1

The parameters δ1 and δ2 represent the magnitude of change
in the model during each improvement phase. SE represents

the standard errors. The 2 improvement phases did not differ
for MD (δ ± = ( ± ) × −SE 0.93 4.05 101

6, δ = ( ± ) × −7.24 8.79 102
6,

z = −0.46, P = 0.64) or FA (δ = (− ± ) × −0.28 1.94 101
3,

δ = ( ± ) × −2.00 3.75 102
3, z = 0.30, P = 0.77).

To investigate effects in specific tracts, the model was run
on MD in the inferior frontal–occipital fasciculus (IFOF), inferior
longitudinal fasciculus (ILF), superior longitudinal fasciculus
(SLF), uncinate fasciculus (UF), and the hippocampal cingulum
bundle (HCB), based on the JHU DTI-based WM atlas (Mori et al.
2005). Bonferroni’s adjustment was applied to correct for multi-
ple comparisons. The slope function demonstrated a positive
slope for all the tracts (ILF: β1 = [7.00 ± 1.90] × 10−6, F[1, 419] =
13.60, P = 2.56 × 10−4, SLF: β1 = [5.49 ± 1.69] × 10−6, F[1, 419] =
10.49, P = 0.001, HCB; β1 = [1.42 ± 0.39] × 10−5, F[1, 419] = 13.06,
P = 3.38 × 10−4; UF β1 = [6.08 ± 2.47] × 10−6, F[1, 419] = 6.08, P =
0.01, IFOF: β1 = [4.98 ± 1.80] × 10−6, F[1, 419] = 7.64, P = 0.01),
indicating a general increase in MD across the duration of the
study. An improvement in MD (decreased MD relative to the
slope, β2) was found in ILF (β2 = [−1.23 ± 0.43] × 10−5, F[1, 419] =
8.41, P = 0.003) and HCB (β2 = [−2.75 ± 0.90] × 10−5, F[1, 419] =
9.20, P = 0.003). This improvement was estimated to begin dur-
ing the first training period (between time points 1 and 2), and
to wear off during the subsequent rest period (between time
points 2 and 3). In these tracts, the model further found a sec-
ond improvement phase (β4, ILF: β4 = [−2.85 ± 0.95] × 10−5, F[1,
419] = 9.12, P = 0.003, HCB: β4 = [−6.34 ± 1.20] × 10−5, F[1, 419] =
10.51, P = 0.001), which was estimated to begin during the sec-
ond training period (as shown by the turning point in the curve
between time points 3 and 4), followed by a return towards the
slope in the final rest period (between time points 4 and 5). No
significant MD improvements (α level for Bonferroni-corrected
P-values = 0.01) were found for SLF (β2 = [−8.71 ± 3.88] × 10−6,
F[1, 419] = 5.03, P = 0.03, β4 = [−1.71 ± 0.84] × 10−5, F[1, 419] =
4.12, P = 0.04), IFOF: β2 = [−6.85 ± 4.16] × 10−6, F[1, 419] = 2.71, P
= 0.10, β4 = [−1.65 ± 0.87] × 10−5, F[1, 419] = 3.62, P = 0.06 and UF
(β2 = [−9.09 ± 5.89] × 10−6, F[1, 419] = 2.38, P = 0.12, β4 = [−1.97 ±
1.21] × 10−5, F[1, 419] = 2.63, P = 0.12). The time course of MD in
SLF and HCB is shown in Figure 4. The spatial locations of the
tracts are shown in Figure 5.

The Time Course of Memory Performance
The time course of memory performance is shown in Figure 6.
The model estimated 2 phases of memory improvement

Table 2 WM microstructure results.

WM Parameter Description Value ± SE F(1, 419) P

MD β1 Slope (6.21 ± 1.77) × 10−6 12.29 5.03 × 10−4

β2 Improvement phase 1 (−9.54 ± 4.05) × 10−6 5.54 0.02
β4 Improvement phase 2 (−21.70 ± 8.79) × 10−6 6.10 0.01

AD β1 Slope (6.63 ± 1.35) × 10−6 8.00 0.01
β2 Improvement phase 1 (−1.07 ± 0.52) × 10−5 4.19 0.04
β4 Improvement phase 2 (−2.34 ± 1.14) × 10−5 4.15 0.04

RD β1 Slope (5.96 ± 1.56) × 10−6 14.63 1.51 × 10−4

β2 Improvement phase 1 (−8.92 ± 3.61) × 10−6 6.09 0.01
β4 Improvement phase 2 (−2.11 ± 0.78) × 10−5 7.43 0.01

FA β1 Slope (−2.09 ± 0.79) × 10−3 6.97 0.01
β2 Improvement phase 1 (3.40 ± 1.94) × 10−3 3.07 0.08
β4 Improvement phase 2 (7.55 ± 3.75) × 10−3 4.06 0.05

Results of the nonlinear mixed effects model for each white matter metric in the full skeleton. The 2 improvement phases were estimated to begin during each train-

ing period. β2 represents the degree of improvement relative to the slope in improvement phase 1. β4 represents the degree of improvement relative to the slope in

improvement phase 2. MD = mean diffusivity; AD = axial diffusivity; RD = radial diffusivity; FA = fractional anisotropy.
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relative to the intercept (β1 ± SE = 10.62 ± 2.24, F[1, 417] = 22.50,
P = 2.89 × 10−6, β3 = 10.84 ± 4.51, F[1, 417] = 5.78, P = 0.02), which
corresponded to the phases of WM microstructural improve-
ments. Memory performance changed significantly during the
first improvement phase (mean change ± SE = 8.50 ± 1.05, z =
5.71, P = 1.0 × 10−05), while the change in performance was not
significant during the second improvement phase (mean
change ± SE = 2.01 ± 1.33, z = 1.07, P = 0.28). A comparison of
the 2 improvement phases (using the same equation as for MD
and FA) showed a larger memory change during the first
improvement phase relative to the second (z = 2.70, P = 0.007).

Correlations between WM microstructure and memory perfor-
mance at each time point of assessment showed no relationship
between MD and memory performance at time point 0 (r = 0.17,
P = 0.30), while negative relationships were observed between
MD and memory performance at time points 1 (r = −0.26, P = 0.01),

Figure 3. The AD, RD, and FA values for each subject are plotted separately at

each time point. In each plot, the slope is displayed as a solid line, the full model

is displayed as a solid curved line, and the dotted line marks the intercept of the

model at time point 0. The mean values across all subjects are displayed as red

crosses. The data is modeled according to Equation 1 (see Materials and Methods).

FA = fractional anisotropy; AD = axial diffusivity; RD = radial diffusivity.

Figure 4. The MD values each subject in inferior longitudinal fasciculus and hippo-

campal cingulum bundle are plotted separately at each time point. In each plot,

the slope is displayed as a solid line, the full model is displayed as a solid curved

line, and the dotted line marks the intercept of the model at time point 0. The

mean values across all subjects are displayed as red crosses. The data is modeled

according to Equation 1 (see Materials and Methods). MD = mean diffusivity.

Figure 5. (A) Sagittal view of the hippocampal cingulum bundle, displayed in

pink. Talairach coordinates x = 114, y = 123, z = 94, overlaid on the mean FA

skeleton (green) and the standard MNI152 T1 mm3 brain template. (B) Axial

view of the inferior longitudinal fasciculus displayed in blue. Talairach coordi-

nates x = 91, y = 115, z = 77, overlaid on the mean FA skeleton (green) and the

standard MNI152 T1mm3 brain template.
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2 (r = −0.43, P = 4.8 × 10−5), 3 (r = −0.41, P = 2.2 × 10−4), 4 (r = −0.28,
P = 0.01), and 5 (r = −0.34, P = 0.06). No relationship was found
between FA and memory performance at time point 0 (r = 0.13,
P = 0.40), while positive relationships were found between FA
and memory performance at time points 1 (r = 0.31, P = 0.02),
2 (r = 0.42, P = 7.8 × 10−5), 3 (r = 0.40, P = 3.4 × 10−4), 4 (r = 0 .34,
P = 0.01), and 5 (r = 0.36, P = 0.06).

Discussion
The results show that targeted training interventions can influ-
ence WM microstructural trajectories in aging. Three main con-
clusions can be drawn: Firstly, the general decline in WM
microstructure across the duration of the study was moderated
following periods of training, demonstrating that cognitive
training may promote a mitigating effect on age-related deteri-
oration in brain structure. Secondly, the data were consistent
with the model description of microstructural training effects
subsiding over time. Hence, continuous training may be a
premise for the enduring attenuation of neural decline. Finally,
memory improvements were largely maintained after the ini-
tial training intervention. Thus, cognitive improvements may
not rely on continuous training to the same degree as WM
microstructure, which is consistent with previous findings
(Driemeyer et al. 2008).

The improvements in both WM microstructure and memory
performance at the final time point of assessment (time point
5, as visible by the means depicted in Figs. 2 and 6) could reflect
a selection bias due to the drop-out rate. Lower cognitive per-
formance among dropouts is commonly observed in longitudi-
nal studies, resulting in a selection bias towards higher
functioning individuals (Salthouse 2014). However, the group of
individuals who completed the full study including time point
5, did not differ from the rest of the sample in terms of age,
education, IQ, MMSE, and CVLT learning and recall, in addition
to MD, FA, and performance on the 100-word test as measured
at baseline (the results are provided in the Supplementary
Material). Hence, although the decrease in sample size towards
the end of the study could have affected the model precision,
the remaining group of participants did not seem to represent a
subsample of higher functioning individuals. As the function
modeled continuous change rather than each interval as a
slope, the onset and duration of the improvement phases were

not forced to occur at the exact position of the measured time
points of assessment. Hence, although the continuous function
estimates a value at every point across the duration of the
study, additional time points of assessment would have
enabled a more precise description of the observed changes.

Although the physiological basis for water diffusion in WM
is not fully understood (Beaulieu 2002), evidence suggests that
WM microstructural decline is reflected by decreased FA and
increased diffusivity, which is commonly observed in aging
(Bennett and Madden 2014; Sexton et al. 2014). The memory
training moderated the magnitude of the age-related decline in
WM microstructure, corresponding to previous studies showing
training-related microstructural plasticity in older adults
(Lövdén , Bodammer, et al. 2010; Bennett et al. 2011; Engvig
et al. 2012). DTI measurements reflect the restriction of water
molecule motion, which can be imposed by cellular properties
such as membranes, axonal density and myelin (Beaulieu
2002). While MD measures general diffusivity, AD and RD repre-
sent the rate of diffusion along the primary and secondary axes
of the diffusion ellipsoid, respectively. FA measures the differ-
ence between the largest eigenvalue relative to the others, and
has been associated with restricted molecular motion caused
by directionally oriented microstructures such as myelin
sheaths and axonal cell membranes (Pierpaoli et al. 1996;
Beaulieu 2002).

The observed trajectories of MD, AD, and RD changes were
accompanied by changes in FA in the opposite direction.
Decreased MD, AD, and RD was accompanied by increased FA
in the mitigation periods, while the opposite pattern was
observed for the general slope across the duration of the study.
Some evidence indicates that age-related decrease in FA is pri-
marily driven by an increase in RD (Bhagat and Beaulieu 2004;
Madden et al. 2009). Given the associations between both FA
and RD and myelin in animal studies (Song et al. 2005;
Blumenfeld-Katzir et al. 2011), the alterations in these metrics
could be driven by changes in myelination. Recent animal stud-
ies have shown training-related increases in immunofluores-
cence staining of myelin basic protein, which is indicative of
myelination, in co-occurrence with increased FA (Blumenfeld-
Katzir et al. 2011; Sampaio-Baptista et al. 2013). Myelination is
also suggested to be a central for human learning (Fields 2008,
2010). Although myelination may modulate the degree of
anisotropy, evidence suggests that axonal membranes largely
contribute to anisotropic diffusion (Beaulieu 2002). Thus, the
changes in FA may also have been affected by the condition of
axonal membranes. While the observed variations in AD could
be associated with axonal alterations (Song et al. 2003), and the
coherence of axonal orientation (Bennett IJ, DJ Madden, CJ
Vaidya, DV Howard, and JH Howard, Jr. 2010), the changes in
MD could indicate underlying alterations in relatively isotropic
structures such as astrocytes (Blumenfeld et al. 2006; Sagi et al.
2012), which has been observed in animals after training
(Blumenfeld-Katzir et al. 2011; Sagi et al. 2012). Alternatively,
reduced MD may be driven by myelination of axons in crossing
fiber regions (Mackey et al. 2012). Thus, the mechanisms under-
lying changes in DTI metrics depends upon the local fiber
architecture. Clearly, signal changes from DTI require careful
interpretation, as the exact neurobiological underpinnings of
diffusion metrics cannot be directly inferred. Although DTI may
be sensitive to underlying cellular changes of large enough vol-
umetric contribution (Sagi et al. 2012; Fields 2015), the signal is
also influenced by how axons are laid out within the voxel, as
the gradients are applied along given axes (Jones et al. 2013).
Diffusion measurements are also prone to cerebrospinal fluid

Figure 6. The memory performance values for each subject are plotted sepa-

rately at each time point. The full model is displayed as a solid curved line, and

the dotted line marks the intercept of the model at time point 0. The mean val-

ues across all subjects are displayed as red crosses. The data is modeled accord-

ing to Equation 2 (see Materials and Methods).
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(CSF) based partial volume artefacts (Alexander et al. 2001;
Metzler-Baddeley et al. 2012). As aging is associated with white
and grey matter loss, the present study could benefit from cor-
rections for CSF contamination to improve the precision of the
WM measures. However, it has been reported that the com-
monly observed age-related differences in DTI metrics cannot
be attributed to partial volume effects (Pfefferbaum and
Sullivan 2003; Bhagat and Beaulieu 2004). The observed
increases in MD, RD, and AD accompanied by decreased FA
across the duration of the study are consistent with a number
of cross-sectional and longitudinal studies showing corre-
sponding patterns in DTI metrics in older age (Bennett et al
2010; Westlye et al. 2010; Sexton et al. 2014; Bender et al. 2016).
Although some aging studies have indicated region-specific
patterns of increased RD and reduced AD (Bennett et al. 2010;
Burzynska et al. 2010), the predominant picture appears to be
one of increased diffusivity in general. Changes in DTI metrics
have previously been observed across periods of less than 3
months in older adults (Engvig et al. 2012), indicating that diffu-
sion MRI is sensitive to short-term changes in microstructure.
The general decline in WM microstructure across the study cor-
responded to the estimated annual change in a matched non-
intervention sample, suggesting that age-related decline in WM
microstructure is detectable over a period of less than a year.

As the cognitive processes involved in mnemonic strategies
are likely to rely on multiple brain areas, efficient transfer and
integration of information between these distributed regions is
critical. Although the overall evidence does not currently dem-
onstrate a high degree of regional specificity in the relationship
between WM integrity and cognition (Madden et al. 2009;
Salthouse 2011; Dresler et al. 2017), the observed differences in
the extracted tracts indicate that the inferior longitudinal fas-
ciculi and the hippocampal cingulum bundle may represent
tracts of particular importance for information transfer that is
beneficial for cognitive improvements after memory strategy
training.

As evidence suggests that learning a new skill may affect
brain structure to a greater extent relative to practicing those
already learned (Driemeyer et al. 2008; Lövdén , Bäckman, et al.
2010), it is possible that a second training period comprising a
new type of training could boost the neural mitigation to a larger
extent. Thus, although beyond the scope of the present study,
comparing the time course of plasticity in response to different
training paradigms, for instance by also applying processed
based working memory training (Karbach and Verhaeghen 2014),
may represent a key focus for future research.

Conclusion
Targeted training has the potential to moderate the magnitude
of age-related brain deterioration. The training-related improve-
ments in WM microstructure were estimated to subside over
time, indicating that continuous training may be a premise for
the enduring attenuation of neural decline. Memory improve-
ments from the initial training period were largely maintained
across the duration of the study. Cognitive improvements may
thus not rely on consistent training to the same degree as WM
microstructure. In conclusion, the results suggest that continu-
ous engagement in cognitive activities may influence brain-aging
trajectories.
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Supplementary material is available at Cerebral Cortex online.
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