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Abstract
For efficient cortical processing, neural circuit dynamics must be spatially and temporally regulated with great precision.
Although parvalbumin-positive (PV) interneurons can control network synchrony, it remains unclear how they contribute to
spatio-temporal patterning of activity. We investigated this by optogenetic inactivation of PV cells with simultaneous two-
photon Ca2+ imaging from populations of neurons in mouse visual cortex in vivo. For both spontaneous and visually evoked
activity, PV interneuron inactivation decreased network synchrony. But, interestingly, the response reliability and spatial
extent of coactive neuronal ensembles during visual stimulation were also disrupted by PV-cell suppression, which reduced
the functional repertoire of ensembles. Thus, PV interneurons can control the spatio-temporal dynamics of multineuronal
activity by functionally sculpting neuronal ensembles and making them more different from each other. In doing so,
inhibitory circuits could help to orthogonalize multicellular patterns of activity, enabling neural circuits to more efficiently
occupy a higher dimensional space of potential dynamics.
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Introduction
In cortical circuits, neurons work together as a group to process
information. The input of a single neuron alone is typically not
enough to make a target cell fire; coincident inputs from multi-
ple excitatory neurons within a certain time window are
required to depolarize the membrane potential beyond a
threshold and trigger firing in the target cell, thereby resulting
in a relay of information. Thus, the cooperative or synchronous
activity of neural populations is likely critical for circuit compu-
tations (Abeles 1991). But synchronous activity must be pre-
cisely regulated. It is known that neural responses to sensory

stimuli are heterogeneous among neurons belonging to the
same group, and even within the same neuron, across brief
timescales. Moreover, recent theoretical studies have suggested
that too much synchronous activity diminishes information
content (Chelaru and Dragoi 2008; Cohen and Kohn 2011). In
addition, hypersynchrony can potentially trigger pathological
brain states, as in epilepsy (McCormick and Contreras 2001).
Although the definition and the time window of “synchronous”
events varies depending on the context, it is clear that balanc-
ing the degree of neural coactivation, or network correlation, is
crucial to maintain functional brain circuits.
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The contributions of inhibitory interneurons to cortical
activity have been extensively studied, as they are important
building blocks of a cortical circuit, yet whether and how they
contribute to information processing by populations of neurons
still remains unclear. For example, parvalbumin positive (PV)
interneurons, which comprise approximately 40% of cortical
interneurons (Rudy et al. 2011), have been suggested to contrib-
ute to network synchrony (Cardin et al. 2009; Sohal et al. 2009).
Also, although a contribution of PV neurons to visual recogni-
tion has been reported (Lee et al. 2012), the link between the
underlying computation and PV-regulated network synchrony
is largely unknown. This is partly due to the fact that previous
studies focused only on the role of PV interneurons in regulat-
ing individual-cell outputs (Zhu et al. 2015), or bulk network
oscillations detected by LFP recording (Cardin et al. 2009; Sohal
et al. 2009). Recording from populations of neurons simulta-
neously with single cell resolution appears necessary to under-
stand their role in information processing.

Based on previous finding that PV interneurons possess dense
inhibitory connections to surrounding local pyramidal neurons
(Packer and Yuste 2011), we hypothesized that this promiscuous
innervation motif might serve to control neural synchrony and
contribute to the spatio-temporal patterning of the neural popu-
lation activity, affecting information coding. To explore this
hypothesis and understand those spatial and temporal regulatory
mechanisms more precisely, we used optogenetics to systemati-
cally suppress PV-cell activity while simultaneously performing
two-photon Ca2+ imaging to record from large numbers of neu-
rons with single-cell resolution, in mouse V1 in vivo. We specifi-
cally focused our analyses on the effects of PV-cell suppression
on correlated activity (“neuronal ensembles”), to understand their
functional contribution to visual information processing. We
imaged both spontaneous and stimulus-evoked cortical activity,
and analyzed those dynamics and the spatial extent of network
synchrony. Our results provide evidence that PV neurons regulate
network dynamics both temporally and spatially, and that they
could contribute to implement information processing by making
ensembles more distinct from each other.

Materials and Methods
Animals

All experimental procedures were carried out in accordance
with Columbia University institutional animal care guidelines.
Animals of both sexes were used, and were housed and main-
tained in a temperature-controlled environment on a 12-h
light–dark cycle, with ad libitum food and water, in the
Columbia University Animal Facility.

Virus Injection

Viruses were injected to PV-Cre mice (Jax: 008069) at the age of
postnatal day (P) 20–30 for in vitro slice experiments, and P40-
60 for in vivo experiments. Procedures were done as described
previously (Atallah et al. 2012; Packer et al. 2012), with some
modification. During surgery, mice were anesthetized with iso-
flurane (initially 2% (partial pressure in air) and reduced to 1%).
A small circle (~1mm in diameter) was thinned over the left V1
using a dental drill to mark the site for craniotomy to target the
putative monocular region. AAV1/hSyn:GCaMP5G was obtained
from the University of Pennsylvania Vector Core, while AAV1/
CAG:Flex-ArchT-tdTomato and AAV1/CAG:Flex-tdTomato were
developed by the Boyden lab and obtained from the University
of North Carolina Vector Core. For in vivo experiments, either

AAV1/CAG:Flex-ArchT-tdTomato or AAV1/CAG:Flex-tdTomato
was mixed with AAV1/hSyn:Flex-GCaMP5G at a 3:1 or 1:2 ratio,
respectively, and injected into L2/3 of the left V1 over a 5min
period, at a depth of 200 μm from the pial surface, using a UMP3
microsyringe pump (World Precision Instruments). Two sites
were injected (2.1mm lateral to the midline, 0.0 or 0.7mm ros-
tral to lambda), and the total volume for each site was 175 nl or
75 nl, respectively. The beveled side of the needle was faced to
the left so that viruses could be injected to and cover the V1
area of the left hemisphere. For the in vitro slice experiment,
200 nl of AAV1/CAG:Flex-ArchT-tdTomato was injected instead.
We designed our injection protocol (especially volume and
depth) carefully to minimize the virus infection in the deep cor-
tical layer, because, as far as we know, excitatory PV neurons
may exist there (Preuss and Kaas 1996).

Slice Preparation and In Vitro Optogenetic Experiments

At 2–3 weeks after the injection, 350-μm thick acute coronal
slices were prepared from virus-injected mice using a Leica
VT1200S vibratome after cardiac perfusion with ice-cold
sucrose solution containing the following (in mM): 27 NaHCO3,
1.5 NaH2O4, 222 sucrose, 2.5 KCl, 3 MgSO4 and 1 CaCl2. Slices
were incubated at 36°C for 30min in ACSF containing (in mM):
126 NaCl, 26 NaHCO3, 1.1 NaH2O4, 10 glucose, 3 KCl, 3 MgSO4

and 1 CaCl2. During recordings, ACSF was similar except for (in
mM): 2 MgSO4 and 2 CaCl2. Sucrose and ACSF solutions were
saturated with 95% O2 and 5% CO2. Whole-cell recordings were
made through 4- to 6-MΩ glass pipettes using Axon Multiclamp
700B amplifiers (Molecular Devices), digitized at 10 kHz with
National Instruments 6259 multichannel cards and recorded
using custom software written using LabView (National
Instruments). Intracellular solution, pH 7.2, contained (in mM):
135 CH3KO4S, 8 NaCl, 10 HEPES, 2 Mg-ATP, 0.3 sodium-GTP, 7
phosphocreatine, and 10.7 biocytin. After ArchT-tdTomato
expressing neurons were patched, a 617-nm LED (LUXEON
Rebel LED, Luxeon Star LEDs) was placed under the slice cham-
ber, the bottom of which was covered by a transparent glass, to
assess the optogenetic manipulation of the patched neurons
upon light illumination. LED illumination was performed in the
middle of current injections or as a background during a series
of current injections. Light intensity at the sample plane was
approximately 17.6mW/mm2.

Immunohistochemistry

We performed immunohistochemistry as described previously
(Pfeffer et al. 2013). Two to three weeks after the virus injection,
the brain of the ArchT-tdTomato- and GCaMP-expressing
mouse was extracted after perfusion with phosphate-buffered
saline (PBS, pH 7.4) and following 4% paraformaldehyde (in PBS)
under isoflurane anesthesia (2%), fixed in 4% paraformaldehyde
at 4°C overnight, and sliced into 50 μm coronal sections. After
the wash with PBS, free-floating sections were blocked with 1%
BSA and 0.1% Triton X-100 in Tris-buffered saline (TBS) for an
hour, and stained with primary antibody (1:1000 rabbit poly-
clonal anti-PV, Abcam, Ab11427) in the dark for at least 48 h at
4°C slowly shaking and with secondary antibody (1:500 goat
antirabbit IgG conjugated with Alexa Fluor® 633, Invitrogen,
A21070) at room temperature for 3–4 h in 0.5% BSA (TBS). Slices
were mounted in Vectashield with DAPI (Vector Labs, H1500),
and confocal images were obtained by a Nikon A1 and high N/A
60× water immersion objective lens (Plan Apo VC 60XWI,
1.20 N/A, Nikon).
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Counting the number of overlapping cells between anti-PV
and ArchT-tdTomato was also performed as described before
(Pfeffer et al. 2013). In our specific case, because ArchT-
tdTomato is localized to the plasma membrane and labels not
only cell bodies but also dendrites and axons (Chow et al. 2010;
Han et al. 2011), and because both pyramidal cells and PV cells
are contacted and/or surrounded by other-neurons’ ArchT-
expressing axons and/or buttons, identification of soma of
ArchT-expressing cells was difficult during in vivo two photon
microscopy (see Supplementary Fig. S1, upper panels). In con-
trast, the confocal-microscopy observation of brain slices after
the immunohistochemistry procedures described above
enabled us to identify slight but substantially characteristic sig-
nals from inside cell bodies, which frequently overlapped with
anti-PV signals (see Supplementary Fig. S1, lower panels, and
Supplementary Movie 2). We used this signal to count the num-
ber of ArchT-tdTomato expressing cells.

In Vivo Two-photon Imaging

In vivo two-photon imaging was performed as described previ-
ously (Miller et al. 2014), with some modifications. Briefly, 2–3
weeks after the virus injection, mice were anesthetized by ure-
thane (1.1mg/g body weight), and anesthesia was maintained
by additional isoflurane (0.3–0.5%). A titanium head plate was
attached to the skull using dental cement, and the cranial win-
dow was made around the virus injection site (1–2mm in diam-
eter) for the subsequent imaging. The activity of cortical
neurons was recorded by imaging fluorescence changes with
two-photon microscopy (Movable Objective Microscope; Sutter
Instrument) and a Ti:sapphire laser (Chameleon Vision II;
Coherent) at 950 nm, through a 20× water immersion objective
(0.95 N.A.; Olympus). Also, a 1030 (or 1050) nm laser was used to
distinguish ArchT-tdTomato (or tdTomato) signals from
GCaMP5 signals. Scanning and image acquisition were con-
trolled by Sutter software, MScan (4.07 frames per second for
512 × 512 pixels). During the imaging, light anesthesia was
maintained by additional isoflurane (0.3–0.5%). Computations
in V1 vary depending on brain state (Froudarakis et al. 2014). To
minimize such experimental variables during our recordings,
we anesthetized animals in the present study. During anesthe-
sia, the brain is far from silent and a substantial amount of sen-
soricortical computation has been reported at the population
level (Froudarakis et al. 2014). On the other hand, in awake
mice, locomotion strongly modulates neural activity in V1
(Niell and Stryker 2010), suggesting that additional and variable
inputs to V1 happen in the brains of awake mice.

In Vivo Electrophysiological Recording from PV Neurons

For the in vivo electrophysiological recording, animals were
prepared as described in the imaging section above. After
mounting the head plate as explained above, we performed
in vivo whole-cell recording as described (Kitamura et al. 2008),
or loose-patch recording as described (Atallah et al. 2012), in
order to count the number of spikes during or without LED illu-
mination. Briefly, under the guidance of the ArchT-tdTomato
signals detected by two-photon microscopy, we targeted the PV
neurons expressing ArchT-tdTomato. The surface of the brain
was covered with 1.5% low-melting-point agarose dissolved in
HEPES buffered saline containing (in mM): 150 NaCl, 2.5 KCl, 10
HEPES, 2 CaCl2, 1 MgCl2 (pH 7.3). A 4- to 6-MΩ glass pipette was
filled with the intracellular solution described in the in vitro
recording section, or with HEPES buffered saline, for the

whole-cell recording or for the loose-patch recording, respectively.
During the recording, anesthesia was maintained by additional
isoflurane (0.3–0.5%).

In addition to the targeted recording from PV-positive neu-
rons, we also performed single-unit recording from multiple
neurons simultaneously using multichannel microelectrode
arrays, and identified putative inhibitory neurons as described
previously (Barthó et al. 2004; Fujisawa et al. 2008). After pre-
paring a 1 × 3-mm window in the skull around the virus injec-
tion site, the dura was removed, and the probe was positioned
so that the tips avoided large blood vessels. The recording sili-
con probe (NeuroNexus) was attached to a micromanipulator
and inserted gradually to the target layer 2/3 of V1 (100–300 μm
depth from the surface of the brain). The probe consisted of 6
shanks (20-μm shank separation), and each shank had 10
recording sites (20-μm separation, 160 μm2 each site; 1–3MΩ
impedance). The wide-band neurophysiological signals were
acquired continuously at 20 kHz on a 256-channel Amplipex
systems (KJE-1001, Amplipex Ltd). Spike sorting was performed
semiautomatically, using KlustaKwik2 (Kadir et al. 2014), fol-
lowed by manual adjustment of the clusters. An autocorrelo-
gram was also obtained to verify the cellular characteristics.
Fast-spiking neurons were distinguished from regular-spiking
neurons by a clustering method as described previously (Barthó
et al. 2004).

Visual Stimulation and In Vivo Optogenetic
Manipulation

Visual stimulation was performed as described previously
(Miller et al. 2014). Visual stimuli were generated using the
MATLAB (MathWorks) Psychophysics Toolbox (Brainard 1996)
and displayed on a liquid crystal display monitor (19-inch
diameter, 60-Hz refresh rate) positioned 15 cm from the right
eye, roughly at 45° to the long axis of the animal. The 617-nm
High-Power LED coupled to the Ø400 μm Core Patch Cable
(Thorlabs) was positioned around the cranial window as
described previously (Atallah et al. 2012). Light intensity at the
tip was approximately 14mW/mm2. The tip was coupled to the
fiber optic cannula (Thorlabs), and positioned under a 20×
water immersion objective (0.95 N.A.; Olympus), to indicate the
center of the imaging window. Overlap of the tip in the imaging
field was avoided, and the distance between the cranial win-
dow and the tip was approximately 1.2mm. The imaging setup,
and the space between cranial window and the objective were
completely enclosed with blackout fabric (Thorlabs). The left
eye was also covered with blackout fabric or tape, to avoid
visual inputs.

Mice were presented with sequences of full-field grating sti-
muli. Eight trials of different angles of the drifting gratings
were performed in 1 session, and the order of presentations
was alternated randomly at each session. The LED stimulation
was delivered during every other visual stimulus, and the LED
stimulation started 0.5 s prior to the onset of the visual stimula-
tion, as described previously (Atallah et al. 2012) (see also
Fig. 2A). Sine wave gratings (100% contrast, 0.035 cycles per
degree, 2 cycles per second) drifting in 8 different directions
were presented for 4 s, followed by 8 s of mean luminescence
gray screen. A total of 10 sessions were performed for each
neural circuit (scanning plane), and the number of the trials of
LED-on and LED-off were set to be equal at each angle of the
drifting grating. The sequences of gratings were synchronized
with image acquisition using Sutter software (MScan; Sutter
Instrument).
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Importantly, because over-suppression of inhibition can result
in epileptiform or bursting network activity (Prince 1978; Connors
1984; Sanchez-Vives and McCormick 2000), and because too
much stimulation of ArchT can cause rebound hyperactivation of
ArchT-expressing cells (Mattis et al. 2012), a moderate range of
inactivation of PV neurons was, in fact, deemed optimal for the
present study. In a recent paper (Zhu et al. 2015), a strong optoge-
netic suppression of PV neurons caused epileptiform activity of
pyramidal neurons. Authors of this work thus employed mild
light illumination and found substantial optogenetic suppression
of PV cells, and the level of pyramidal cell activation was very
similar to our observations, suggesting that our manipulation
was effective, but not pathological.

Recording During Spontaneous Activity

Spontaneous calcium signals were measured for ∼13min with
the gray color displayed on the monitor, with room lights
turned off. During this recording, the 4-s LED illumination for
the optogenetics was performed with a 20-s interval, as
described in Figure 2A. The number of trials for each circuit
ranged between 10 and 20, and was typically 16.

Image Analysis

During periodic 617 nm LED illumination, GCaMP5 signals were
detected via the band-pass emission filter 510/40 (Semrock).
The raw images contained weak background increases.
Considering the fact that neural activity is strongly correlated
with ΔF/F (Akerboom et al. 2012; Peters et al. 2014), we postpro-
cessed images and calculated ΔF/F with the following analyses.
First, for frames during LED illumination, we calculated an
“LED-on baseline” by measuring the median of signal intensi-
ties of all pixels at each frame, and then taking the median of
all these values (excluding onset and offset frames of the LED).
In the same way, a baseline during the 2.5-s period before LED
onset was calculated as an “LED-off baseline” for each trial, and
the difference between those two medians (LED-on baseline
minus LED-off baseline) was calculated for each trial. This dif-
ference value was subtracted from LED-on frames so that the
pixel-wise and cell-wise baselines during LED-on trials nearly
matched the LED-off baselines immediately before it. The dif-
ference used for the subtraction was also used for the baseline
subtraction of each onset and offset frame similarly, but in
those cases, only the pixels showing a baseline increase, which
could be clearly observed and detected by aligning all the pixels
in each frame in the order of the scanning, were processed for
the subtraction.

Those background-corrected images were then processed to
correct brain motion artifacts using the enhanced correlation
coefficient image alignment algorithm (Evangelidis and
Psarakis 2008) or a hidden Markov model (Dombeck et al. 2007;
Kaifosh et al. 2013). The regions of interest (ROIs) for the detec-
tion of neural activity were chosen using PCA/ICA based meth-
ods in MATLAB as described previously (Mukamel et al. 2009)
(the code was kindly distributed by Dr Eran Mukamel), with
some manual adjustment.

Further steps for the processing of GCaMP5 signals to detect
signal change ΔF/F, were performed as described previously
(Peters et al. 2014). The MATLAB code to subtract fluctuations
of the background fluorescence before calculating ΔF/F was
kindly provided by Dr Komiyama (Peters et al. 2014), and was
used with some modification. Briefly, a ring-shaped “back-
ground ROI” was created for each ROI 2–5 pixels away from the

border of each neuronal ROI to a width of 30–35 pixels, and the
size was adjusted in order to contain at least 20 pixels in each
background ROI after all the following steps. From the back-
ground ROI, we removed the pixels that belonged to any neuro-
nal ROIs, and the ones that contained artificially added pixels
(added black pixels at the edge of the image as a result of the
motion correction procedure) at any time point. Then we
removed the pixels that, at some time point(s), showed signals
exceeding that of the neuronal ROI by two times the standard
deviation of the difference between each background ROI pixel
time series and the neuronal ROI time series. The resulting
background ROI signals were averaged at each time point, and
a moving average of the time series was calculated. Using the
moving average instead of the raw background ROI signal was
helpful to minimize the production of an artificially large
increase or decrease at each time point as a result of the sub-
traction, which could have altered the analyses of the timing of
neural activations. Pixels within each neuronal ROI were also
averaged to give a single time course, and then the background
ROI signal was subtracted. Then ΔF/F of GCaMP5 signals of all
neurons in each circuit were calculated.

To quantify neuronal activity, we measured ΔF/F of GCaMP5
signals (Akerboom et al. 2012; Peters et al. 2014) during visual
stimulation, with or without LED stimulation (Fig. 2B,C; see also
Methods). For some analyses, spike probabilities were also
inferred from the ΔF/F (see Supplementary Fig. S3A–E) as an
alternative estimate of neuronal activation, but for maximum
alignment with previous work (Hofer et al. 2011a) in which ΔF/F
data was used directly for the analyses of temporal dynamics
of a neural population, we mainly used ΔF/F data for subse-
quent analyses. Neurons with noisy signal with no apparent
calcium transient were detected by visual inspection and
excluded from further analysis.

Spike probability was inferred from calcium signals ΔF/F
using a fast, nonnegative deconvolution method as described
previously (Vogelstein et al. 2010). As for the parameters used
in the calculation, the decay constant of calcium transients, τ,
was set to 1.3 s, and the P. lam was set to 0.07.

Statistical Analysis

We used MATLAB for statistical analyses. Wilcoxon signed rank
tests was mostly used to determine statistical significance (P <
0.05) unless otherwise indicated. All P values less than 0.0001
were described as “P < 0.0001”.

Data Analysis

For data analyses of the spontaneous activity, signals during LED
illumination (for 4 s) were compared with those before the LED
onset using the same number of frames. For the analyses of the
visually evoked activity, signals acquired during the visual stim-
ulation delivered together with the LED stimulation (for 3.5 s as
shown in Fig. 2A) were compared with the signals during visual
stimulation without LED illumination by using same number of
frames. Nonvisually responsive cells were excluded from further
analysis as described previously (Hofer et al. 2011b), by testing
whether, for each cell, a significant calcium response during
LED-off was observed relative to baseline for at least one grating
direction (one-way ANOVA). Since excitatory cells, which we
analyzed in the present study as described below, do not express
ArchT, we considered cells showing lower average activity to all
drifting gratings during LED illumination than the baseline
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activity as nonvisually responsive cells. In both cases, LED-onset
and -offset frames were excluded from the analyses.

To analyze the orientation tuning curve and related para-
meters (OSI, DSI, and HWHH), the average ΔF/F was taken as
the response to each grating stimulus. For the peri-stimulus
time histogram (PSTH), the LED onset frame was set as a zero
time point. Visually evoked responses during LED-on or LED-off
were separately averaged, and used for further analyses, as
described previously (Hofer et al. 2011a; Atallah et al. 2012;
Miller et al. 2014). Briefly, preferred orientation was taken as
the modulus of the preferred direction to 180°. Orientation
selectivity index (OSI) was calculated as (Respbest – Resportho)/
(Respbest + Resportho), where Respbest is the response at the pre-
ferred direction and Resportho is the average of responses to the
directions orthogonal to the best direction. The direction selec-
tivity index (DSI) was calculated as (Respbest –Respnull)/(Respbest +
Respnull), where Respnull is the response at 180° away from the
best direction. Cells with an OSI < 0.4 (calculated without LED
illumination) were considered to be unselective for orientation.
Most of the inhibitory neurons in V1 possess a lower OSI than
excitatory ones, which means less selectiveness to the most-
preferred orientation of visual stimulation. Since most inhibitory
neurons have OSIs of less than 0.4 (Sohya et al. 2007; Kerlin et al.
2010), we removed OSI-low cells (<0.4) for the analyses, unless
otherwise indicated, in order to remove the potential contamina-
tion of inhibitory neurons. Responses to the 8 grating directions
were fit with orientation tuning curves, i.e., a sum-of-Gaussians
(see Supplementary Fig. S4). The double Gaussians are forced to
peak 180° apart, and to have the same tuning sharpness (σ) but
can have unequal height, with a constant baseline B. For the fit-
ting, standard error for each angle was used together with the
average to estimate the initial parameters and perform the fur-
ther fitting to calculate parameters more accurately. The tuning
sharpness was measured as σ (2 ln(2))1/2, i.e., the half-width at
half height (HWHH).

Change in the activity was assessed by directly comparing
the difference of the activity (average of ΔF/F per second)
between the LED-on and LED-off condition, or by using an
“activity index” to consider the degree of the change. Activity
index was calculated by (Acton –Actoff)/(Acton + Actoff) where
Acton is the activity (ΔF/F) during LED-on and Actoff is the activ-
ity during LED-off (in the case of spontaneous activity, the
Actoff was the activity immediately “before” the LED-on period).
ΔF/F not often but sometimes took a negative value, and ((Acton +
Actoff)) could be zero. In that case, to calculate the activity index,
the smaller value between Acton and Actoff was used as a base-
line, and the baseline was subtracted from both Acton and Actoff
and then the activity index was calculated (as a result, the value
became either −1 or 1). In that case, to consider the effect of LED
illumination statistically, the average of ΔF/F during LED-on and
that during LED-off were compared by Wilcoxon signed rank
test. A one-sample t-test was also used to consider the activity
change (whether the difference between Acton and Actoff was
significantly different from zero), as shown in Supplementary
Fig. S3H, I.

To evaluate the effect of LED illumination on the coactivation
of neural activity, which we call “total correlation” in the pres-
ent study, we calculated pairwise correlations using Pearson’s
correlation coefficient, from the GCaMP5 signals (ΔF/F) of two
cells over the duration of LED-on and LED-off, and they were
compared statistically. To consider the timing of each activity,
raw traces of each neuron were not averaged but instead
concatenated, and used for the calculation. Then the calculated
correlation coefficients were statistically analyzed. We also

performed analyses based on surrogate datasets, as described in
the previous work (Miller et al. 2014). We generated 1000 inde-
pendent surrogate datasets by randomizing the order of the sig-
nals (ΔF/F) within each cell (shuffling within cells), using
concatenated raw traces, so that the timing of the activity was
randomized while the total activity of each cell was preserved.
Using them, 1000 correlation coefficients for each pair were
obtained, and the mean response of each pair was used for the
further statistical analyses.

To investigate the role of PV neurons in regulating the
response reliability of multineuronal activity, we measured cor-
relation coefficients between population activity patterns at dif-
ferent frames (or time points) to calculate “frame–frame
correlation” that represents ensemble similarity. Given that dif-
ferent visual information is assumed to be encoded by different
neuronal ensembles, larger frame–frame correlation between
ensembles during different visual stimuli (different angles of
drifting gratings) means lower stimulus discrimination perfor-
mance. We compared frame–frame correlation at different
states (i.e., LED-off or LED-on) to evaluate the role of PV neu-
rons in the regulation of stimulus-discrimination performance
by the multineuronal activity.

As described previously (Miller et al. 2014), a neuronal ensem-
ble was defined by coactivation of a group of neurons in a high-
activity frame, and the similarity between ensembles was evalu-
ated by calculating the Pearson’s correlation coefficient between
ensembles. Here, raw ΔF/F data were directly thresholded to a
level of 4 SDs above 0 and used to define coactive frames in the
present study (we tested 2, 3, 4, 5 SDs and observed the same
effect of PV-cell suppression). As performed previously (Miller
et al. 2014), frame–frame correlation was calculated without
excluding nonvisually responsive neurons to avoid repeated
thresholding of data, while we also observed a similar effect of
PV-cell suppression when they were excluded. Circuit-by-circuit
analysis (see Supplementary Fig. S5 and 7) was also performed by
calculating the mean response of each circuit.

To investigate the relationship between cell–cell correlation
(total correlation) or neuronal activity, and frame–frame corre-
lation, we calculated the mean response of each circuit, and
analyzed tendencies of overall observed circuits (N = 8 of the
PV-ArchT animals) by measuring Pearson’s correlation coeffi-
cient and statistical significance (P values) between those para-
meters. The role of PV cells was also evaluated by analyzing
changes in those parameters driven by PV-cell suppression.

Relationships between total correlation and distances
between pairs of neurons were also considered. The correlation
coefficients of all pairs were separated into 8 categories
depending on the distances between them: ~50 (i.e., more than
0, and less than or equal to 50), ~100 (i.e., more than 50, and
less than or equal to 100), ~150, ~200, ~250, ~300, ~350, and
~400 μm, as shown in Figure 4. Because number of pairs of
more than 300 μm distance was only about 1% among all pairs,
we used the pairs of 0–300 μm distance for the analyses in this
study. The effect of the LED illumination (LED-off vs. LED-on)
was evaluated statistically by Wilcoxon signed rank test, at
each category, for each condition (visually evoked activity or
spontaneous activity).

LFP Recording and Analysis

For in vivo recording of LFPs in mice, an AgCl-electrode in a
glass pipette filled with saline solution was inserted into
approximate layer 2/3 (250 μm below the surface) in V1 and
referenced to an AgCl-wire surgically inserted onto superficial
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ipsilateral cerebellum. In order to maximize the number of
trials (>100 total collected) and thus the signal-to-noise ratio,
we minimized the duration of the experiment during the visual
stimulation portion by utilizing a slightly shortened stimulus
duration (3 s or 1 s) and interstimulus interval (6 s).

LFP data were manually prescreened for excessive artifacts
(e.g., signal greater than 8 standard deviations, or obvious
breathing or muscle related artifact) and deviant trials were
removed (<10% of trials). The shortened timescale was more
than adequate to capture stimulus-elicited oscillations since
spectral power returned to baseline levels by 2000ms poststimu-
lus onset (see Supplementary Fig. S2E–G). LFPs were segregated
into bins −1000ms pre to 5000ms postgrating stimulus onset.
Data were convolved with a family of modified Morlet wavelets
ranging from 2 to 100Hz in 1Hz and 20ms steps with wavelet
size increasing linearly from 1 to 20 cycles using code written in
MATLAB and EEGLAB 9.0 (Delorme and Makeig 2004). This
approach optimizes effective frequency resolution at low fre-
quencies and time resolution at higher frequencies (Hamm et al.
2012). Oscillatory power was expressed in decibels, or 10 times
log10 of the instantaneous absolute-value of the complex wave-
let result divided by the average absolute value across the base-
line period: −1000 to −600ms pregrating onset. For statistical
comparison, power was averaged across the first 1000ms post-
grating onset (since this was when the majority of the response
was present, see Supplementary Fig. S2E–G) separately for each
frequency bin and compared within animals between LED-on
and LED-off trial averages with paired-samples t-tests (df = 3).

Results
Optogenetic Inactivation of PV Neurons with
Simultaneous Two-photon Ca2+ Imaging In Vivo

To genetically and optogenetically control the activity of PV neu-
rons in a region-specific and subtype-specific manner, we used a
gene expression system based on the adeno-associated virus
(AAV) with PV cell-specific Cre transgenic mice (Atallah et al.
2012). ArchT, which enables the hyperpolarization of ArchT-
expressing neurons upon illumination with specific wavelengths
(Chow et al. 2010; Atallah et al. 2012), was specifically expressed
in the PV interneurons in V1, so that their activities were tempo-
rarily and reversibly inactivated during the light illumination. To
visualize ArchT expression, we used a construct encoding ArchT
fused with tdTomato (ArchT-tdTomato).

An AAV encoding GCaMP5, a genetically encoded calcium indi-
cator (Akerboom et al. 2012; Peters et al. 2014), was simultaneously
injected to monitor the activity of multiple neurons with single-
cell resolution using two-photon microscopy (see Supplementary
Movie 1). GCaMP5 fluorescent signals were distinguishable from
the ArchT-tdTomato signals based on their different emission
spectra (Fig 1A; see Supplementary Fig. S1 upper panels). We
almost never detected GCaMP5 signals from tdTomato-positive
neurons, even though GCaMP5 expression was regulated by the
human synapsin one gene (hsyn) promoter and thus is normally
expressed in all neuron types. Considering that 80% of neurons
in the cortex are excitatory, and that the activity of PV neurons,
the largest subtype of cortical interneurons (Rudy et al. 2011),
were not typically labeled with GCaMP5 in our experiments, we
assumed that most of the imaged neuronal activity arose from
excitatory pyramidal neurons.

After maturation of AAV-driven expression, mice were placed
under a two-photon microscope for imaging (Fig. 1B). To image
GCaMP5 signals during optogenetic stimulation, a band-pass

emission filter 510/40 was used for detection, and a 950-nm laser
was used for the two-photon excitation of GCaMP5. A 617-nm
LED was used for the optogenetic manipulation to avoid overlap
with the detection wavelength window. This wavelength sup-
pressed neuronal activity in PV cells expressing ArchT-tdTomato
in vitro (see Supplementary Fig. S2A and B) as expected from its
broad-action spectrum (400–650 nm)(Chow et al. 2010).

This optogenetic suppression of PV neurons was also con-
firmed in vivo. Though the ArchT-expressing neurons rarely
showed GCaMP5 signals, we did identify one PV neuron labeled
with both (Fig. 1C). The spontaneous activity of this cell was
recorded with or without LED illumination repeatedly (Fig. 1D),
and we found that the activity significantly decreased during
LED illumination (P < 0.01, df = 2, F = 5.77 one-way factorial
ANOVA; further post hoc Tukey–Kramer test showed a signifi-
cant difference between “before-LED” and “during-LED” (P <
0.01), and between “during-LED” and “after-LED” (P < 0.05), but
not between “before-LED” and “after-LED”(P = 0.99) (Average
ΔF/F of GCaMP5 signals (Akerboom et al. 2012; Peters et al. 2014)
per second and s.e. for each condition; “before-LED”, 5.12 ± 0.77
(%); “during-LED”, 1.95 ± 0.53; “after-LED”, 4.97 ± 0.89)).

Electrophysiological recording from PV neurons in vivo also
showed a similar tendency (Fig. 1E–G; see Supplementary Fig.
S2C, D). All recorded PV neurons (n = 3) showed a decreased
spontaneous firing rate during LED illumination (see
Supplementary Fig. S2C, D; average firing rate (spikes per sec)
and s.e. was 4.15 ± 2.00, or 2.91 ± 2.16, for “Before LED” or “During
LED,” respectively). This observed effect is consistent with a pre-
vious report of a 30–40% decrease in spontaneous activity in PV
neurons during optogenetic inactivation using ArchT (Atallah
et al. 2012). Since the impact of PV cell suppression varied (see
Supplementary Fig. S2D), we further performed in vivo recording
using multichannel microelectrode arrays and used the following
analyses to identify putative inhibitory neurons (Barthó et al.
2004), to evaluate the general trend of our optogenetic manipula-
tion (Fig. 1E–G). We identified putative inhibitory neurons as
those showing clear suppression of their activity during LED illu-
mination (an example is shown in Fig. 1E,F). Statistical analyses
of all recorded putative inhibitory interneurons revealed that
they were indeed significantly inactivated by LED illumination
(Fig. 1G). Considering that 30–50% of inhibitory neurons are PV-
positive interneurons in layer 2/3 of V1 (Gonchar et al. 2007), and
that most of the PV cells expressed ArchT as shown below, the
activity index (−26%) suggests that most of the PV interneurons
were moderately and significantly suppressed during the LED
illumination in vivo.

We also evaluated the impact of our optogenetic suppression
of PV cells using a histological method and electrophysiological
recording from the bulk of neurons (local field potential [LFP]
recording). ArchT is a protein that localizes to the cellular mem-
brane (Chow et al. 2010; Han et al. 2011), and both pyramidal cells
and PV cells were contacted and/or surrounded by axons or but-
tons of other ArchT-expressing PV cells, as indicated previously
(Pfeffer et al. 2013). Thus, it was difficult to identify the number of
ArchT-expressing neurons during in vivo two-photon imaging,
and only cells with a very high expression level could be identi-
fied (Fig. 1A; see Supplementary Fig. S1 upper panels). On the
other hand, immunohistochemistry and subsequent observation
by confocal microscopy with a higher N/A objective lens (1.20N/
A, Nikon) enabled us to confirm the specificity of ArchT expres-
sion in PV neurons (see Supplementary Fig. S1, lower panels;
Supplementary Movie 2). We found that more than 85% of PV
neurons expressed ArchT-tdTomato, suggesting that almost all
of the PV neurons were potentially under optogenetic
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manipulation during our experiments. We also performed LFP
recordings from the animals expressing ArchT in PV cells, and
confirmed an expected (Cardin et al. 2009; Sohal et al. 2009)
decrease in stimulus elicited oscillatory power specific to the
gamma-band (see Supplementary Fig. S2E–G). These findings
strongly support the efficacy of our optogenetic manipulation of
PV neurons and also indicated their potential role in the regula-
tion of high frequency cortical synchrony.

Optogenetic Suppression of PV Cells During Visual
Stimulation Increases Neuronal Activity

We then compared results from PV-ArchT expressing animals
with those from control animals (animals expressing tdTomato
instead of ArchT, as explained below), to investigate the spe-
cific role of PV neurons in regulating the dynamics of the local
network.

Neuronal activity was imaged simultaneously from multiple
neurons in layer 2/3 of V1 during visual stimulation or during
spontaneous activity, and the effect of the PV-cell suppression
was investigated across these two conditions (Fig. 2). To quantify
neuronal activity, we measured the ΔF/F of GCaMP5 signals
(Akerboom et al. 2012; Peters et al. 2014) during visual stimulation,
with or without LED stimulation (Fig. 2B,C; see also Methods). We
used ΔF/F for subsequent analyses, instead of inferred spike

probabilities (see Supplementary Fig. S3), for greater consistency
with previous work (Hofer et al. 2011a).

Although most of the imaged cells were likely excitatory (as
explained in the Materials and Methods), the possibility still
remained that they might contain some inhibitory neurons.
Thus, for the following analyses, we computationally removed
putative inhibitory neurons by calculating the OSI (Sohya et al.
2007; Kerlin et al. 2010), unless otherwise indicated.

We then characterized the effects of the suppression of PV
neurons on visually evoked activity. During LED illumination,
neural activity was slightly but significantly increased in animals
in which PV neurons expressed ArchT-tdTomato (PV-ArchT ani-
mals) (Fig. 2D,E). We compared these results with those of control
animals, where PV neurons in V1 only expressed tdTomato
instead of ArchT-tdTomato, and confirmed that PV-cell suppres-
sion significantly “increased” neural activity (Fig. 2E,F). The
increased neural activity by PV-cell suppression was observed in
both ΔF/F and computationally inferred spike probabilities analy-
ses (see Supplementary Fig. S3A–E). The increase in overall activ-
ity by the PV-cell suppression was also present even when all the
recorded neurons, including ones of lower OSI (<0.4), were used
for the analyses (see Supplementary Fig. S3F–I). We also found no
bias caused by differences in basal fluorescence levels (see
Supplementary Fig. S3J–M). These results are consistent with pre-
vious electrophysiological single-unit recordings performed
together with optogenetic suppression of PV neurons by ArchT

Figure 1. Imaging neuronal activity with and without optogenetic suppression of PV neurons. (A) Example of expression pattern of GCaMP5 (green) and ArchT-

tdTomato (magenta), induced by AAV vectors coinjected into L2/3 in mouse V1. Multiple cell bodies of GCaMP5-expressing neurons were surrounded by fibers and

synaptic boutons from ArchT-expressing PV neurons. Scale bar, 25 μm. (B) Setup for optogenetic manipulation during in vivo two-photon Ca2+ imaging. The right eye

of the mouse was presented with a gray screen (for spontaneous activity) or drifting gratings (for visually evoked activity), whereas the left eye was covered

completely by a blackout fabric to avoid visual inputs from the screen or LED light. (C) A PV neuron showing both strong expression of ArchT-tdTomato and Ca2+ sig-

nals in vivo. Scale bar, 50 μm. (D) Activity change of the PV cell expressing ArchT in vivo. Time course of mean activity over 30 trials. Spontaneous activity detected by

GCaMP signals was significantly suppressed during the LED illumination. Yellow, LED illumination; error bar, s.e. (E) An example of a putative inhibitory interneuron

in a PV-ArchT animal. This cell showed a typical spike waveform, when considering “half-amplitude duration” and “trough to peak time” (upper panel). An autocorre-

logram of this cell (lower panel) suggested a high frequency of spikes during the normal (LED-off) condition (approximately ~50 Hz), typical of PV neurons. (F) The

average firing rate (upper panel) and raster plot of the activity over 16 trials recorded from the same cell in panel E showed that this cell was clearly inactivated during

the LED illumination, confirming the effect of the ArchT. (G) Summary of changes in activity of all observed putative inhibitory neurons (from 3 PV-ArchT animals).

An “activity index” was used to quantify the change in activity by LED illumination. Average, P value (one-sample t-test was performed to consider whether the value

was significantly different from zero), and total number of observed neurons are shown in the panel respectively. LED, timing of LED illumination; *, P < 0.05.
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(Atallah et al. 2012; Zhu et al. 2015), showing a significant increase
in neural activity during visual stimulation. This also supports
that our optogenetic manipulation was adequate to disrupt the
PV-cell activity and study their functional impact on the network.

We further confirmed that our experimental conditions and
the effect of the PV-cell inactivation were consistent with those of
previous studies (Ohki et al. 2005; Ko et al. 2011; Atallah et al. 2012)
(see Supplementary Fig. S4). Without LED illumination, the map of
the orientation preferences in mouse V1 showed a typical “salt
and pepper” distribution (see Supplementary Fig. S4B) (Ohki et al.
2005; Ko et al. 2011). The distribution of OSI values in our data was

similarly random (see Supplementary Fig. S4C). During LED illumi-
nation in PV-ArchT animals, the distribution of changes in the OSI
was also spatially random (see Supplementary Fig. S4D). On the
other hand, the OSI was decreased by the optogenetic inactivation
of PV cells (see Supplementary Fig. S4E). The DSI was also
“decreased” by PV-cell inactivation (see Supplementary Fig. S4F).
The half-width at half height (HWHH), which reflects the sharp-
ness of the tuning within cells, was not significantly changed by
the suppression of PV neurons (see Supplementary Fig. S4G).
Recent reports suggest that testing various strengths and dura-
tions of optogenetic manipulation is necessary to show conclusive

Figure 2. Inactivating PV neurons decreases network-wide synchrony. (A) Experimental procedures during visually evoked (upper panel) and spontaneous (lower

panel) activity. Drifting gratings (8 different directions in each session, at random order) were used as visual stimulation, and LED illumination (4 s stimulus and 20 s

interval LED) was used for optogenetic stimulation. VSt, timing of visual stimulation. (B, C) An example of time course changes of activities in simultaneously

recorded multiple neurons (n = 61), with repeated visual stimulations (gray bar), and with or without LED stimulation (red bar). Neural activity was calculated from

GCaMP5 signal, and plots of individual cells (B) and their average ΔF/F (C) depict visually evoked responses as well as spontaneous activations in the inter-trial inter-

val. ΔF/F data were used for subsequent analyses, except when inferred spike probability was also tested (see Supplementary Fig. S3A–E). (D) Average activity traces

over all trials across all 61 cells from the circuit shown in B, and C are plotted, showing a small increase in activity during LED illumination. LED, timing of LED illumi-

nation; VSt, timing of visual stimulation. (E) Summary of changes in activity of all observed networks (N = 8 circuits from 6 PV-ArchT animals (left), and N = 5 from 3

PV-Tomato animals (right)). An “activity index” was used to quantify the change in activity by LED illumination. Results of comparisons between “LED off” and “LED

on” are shown in each panel (average, P value (Wilcoxon signed rank test), and total number of observed neurons, respectively). (F) The activity increase driven by PV

suppression was also proved significant when compared with PV-Tomato control animals (same data in (E) were analyzed by Wilcoxon rank sum test). (G, H) LED illu-

mination induced significant decorrelation in an example neural circuit (the same circuit shown in panel B–D). Histogram showing distributions (G) and bar graph

showing averages (H) of correlation coefficients, which were computed from all neuronal pairs in the circuit, suggest significant decreases in a PV-ArchT animal dur-

ing LED illumination. Starred column, the bin for all values that lie off the edge of the graph. (I, J) Summary of effects of LED illumination on correlated neural activity.

PV-ArchT animals (I, N = 8 and 4675 pairs) showed a significant LED-induced decrease, while control animals (J, N = 5 and 3647 pairs) showed no significant change.

Error bar, s.e.; ns, not significant; *P < 0.05; **P < 0.01; ****P < 0.0001.
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results regarding the role of PV neurons in orientation tuning
(Atallah et al. 2014; El-Boustani et al. 2014; Lee et al. 2014), how-
ever, the consistency of our orientation tuning results with those
of a previous report (Atallah et al. 2012) further support the reli-
ability of our method in the present investigations.

Optogenetic Suppression of PV Cells During Visual
Stimulation Decreases Neuronal Synchrony

To evaluate the effect of the PV-cell suppression on neuronal
coactivations, we measured the correlation coefficients between
activity traces from pairs of neurons, for neurons within a single
two-photon scanning plane, as described in Methods. Our
approach of concatenating trials prior to calculating correlation
coefficients served to estimate the cross-trial interdependence
and activity onset similarity between neuronal pairs. This type of
pairwise time-varying correlation, which we call “total correla-
tion”, as previously defined (Hofer et al. 2011b), was significantly
decreased by the suppression of PV neurons in an example group
of neurons, and a systematically shifted distribution with lower
correlations was observed (Fig. 2G,H). A significant decrease in
pairwise time-varying correlations was observed even when all
results from multiple experiments were combined (Fig. 2I), while
data from the control animals did not show any significant
change during the LED illumination (Fig. 2J). The effect of the PV-
cell suppression was consistently verified even by the circuit level
analysis (see Supplementary Fig. S5A).

We further performed analyses based on surrogate datasets,
following the method described in previous work (Miller et al.
2014). Total correlations calculated from the surrogate datasets
(during visual stimulation, shuffling within each cell before the
calculation, 1000 times shuffling) were much closer to zero
comparing with the actual data shown in Figure 2I, irrespective
of LED-on/off (0.51 × 10−5 ± 2.09 × 10−5 (mean and s.e.) for LED-
off, n = 4675 pairs, P = 0.8072 (one sample t-test to consider the
difference from zero); −1.69 × 10−5 ± 2.07 × 10−5 for LED-on, n =
4675 pairs, P = 0.4146 (one sample t-test)). Total correlations
calculated from the surrogate datasets were also significantly
smaller than the actual data, irrespective of LED-on/off (P <
0.0001 in both cases, Wilcoxon signed rank tests). These results
support that the values we observed in actual total correlation
reflect the actual neuronal coactivity. Also, when analyzing the
total correlations calculated from the surrogate datasets, there
was no significant difference between LED-off and -on (P =
0.7020, 4675 pairs, Wilcoxon signed rank tests), suggesting that
significant change in actual total correlation we observed
(Fig. 2G–I) reflects the true change in the network coactivity.
Furthermore, since shuffling does not change the total activity
of each neuron, these results suggest that activity increase
caused by the PV-cell suppression (Fig. 2D–F) is unlikely a
causal factor of the decreased total correlation (Fig. 2G–I).

These results suggest that PV cells control and promote
stimulus-driven coactivation among excitatory neurons. Although
more spikes are generated by the network during PV-cell suppres-
sion, these spikes are less correlated. Our result is consistent with
the previous observation in vivo that PV neurons regulate network
correlations (Cardin et al. 2009; Sohal et al. 2009), though at a dif-
ferent time scale.

Suppression of PV Cells also Decreases Spontaneous
Correlations

In our experiments, cortical neurons were spontaneously
active, even without visual stimulation as shown before (Hofer

et al. 2011a; Miller et al. 2014). Since there is absent or greatly
reduced specific input from the retina via thalamus during
spontaneous activity, we sought to compare the effect of PV-
cell suppression on activity levels and overall network syn-
chrony during spontaneous activity to the effects found during
visual stimulation. This may help discern the contribution of
input specificity and circuit connectivity.

During spontaneous activity, neuronal activity was not sig-
nificantly changed by the LED illumination in PV-ArchT ani-
mals (Fig. 3A), consistent with a previous electrophysiological
observation (Atallah et al. 2012). Basal fluorescence levels did
not influence the activity of the neurons or the effect of LED
illumination (see Supplementary Fig. S6A, B).

In contrast, total correlation significantly decreased during
LED illumination in the PV-ArchT animals (Fig. 3B; see
Supplementary Fig. S5B). Analysis with inferred spike probabili-
ties also showed a similar effect during spontaneous activity (P <
0.01). The consistent effects of PV-cell suppression during both
spontaneous activity and visually evoked activity supports the
role of PV neurons in the regulation of the network coactivation
and also the dependence of the regulatory mechanism on the
intrinsic functional connectivity between postsynaptic cortical
neurons, rather than on the stimulus-activated connectivity. In
addition, because there was no significant increase of spontane-
ous activity during PV-cell suppression, these results indicate that
the regulation of the network correlation by PV neurons can be
independent of firing rate of the neural network.

PV Neurons Enhance Spatial Extent of Network
Coactivation

Two-photon imaging of neural activity has allowed unprece-
dented insight into circuit function due to its high spatial reso-
lution (Ohki et al. 2005, 2006; Ko et al. 2011; Hofer et al. 2011a;
Atallah et al. 2012). To exploit this advantage, we investigated
the functional contribution of PV cells to the spatial regulation
of neural network synchrony and dynamics.

First, we investigated the spatial extent of pairwise correla-
tions between neurons. During visual stimulation with the LED
off, total correlation was higher at smaller distances between
neuronal pairs (Fig. 4A). Interestingly, when we investigated the
effect of PV cell suppression, we found that the decrease in total
correlation was significant only when the distance between
neuronal pairs was less than 150 μm (Fig. 4A,B). A previous study
(Packer and Yuste 2011) demonstrated that PV neurons possess
dense inhibitory connections to excitatory neurons, especially

Figure 3. The effect of PV-cell suppression during spontaneous activity. (A)

During spontaneous activity, neural activity was not significantly changed by

LED illumination in PV-ArchT animals (N = 7, 501 neurons). (B) In contrast, PV-

cell suppression significantly decorrelated spontaneous neural activity (N = 7,

18 328 pairs).
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those within 150–200 μm in cortical layer 2/3. We therefore rea-
soned that the optogenetic suppression of PV neurons might
mainly affect local correlations maintained by the common or
shared inputs from PV neurons.

Similarly, the total correlation during spontaneous activity
was also affected by PV-cell suppression in a distance-dependent
manner (Fig. 4C,D), suggesting that distance-dependent regulation
may be preserved, irrespective of the network state or the synap-
tic inputs to layer 2/3 in V1. Altogether, these results indicate that
a spatial gradient of neural synchrony is likely to be maintained
and/or enhanced by PV interneurons via intrinsic anatomical
connections.

PV Suppression Enhances Ensemble Similarity

Based on our findings that PV interneurons can control the
spatio-temporal patterning of neuronal synchrony, we hypothe-
sized that PV interneurons might also regulate multineuronal
information processing through the regulation of spatially dis-
tributed population activity patterns. Two-photon microscopy is
actually a useful tool for investigating the regulatory mechanism
of neuronal ensembles, patterns of multineuronal activities,
because it enables recording from a large population of individ-
ual neurons simultaneously (Cossart et al. 2003). We investigated
the role of PV neurons in the regulation of multineuronal activity
by comparing evoked population activity patterns during differ-
ent visual stimuli (different angles of drifting gratings). We

measured correlation coefficients between population activity
patterns at each frame (or time point) to calculate “frame–frame
correlation” that represents ensemble similarity (Fig. 5A), as
described previously (Miller et al. 2014). Given that different
visual information is assumed to be encoded by different neuro-
nal ensembles, larger correlations between ensembles (during
different visual stimuli) imply lower stimulus discrimination
performance. Therefore, we compared frame–frame correlation
at different states (i.e., LED-off or LED-on) to evaluate the role of
PV neurons in the regulation of stimulus-discrimination through
the control of the multineuronal activity.

Without LED illumination, the correlation coefficients between
ensembles for different stimuli were roughly one-tenth of those
between neural ensembles for the same stimuli, in both PV-
ArchT animals and control animals (P < 0.0001 in both cases, as
results of Wilcoxon rank sum tests; average correlation coeffi-
cient and s.e. for each sample was; same stimuli in PV-ArchT
(n = 3918 pairs), 0.351 ± 0.005; different stimuli in PV-ArchT (n =
21 593), 0.038 ± 0.001; same stimuli in control (n = 3146), 0.390 ±
0.007; different stimuli in control (n = 17 593), 0.039 ± 0.0003).
This supports our assumption that different types of visual
information should be encoded by different population activity
patterns, and supports the reliability of the values obtained by
those analyses.

Next, we investigated the role of PV cells in the regulation of
response reliability of multineuronal activity. Interestingly, when
PV cells were optogenetically inactivated, the frame–frame

Figure 4. Locally existing temporal correlation is diminished by PV-cell suppression, with or without visual stimulation. Spatial modulation (i.e., the effect of cell-to-

cell distance) of PV-dependent regulation of total correlations (R) was investigated during visual stimulation (A, B) and during spontaneous activity (C, D). (A, C)

Correlation coefficients without or with LED (blue and red line, respectively) of PV-ArchT animals were plotted as a function of distance between cell bodies of

GCaMP5-expressing neurons (number of pairs for each category (from ~50 to ~300 in this order): for (A), 436, 1027, 1238, 1039, 613, 261; for (C), 1650, 3998, 4842, 3982,

2580, 1059). Without LED illumination, the correlation coefficients decreased with cell–cell distance; correlation coefficients were high when cells were close together,

and low when cells were distant. Although the similar tendency was seen during LED stimulation (suppression of PV neurons), cells at shorter distances showed

more LED-driven decreases, whereas cells at greater distances did not show clear changes. (B, D) The degree of decrease in correlation coefficients by PV-cell suppres-

sion, plotted together with statistical results (one sample t-test to consider the difference from zero). The effects were dependent on cell–cell distances during visual

stimulation (B) and spontaneous activity (D). VSt, visual stimulation; error bar, s.e.; ns, not significant; *P < 0.05; **p < 0.01; ****P < 0.0001.

1840 | Cerebral Cortex, 2018, Vol. 28, No. 5



correlation during different stimuli increased significantly (Fig. 5B,
C), indicating that the differential population activity patterns in
response to different visual stimuli was diminished by PV-cell
suppression (i.e., dissimilar patterns became more similar and
correlated). The effect of the PV-cell suppression was consistently
verified at the circuit level analysis (see Supplementary Fig. S7).
These results indicate that PV interneurons regulate the response
reliability of multineuronal ensembles, which may contribute to
functions such as visual discrimination. While a role of PV cells in
the regulation of visual recognition has been previously suggested
(Lee et al. 2012), our results indicate one potential mechanism of
how PV neurons could be involved in it, by regulating neuronal
ensembles.

Spatial and Temporal Coregulation of Network
Dynamics by PV Neurons

Although there has been a long-standing discussion of how
neuronal synchrony, or temporal correlation, affects informa-
tion coding by a population of neurons (Averbeck et al. 2006),
there is still a paucity of data examining this question. Our
results above support the hypothesis that the spatial gradient
of network synchrony enhanced by the PV neurons might
effectively sculpt spatial activity patterns, which may be impor-
tant for information processing. To evaluate the actual impact
of network synchrony on the response reliability of multineuro-
nal activity, we investigated the relationship between total cor-
relation (shared temporal dynamics between cells) and frame
to frame correlation (spatially regulated neuronal ensemble)

(Fig. 6). To consider the relationship between temporal features
and a spatial feature, we calculated the mean response of each
circuit and analyzed tendencies of the observed circuits overall
(N = 8 for PV-ArchT animals). For example, results of the change
in frame to frame correlation for different angles of visual sti-
muli are summarized in Figure 6A, showing circuit-to-circuit
variability of the effect of PV-cell suppression.

While the variability of ArchT expression level in each cir-
cuit might cause circuit-to-circuit difference in impact of LED
illumination to the degree of the PV-cell suppression, the
effects of PV-cell suppression to network synchrony and
ensemble similarity could still be mechanistically linked.

To investigate this, we first compared the frame to frame cor-
relation change during PV-cell suppression with the total corre-
lation change. We found that these two variables were strongly
and significantly correlated (Fig. 6B). At the same time, when
considering frame–frame correlation during LED-off and -on
trials separately, or even when the combined dataset was ana-
lyzed together, we found no significant correlation between
frame–frame and total correlation (Fig. 6C), suggesting that those
two factors are not necessarily always correlated. Moreover, we
also found no significant correlation between changes in activity
and those in frame to frame correlation (Fig. 6D), indicating that
the tight link we observed between frame to frame correlation
change and total correlation change is not an artifact and is not
simply a result of the variability of the ArchT expression level.
Together, these data indicate that the regulation of network syn-
chrony by PV interneurons may directly contribute to maintain-
ing response reliability of multineuronal activity.

Figure 5. Neuronal ensembles evoked by visual stimuli are disturbed by PV-cell suppression. (A) Schematic illustrating how we compared similarity between neural

ensembles. Population activity patterns at different time points (frames) were compared to calculate frame–frame correlation coefficient (rframe). (B) Examples of neu-

ronal ensembles disturbed by PV-cell suppression. Normally, as seen in the two left-hand panels, activity patterns during different visual stimuli (315°, top; 270°, bot-

tom) were not similar and the frame–frame correlation was almost zero. On the other hand, as seen in the right-hand panels, more similar ensembles (and high

correlation) were observed during PV-cell suppression (PV-ArchT animal). (C) PV-cell suppression significantly increased correlation coefficients between neuronal

ensembles at different time points (i.e., different frames) while different angles of visual stimuli were presented. CONT, control animals (N = 5 animals; LED-off, n =

17 593 pairs of neurons; LED-on, n = 25 348); ArchT, PV-ArchT animals (N = 8; LED-off, n = 21 593; LED-on, n = 18 429); error bar, s.e.; ns, not significant; ****P < 0.0001.
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Discussion
In the present study, we tested the hypothesis that dense
inhibitory connections from PV interneurons to pyramidal cells
might regulate spatio-temporal population activity patterns. To
this end, we used in vivo two-photon imaging in mouse V1 to
record activity from large neuronal populations during simulta-
neous optogenetic inactivation of the surrounding PV cells.

Our main result is that coactive neuronal ensembles are
affected by PV-interneurons suppression. In particular, ensem-
bles become less distinct from each other (more correlated) if
inhibition is compromised (Fig. 5). This effect of inhibition at
separating patterns of activity is reminiscent of lateral inhibi-
tion, a well-demonstrated function of inhibitory circuits whereby
similar sensory stimuli generate more distinct patterns of activ-
ity. Thus, at the network level, inhibitory circuits could imple-
ment pattern separation (Kohonen 1982). This orthogonalization
could be used to perform self-organizing mapping, or, more gen-
erally, to enable neural circuit dynamics to better occupy a larger
multidimensional space. In addition to this main finding, our
data (Fig. 2G–J; see Supplementary Fig. S2E–G) confirm the impor-
tance of PV neurons in the regulation of network coactivity,

which is consistent with previous observations that PV neurons
regulate network correlations (Cardin et al. 2009; Sohal et al.
2009). Moreover, we found that network coactivity regulated by
PV interneurons is distance-dependent (Fig. 4). We also found
that the response reliability of multineuronal activity was regu-
lated by PV neurons, a function that may underlie the role of PV
neurons in visual discrimination, as suggested previously (Lee
et al. 2012). These results altogether support the hypothesis that
the spatial gradient of network synchrony enhanced by the PV
neurons might effectively sculpt spatial activity patterns, an
effect which may be important for information processing.
Indeed, we observe that regulation of network coactivity (Figs 2–4)
and the reliability of neuronal ensembles (Fig. 5) by PV interneur-
ons are strongly and significantly correlated (Fig. 6). While net-
work coactivity has been thought to be potentially important for
computations in cortical circuits, these results indeed show that
the spatio-temporal regulation by inhibitory interneurons may be
an important mechanism for information processing.

Although outside the scope of this study, it will be interesting
to further investigate the mechanism by which PV interneurons
actually regulate network coactivity, lateral inhibition and

Figure 6. Spatial and temporal network dynamics are coregulated by PV neurons. To compare spatial dynamics (neural ensemble similarity) with other temporal

dynamics statistically, we compared average values for each circuit (N = 8) in the PV-ArchT animals. Each circle corresponds to the average value for each circuit. (A)

Summary of the effect of PV-cell suppression on frame–frame correlation between LED-on and LED-off. Red line indicates 1:1 ratio. (B) Frame–frame correlation

change driven by PV-cell suppression was compared with change in total correlation. Blue dotted lines correspond to the results of line fitting (linear regression). r

and P values are results of Pearson’s correlation coefficient. (C) Raw values of frame–frame correlation were not directly correlated with raw values of total correlation,

irrespective of LED-on/off or even when both were mixed for the analyses. To compare those values statistically, average values for each circuit (N = 8) of the PV-

ArchT animals were compared. Each circle corresponds to the result of each circuit. (top) scatter plots representing the relationships. (bottom) summary of results of

Pearson’s correlation coefficient for LED-on/off, or both data mixed. (D) Frame–frame correlation change driven by PV-cell suppression was compared with change in

neural activity. r and P values are results of Pearson’s correlation coefficient.
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neuronal ensembles. To understand this further, one needs to
functionally dissect the cortical circuit responses at higher tem-
poral and spatial resolution, since it consists of complex wiring,
recurrent circuits and disinhibitory connections by a multitude
of different cell types. To carry out this, it also seems important to
use optogenetic suppression methods with single cell resolution,
while simultaneously imaging excitatory and inhibitory neurons.

Our results are at odds with our own previous study in vitro,
where pharmacological blockage of inhibition in developing cor-
tex resulted in increased network correlations in somatosensory
cortex (Sippy and Yuste 2013). It is not straightforward to com-
pare these results because, in addition to age, brain-region and
methodological differences, the existence of complex inhibitory–
inhibitory connections between different subtypes of inhibitory
interneurons (Pfeffer et al. 2013) could complicate the effects. For
instance, it is possible that other subtypes of cortical inhibitory
neurons connecting to the PV cells, or interactions of multiple
subtypes together, could generate opposing and/or stronger roles
in the regulation of cortical synchrony.

One technical limitation with our results is that light illumi-
nation can cause nonhomogeneous optogenetic manipulation,
which generally needs to be considered in all experiments
using bulk illumination for optogenetics. Since the inhomoge-
neity of illumination in deeper brain area is milder than that
near the surface (Chow et al. 2010), we used LED light at a tilted
angle (see Methods) (Atallah et al. 2012) so that light traveled
through a certain distance before it reached the target area. To
further investigate the mechanism more quantitatively or to
understand spatial regulation more precisely, future work
should use recently developed methods that are based on two-
photon excitation with single-cell resolution (Wilson et al.
2012; Packer et al. 2013, 2015).

Neuronal computations are also modulated by a balance
between external stimuli (e.g., sensory stimuli) and internal (or
spontaneous) patterns. This inspired us to examine the effect of
PV neurons on both spontaneous and visually evoked activity.
Our results suggest that PV neurons may consistently regulate
correlated network activity during both spontaneous and visually
evoked states, with suppression of PV neuron activity leading to
a decrease in cell-to-cell correlations. This decrease could occur
by the appearance of spurious correlation due to unsuppressed
noisy spikes in the network, perhaps due to the stochastic nature
of synaptic transmission. Regardless of the exact synaptic or cir-
cuit mechanisms, these results support the hypothesis that syn-
chrony control by PV neurons might depend on the anatomical
and/or functional connectivity within the local cortical network.
Interestingly, while neural activity during visual stimulation was
increased by PV-cell suppression, there was no significant
increase of spontaneous activity during PV-cell suppression, sug-
gesting that the regulation of the temporal correlation by PV neu-
rons can be independent of firing rate of the neural network.
Moreover, our analyses support this hypothesis since the effect
of PV-cell suppression was local (Fig. 4). Because PV neurons pos-
sess a dense inhibitory connection to nearby postsynaptic excit-
atory neurons (Packer and Yuste 2011; Karnani et al. 2014),
common inputs to cell pairs from the PV neurons are likely to be
responsible for regulating the network correlation.

Although we performed these experiments with anesthe-
tized animals, the effect of inhibitory circuits on neuronal
ensembles is also likely occurring during awake states (irre-
spective of the cognitive or behavioral state), because the
mechanism we uncover is probably based on an anatomical
network structure that probably underlies neural computation
in awake animals too. It would be interesting to test which

additional mechanisms or neural circuits enable unique brain
activity during certain awake states, a question that can be
tackled (Fu et al. 2014; Roth et al. 2016). For example, visual
attention affects network correlation in V1, which potentially
results in enhanced neural computation (Herrero et al. 2013;
Ruff and Cohen 2014). Thus, the role of PV neurons in regulat-
ing network correlation may also contribute to the attention-
dependent improvement in cognitive performance.

Finally, inhibitory interneurons are also thought to be
important in maintaining a normal brain state and preventing
psychiatric disorders (Hashimoto et al. 2008; Hamm et al. 2011;
Marín 2012). Alterations in PV neurons are present in postmor-
tem brain samples from schizophrenia patients (Hashimoto
et al. 2008), and decreased sensory-evoked gamma and low-
frequency phase locking has been demonstrated in chronic
schizophrenia patients (Hamm et al. 2011). The present report
can provide a link between these findings. Taken together, it
merits further investigation whether microcircuit-level network
correlations are also impaired in persons with schizophrenia,
as suggested by a recent study in rodent models of psychotic
brain states (Hamm et al. 2017).

Supplementary Material
Supplementary data are available at Cerebral Cortex online.
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