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Abstract

Pompe disease is a metabolic myopathy with a wide spectrum of clinical presentation. The gold-

standard diagnostic test is acid alpha-glucosidase assay on skin fibroblasts, muscle or blood. 

Identification of two GAA pathogenic variants in-trans is confirmatory. Optimal effectiveness of 

enzyme replacement therapy hinges on early diagnosis, which is challenging in late-onset form of 

the disease due to non-specific presentation. Next-generation sequencing-based panels effectively 

facilitate diagnosis, but the sensitivity of whole-exome sequencing (WES) in detecting pathogenic 

GAA variants remains unknown.

We analyzed WES data from 93 patients with confirmed Pompe disease and GAA genotypes 

based on PCR/Sanger sequencing. After ensuring that the common intronic variant c.-32-13T > G 

is not filtered out, whole-exome sequencing identified both GAA pathogenic variants in 77/93 
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(83%) patients. However, one variant was missed in 14/93 (15%), and both variants were missed 

in 2/93 (2%). One complex indel leading to a severe phenotype was incorrectly called a 

nonsynonymous substitution c.-32-13T > C due to misalignment.

These results demonstrate that WES may fail to diagnose Pompe disease. Clinicians need to be 

aware of limitations of WES, and consider tests specific to Pompe disease when WES does not 

provide a diagnosis in patients with proximal myopathy, progressive respiratory failure or other 

subtle symptoms.
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1. Introduction

Pompe disease (glycogen storage disease type II) is an autosomal recessive myopathy 

primarily affecting cardiac, skeletal, and smooth muscles that encompasses a spectrum of 

clinical presentations and severity. Biallelic pathogenic variants in the GAA gene, encoding 

the lysosomal enzyme acid-alpha-1,4-glucosidase (GAA), result in deficiency of the 

enzyme, causing accumulation of glycogen in the lysosomes of all tissue types, and 

subsequent progressive muscle destruction. Pompe disease is broadly categorized as 

infantile-onset and late-onset Pompe disease (IOPD and LOPD), based on age of onset and 

presenting symptoms. Classical IOPD is characterized by prominent cardiomegaly, 

hepatomegaly, hypotonia, and, without treatment, death due to cardiorespiratory failure 

within the first year of life. Atypical IOPD is characterized by presentation in the first year 

of life with less severe or no cardiac involvement. LOPD presents as a slowly progressive 

proximal myopathy that involves mainly skeletal and respiratory muscles, and may present 

in early childhood or even as late as the sixth decade of life [1]. The prevalence of IOPD and 

LOPD combined in the general population has been estimated to be between 1 in 40,000 to 1 

in 60,000 [2], but findings from newborn screening programs in Taiwan and the United 

States indicate that the prevalence is underestimated [3,4]. Early and timely diagnosis is 

vital, because treatment with alglucosidase alfa (human recombinant GAA) results in best 

outcomes when initiated before severe muscle damage has occurred [5,6]. A definitive 

diagnosis of Pompe disease is made by showing a deficiency of GAA enzyme activity in 

skin fibroblasts, muscle, or blood-based assays, along with identification of two pathogenic 

in-trans variants in the GAA gene.

Diagnosis of LOPD in adults can be especially challenging because of the non-specific and 

insidious nature of disease onset and progression. The disease involves multiple organs and 

its clinical presentation overlaps with many other neuromuscular conditions. Subtle 

symptoms such as lingual weakness or dysphagia may be overlooked [7,8]. Studies from the 

Pompe registry showed that LOPD may not be diagnosed until after symptoms have 

progressed significantly [9], and is probably often underdiagnosed [10] or misdiagnosed 

[11,12]. The diagnostic delay for Pompe disease across the spectrum is approximately 7 

years [9]. A patient with LOPD may be asymptomatic except for elevation of serum 

Mori et al. Page 2

Mol Genet Metab. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transaminases and creatine kinase (CK), which indicates muscle injury [12,13]. Differential 

diagnosis of LOPD includes muscle glycogen storage diseases, other metabolic and non-

metabolic myopathies, myositis, and limb-girdle muscular dystrophy (LGMD). In many 

LOPD cases, histological analysis of muscle biopsy can result in a negative diagnosis if the 

biopsied tissue lacks diseased muscle fiber, or if appropriate staining or specific enzyme 

testing on the muscle are not performed. Muscle biopsy histology is known to be normal in 

25% of adults with LOPD [14].

Recently, next generation sequencing (NGS)-based panels have been shown to facilitate the 

diagnosis of LOPD [15,16]. Whole-exome sequencing (WES) is now routinely ordered in 

clinic for many conditions including undiagnosed causes of myopathy and neurological 

indications [16–18], and has successfully diagnosed patients with Pompe disease [19]. WES 

offers a high diagnostic yield when differential diagnosis cannot be narrowed [17]. However, 

the sensitivity of WES in detecting pathogenic GAA variants has never been explored or 

published. Several studies have compared the results of NGS and Sanger sequencing in 

different genes, but their focus was on the Sanger-confirmation of variants found by NGS 

technology. These studies did not assess the standard WES bioinformatics pipelines that 

automatically analyze WES data to detect known pathogenic variants [20,21].

WES is an application of NGS, in which only coding regions of the genome (exome), which 

make up about 1% of the human genome, are captured for sequencing [22]. NGS is 

performed by breaking down DNA extracted from a patient’s specimen into small 

fragments, amplifying the fragments by PCR, and simultaneously determining sequences of 

the fragments (primary analysis). A series of computer software tools are used to align the 

sequence reads to specific locations in the human reference genome to identify sequence 

variants that do not match the reference (secondary analysis), and filter out variants that are 

unlikely to cause the disease of interest (tertiary analysis) [23,24]. WES was developed to 

efficiently sequence regions most likely to include pathogenic variants. However, with the 

dramatical drop in price of sequencing per base pair, whole-genome sequencing (WGS) will 

likely become available for clinical use in the near future. While secondary and tertiary 

analysis on WGS will continue to focus on the exome, WGS is not affected by biases 

introduced by capture and amplification process.

The GAA gene is a mid-size gene spanning 18,175 base pairs (bp) and 20 exons, with 2859 

bp coding DNA sequence, encoding 952 amino acids. The first exon is non-coding with the 

start codon in exon 2 [25,26]. The gene harbors rare pathogenic variants of diverse types and 

recurrent pathogenic variants such as: intronic c.-32-13T > G affecting splicing of exon 2 

seen in 68–90% of Caucasians with LOPD; a large deletion encompassing exon18 c.2481 

+ 102_2646 + 31del (p.Gly828_Asn882del); a frameshift c.525delT (p.Glu176Argfs*45); 

and a nonsense c.2560C > T (p.Arg854*) seen in African Americans [27]. A European 

newborn screening study showed that the carrier frequency of c.-32-13T > G in the 

European general population is 1 in 154; the exon 18 deletion, 1 in 187; and c.525delT, 1 in 

284 [28]. Currently, > 400 pathogenic variants have been reported in the GAA gene (http://

cluster15.erasmusmc.nl/klgn/pompe/mutations.html?lang=en accessed May 22, 2017) 

[29,30]. The c.-32-13T > G variant, seen in 68–90% of Caucasian patients with LOPD in a 

heterozygous or homozygous state [31–36], results in alternatively spliced transcripts with 
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deletion of exon 2 and leakage of some normal transcripts [32,37]. This variant has never 

been observed in classic IOPD, though it has been observed in atypical IOPD. Phenotypic 

diversity seen in patients with this variant, even when the other GAA genotype is the same, 

is likely due to genomic and environmental modifiers [27,30]. The GAA gene has a high (> 

60%) overall GC (guanine-cytosine) content (Fig. S1), which may undermine PCR 

amplification during the NGS process and lead to low read depth coverage and inaccurate 

variant calling in certain cases. These interesting characteristics of the GAA gene make it a 

good candidate on which to test the validity of WES technology to detect all pathogenic 

variants in this gene.

We performed WES on 93 patients with confirmed Pompe disease who had a spectrum of 

phenotypes ranging from IOPD to LOPD. In this cohort, GAA genotypes had been 

confirmed by Sanger sequencing in a clinical molecular diagnostics laboratory. The Sanger 

sequencing and the preceding PCR amplification were carefully designed to capture the 

common intronic pathogenic variant c.-32-13T > G and the deletion variant of exon 18. 

Thus, we had a unique opportunity to assess the sensitivity of WES in diagnosing Pompe 

disease by comparing the results of WES with PCR/Sanger sequencing of GAA in patients 

who had a confirmed diagnosis of Pompe disease.

2. Methods

2.1. Subjects

A waiver of written consent was obtained by the Duke institutional review board. The study 

included 93 patients with a confirmed diagnosis of Pompe disease and known GAA 
genotypes. One patient had a heterozygous pathogenic GAA variant and a second had a 

heterozygous variant of unknown significance, but both had a confirmed diagnosis of Pompe 

disease based on reduced GAA enzyme activity on skin fibroblasts and a clinical phenotype 

consistent with the disease.

2.2. Sanger sequencing

Sanger sequencing for molecular diagnosis of Pompe disease was performed in the College 

of American Pathologist (CAP)-accredited and Clinical Laboratory Improvement 

Amendments (CLIA)-certified molecular diagnostics laboratory at Duke University or at 

other similarly qualified molecular laboratories. The coding regions of the GAA gene and 

surrounding exon/intron boundaries (minimum of 20 base pairs) were sequenced following 

PCR amplification, amplicon purification, and loading onto an ABI 3130×1 Genetic 

Analyzer (Perkin Elmer, Santa Clara, CA). The primers used for PCR contained M13 

universal primer “tails” at their 5′ ends, and had 3′ ends that were homologous to their 

genomic target sequence. PCR was performed using primers flanking the known 

breakpoints. This amplification product was sized on a gel, and sequenced to confirm the 

breakpoints. Sequences were compared to the GAA reference DNA sequence (GenBank 

Accession: NM_000152.3) to identify genetic variants.
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2.3. GAA artifacts in genome-in-a-bottle project

Given the high GC content of the GAA gene, we investigated potential systematic artifacts 

in the GAA region by checking its depth and breadth of sequence read coverage in the ExAC 

database [38], as well as checking its inclusion in the regions in which highly accurate 

genotype calls were achieved in the Genome-in-a-Bottle project [39]. A recent study defined 

sites with systematic errors that can be caused by PCR amplification, particular sequence 

contexts, local alignment errors, and/or global mapping errors [40]. We examined if any 

GAA position was included in these error prone positions.

2.4. Whole exome sequencing

DNA was extracted from peripheral blood or skin fibroblast samples. Sequencing was 

performed with Illumina HiSeq2500 sequencers. Nimblegen SeqCap EZ V3.0 Exome 

Enrichment kit was used to target 64 Mb of the genome, which includes 98% of RefSeq, 

98% of Vega, 97% of Gencode, 99% of Ensembl, 99% of consensus coding sequence 

(CCDS) [41] and 98% of miRBase sequences. Across the exome, an average of 93.0% 

(median 91.6%) covered CCDS. The paired-end reads were aligned to a Genome Reference 

Consortium Human Genome Build 37 (GRCh37)-derived alignment set including decoy 

sequences using the Burrows-Wheeler Aligner (BWA-0.5.10) [42]. PCR duplicates were 

removed with Picard (http://picard.sourceforge.net), and single nucleotide variants (SNV’s) 

and small insertions and deletions (indels) were called with GATK UnifiedGenotyper 

following the GATK Best Practices [24]. The resulting variant data for all samples 

underwent standard quality control checks, including validation of the reported sex, 

relatedness, and ethnicity. Variants were annotated by snpEff and the resulting genotypes 

were stored in a centralized database. Columbia University in-house software package 

Analysis Tool for Annotated Variants (ATAV; https://redmine.igm.cumc.columbia.edu/

projects/atav/wiki) was used for filtration and for read depth coverage calculation. Transcript 

ENST00000302262 was used for GAA variant notations. Standard filtering is Coverage > 

10×, VQSLOD score ≤ 99–99.9%, Quality By Depth > 2, Mapping Quality > 40, Genotype 

Quality > 20 in the CCDS region; SNV’s also require VQSLOD score ≤ 99.9%, and indels 

require strand bias < 200 and read positive rank sum > −20.

2.5. Concordance

Substitution and indel variant positions were converted to genomic positions using LUMC 

Mutalyzer Position Converter on a GAA transcript NM_000152.3 [43]. Confirmation of 

indels were performed manually [44]. When an expected variant was not in the filtered 

variant list, VCF files were inspected to see if it had been called by GATK 

UnifiedGenotyper and later filtered out. CODEX package [45] was used to detect exon-level 

large deletions based on indexed BAM files.

3. Results

3.1. Subjects

Phenotypes of the 93 patients are presented in Table 1. There were 51 specimens from 

patients with IOPD and 42 specimens from patients with LOPD.
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3.2. Sanger sequencing result

GAA Genotypes by Sanger sequencing are listed in Table 1.

3.3. Evaluation for systematic artifacts in the GAA coding region

Despite the relatively high GC content, all coding regions in the GAA gene are included in 

the regions in which highly accurate genotype calls were achieved in the Genome-in-a-

Bottle project (Fig. S2) [39]. The gene regions were also well covered in the ExAC database 

(Fig. S3). Only one intronic position in the GAA gene, chr17:g.78084704 (NM_ 000152.3:c.

1552-36del; a position not reported to be pathogenic) was identified to be subject to 

systematic errors [40]. Thus except for that one intronic position, we found no evidence of 

systematic artifacts due to GC bias, poor alignment, tandem repeats, or availability of 

reference sequence.

3.4. Read depth coverage in WES

The median overall coverage for captured regions was 84× with a minimum overall coverage 

of 34×. All samples had at least 5× read depth in > 97% of the exome. However, analysis of 

regions covered at minimum of 20× read depth in the GAA gene revealed some GAA 
regions with insufficient read depth; 14 samples without large deletions in the GAA gene 

had regions in exons 4, 5, 15, 18 or 19 with < 20 read depth, resulting in overall ≥20× 

coverage of 83%–94% for the GAA gene. These large deletions negatively affected the 

percentage of regions that had ≥20× coverage. For example, a sample with a homozygous 

deletion of exon 18 [c.2481 + 102_2646 + 31del (p.Gly828_Asn882del)] of the GAA gene 

had ≥20× read depth coverage for 83% of the GAA gene. Similarly, a sample with a 

homozygous deletion of exons 8–15 had ≥20× read depth coverage in 65% of the GAA 
gene. A sample reported to have a heterozygous c.148_859-11del (p.Glu50Hisfs*37(deletion 

of exons 2–4) along with an insertion c.686insCGGC(p.Arg229fsProfs*102) in the other 

allele showed < 20 read depth in exons 2 and 4, resulting in ≥20× read depth coverage in 

96% of the GAA gene. A sample reported to have a heterozygous deletion of exons 15–20 

along with a missense pathogenic variant c.2012T > G(p.Met671Arg) in the other allele 

showed < 20 read depth in exons 17–19, resulting in ≥20× read depth coverage in 92% of 

the GAA gene. Eight of the 10 samples with a heterozygous deletion overlapping the exon 

18 along with a SNV in the other allele showed < 20× read depth in regions within exon 18. 

As a result, the ≥20× read depth coverage of the 8 samples ranged between 83% and 99% 

for the GAA gene. The coverage of each exon across the 93 samples is summarized in Table 

S1. The position chr17:78078341-T-G corresponding to c.-32-13T > G was covered at least 

20× read depth in all 93 samples.

3.5. Concordance

Both of the pathogenic GAA variants were detected in 42/93 (45%) samples by WES using 

the standard bioinformatics pipeline of the research laboratory; one of the pathogenic GAA 
variants was missed in 42/93 (45%) samples by WES; both of the pathogenic GAA variants 

were missed in 9/93 (10%) samples. The concordance between the WES and Sanger 

sequencing results for each variant in each sample is summarized in Table 1 and Fig. 1. Fig. 

2 shows the concordance for each unique pathogenic variant. The common intron 1 variant 
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c.-32-13T > G was called correctly by the GATK UnifiedGenotyper, as well as passed 

quality control criteria in all of the 41 samples that harbor this pathogenic variant. However, 

it had been filtered out by the tertiary analysis pipeline because it was not in the CCDS 

region. As expected, none of the large deletions, including the common exon 18 deletion, 

were detected in any of the samples harboring the deletion variant. One missense pathogenic 

variant, c.925G > A (p.Gly309Arg) in exon 5, was not called as a heterozygous variant as 

only two out of 12 reads at this position had the change (Table 2). This sample had a poor 

coverage in exon 5; it had < 20× read depth at all base pair positions in exon 5 and low read 

depth of 12× at the variant position. In another sample, the same variant was also called but 

was filtered out due to low genotype quality score and read depth (Table 2). This sample also 

had poor coverage in exon 5; < 20× read depth at all base pair positions in exon 5 and low 

read depth of 7× at the variant position. A complicated deletion/insertion 

c.-32-17_-32-10delins TCCCTGCTGAGCCTCCTACAGGCCTCCCGC in intron 1, 

beginning seventeen nucleotides upstream of the beginning of exon 2 (which is 32 

nucleotides upstream of the translation initiation site) and replacing eight nucleotides with 

thirty, was incorrectly called as c.-32-13T > C due to incorrect alignment (Fig. S5). The 

Sanger sequencing report interpreted the indel as pathogenic as it overlaps the common 

pathogenic c.32-13T > G variant and is predicted to affect exon 2 splicing [46]. Variant IDs 

with genomic positions confirmed for each pathogenic variant are provided in the 

supplementary material to avoid ambiguity (Table S2). The CODEX software detected the 

homozygous large deletion c.1195-19_2190-17del (p.Asp399fs*6), among numerous other 

deletion/duplications of unknown significance, but did not detect other large deletions, 

including the common exon 18 deletion, either in a heterozygous or homozygous state (data 

not shown).

Many clinical laboratories would evaluate intronic pathogenic variants in variant databases 

such as ClinVar and the Human Gene Mutation Database (HGMD). If the pathogenic 

c.-32-13T > G variant is detected in a clinical WES laboratory, then both pathogenic GAA 
variants would be detectable in 77/93 (83%) samples. One pathogenic GAA variant would 

have been missed in 14/93 (15%) patients and both pathogenic GAA variants would have 

been missed in 2/93 (2%) patients. Interestingly, these patients had homozygous large 

deletions, one with c.1195-19_2190-17del (p.Asp399fs*6) and the other with the common 

exon 18 deletion (Figs. S6–7).

4. Discussion

WES technology is limited by its ability to detect certain types of pathogenic variants. For 

example, WES does not reliably detect structural variants such as large deletions or 

duplications. Recent studies have shown that even the latest variant-calling algorithms do not 

reliably call SNV’s and small insertions/deletions [40,47,48]. In addition, standard WES 

pipelines typically filter out intronic variants. The analytical validity of homozygous or 

heterozygous SNV’s can be compromised when the read depth is poor (< 20×), the primary 

reason for a false negative result in WES [40]. The poor read coverage in WES is 

attributable to non-uniform read depth across the exome compared to other NGS-based test 

such as targeted gene panels [49]. High GC content (> 75%) and repeat sequence can also 

lead to a false negative SNV call [40]. In contrast, NGS-based gene panels offered by 
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clinical laboratories ensure good read coverage over the targeted genes, and typically 

supplemented with Sanger sequencing if adequate coverage is not achieved. Many of these 

gene panels are offered along with a matching exon-array gene panel to detect large 

deletions and duplications in the targeted genes. Though Sanger sequencing has previously 

been used to detect pathogenic variants in the GAA gene to confirm a diagnosis of Pompe 

disease, WES is increasing being utilized. However, the GAA gene harbors a number of 

deletions and intronic pathogenic variants, which may be not be detected through WES.

This study demonstrates various mechanisms by which WES technology and variant 

analysis pipelines can fail to detect pathogenic variants. Unlike WGS, WES data is very 

limited in revealing large deletions that span exon(s) because it lacks intergenic sequence 

data and suffers from enrichment bias [50]. Several tools designed to detect structural 

variants, including large deletions based on WES read depth data, have been developed 

[51,52]. CODEX is one of the more recent tools with relatively superior sensitivity and 

specificity compared to others [45]. Using the default setting, the tool had very limited use 

in detecting large deletions in our patient cohort, demonstrating the difficulty in calling large 

deletions even with specialized algorithms.

WES reports should clearly state that large deletions and duplications are often not 

detectable by WES, particularly in genes in which pathogenic large deletions are common 

such as in the GAA gene. The position at the common pathogenic variant c.-32-13T > G had 

a good read depth in all samples and was called by the GATK UnifiedGenotyper, the 

standard variant caller. The position had good read depth despite being in the intron because 

this variant is located 13 base pairs from the noncoding part of exon 2, still within the 

parameters of capture regions for the exome sequencing. However, the standard filtration 

protocol filtered out this variant as it was not in the CCDS region. We recommend that 

laboratories performing WES implement a system to evaluate known intronic pathogenic 

variants for all genes to ensure that they are not filtered out. Tertiary WES analysis generally 

is focused on exons and canonical splice sites, and the inclusion of intronic variants may 

require manual alteration of the filtering pipeline. As our result show, WES will inevitably 

end up with some regions with low read depth, possibly resulting in false negative findings 

or inaccurate calls of SNV and indel variants. Thus, WES can miss a diagnosis of other 

single gene diseases especially those caused by a gene in which deletions or intronic 

mutations are common, or systematic artifacts exist. Accordingly, clinicians should be aware 

of these limitations of WES.

The inability of our research WES to detect the common exon 18 deletion (allele frequency 

6% among IOPD + LOPD in the 93 samples) and c.-32-13T > G variant alleles (allele 

frequency 48% among LOPD; not observed in IOPD), which are common GAA pathogenic 

variants, could have resulted in missed diagnosis in patients with Pompe disease. Incorrect 

variant calls of indels as SNV’s are also concerning as clinical laboratories may not perform 

confirmatory Sanger sequencing for SNV’s [20,21]. Our WES pipeline incorrectly identified 

c.-32-17_-32-10delins30 as an SNV c.-32-13T > C, and it may have been incorrectly 

interpreted it as consistent with an LOPD phenotype because an SNV occurring at the same 

position c.-32-13T > G is seen in LOPD. In fact, in this situation, the 

c.-32-17_-32-10delins30 is a likely severe pathogenic variant based on the phenotype of 
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IOPD and the fact that the other pathogenic variant c.1447G > A(p.Gly483Arg) is predicted 

to be less severe according to the Pompe Disease Mutation Database [29]. The miscall of an 

indel as an SNV and resultant genotype prediction would be even more critical in 

prognostication of asymptomatic patients detected by newborn screening, or by persistent 

elevation of CK, compared to diagnostic testing in patients with a clear phenotype of Pompe 

disease. Many clinical laboratories are moving away from Sanger-confirmation of SNV’s 

[21]. This example underscores the importance of visual inspection of BAM files for 

reportable variants, and Sanger-confirmation when needed.

Since the application of WES was first proposed as a diagnostic test for human Mendelian 

disorders in 2009 [53], this method has become routine for both research and clinical 

applications [17]. In a work-up of patients presenting with progressive muscle weakness, 

respiratory failure, a LGMD phenotype, polymyositis or persistently elevated CK, it is 

important not to miss a treatable disease. Clinicians should be aware that WES can fail to 

provide a complete molecular diagnosis of Pompe disease. Particularly in cases where only 

one pathogenic variant is identified by WES, the possibility of a deletion on the other allele 

should be considered. A NGS-based gene panel specifically designed to detect all clinically 

relevant pathogenic GAA variants including intronic variants and small and large deletions 

for neuromuscular disease/LGMD may be a better initial test when the differential diagnosis 

cannot be narrowed. Clinical laboratories that offer such panels typically implement 

methods to ensure that common deletion pathogenic variants or intronic pathogenic variants 

are detectable.

However, it should be noted that some of these commercially available gene panels are not 

necessarily designed to detect all deletion variants [15] or intronic pathogenic variants in the 

GAA gene, and thus may fail to detect them.

Correlation between genotype and phenotype in the cohort of 93 patients gave us an 

opportunity to confirm prior findings that having c.-32-13T > G on one allele, and a 

pathogenic variant on the other allele, almost always leads to the adult onset LOPD 

phenotype [34] but that genotype-phenotype correlation is not consistent [27]. In our cohort, 

five patients had the c.-32-13T > G/c.525delT GAA genotype. Four of them had the adult 

LOPD phenotype as expected. However, one of them had an early presentation in the first 

year of life with no cardiac involvement. We further investigated to determine whether this 

patient had pathogenic variants in other genes that can cause neuromuscular phenotypes but 

no other pathogenic variants were identified.

A limitation of our study is that the WES was performed as a research methodology and did 

not necessarily meet the CLIA standards or proposed best clinical practice [23]. A base pair 

coverage of 20× is now recommended for detection of SNVs [54], and clinical laboratories 

offering WES may move towards improving the coverage at 20× read depth. WES capturing 

technology and analytical bioinformatics adopted in clinical laboratories are constantly 

improving. WGS will soon be available for clinical use. However, the problems discussed 

here, such as insufficient read depth, tertiary analysis of intronic variants, and alignment 

problems could still all occur, although to a lesser degree. Our sample size may be 

considered limited for a research study but a cohort size of 93 patients with Pomple disease 
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is substantial for a rare autosomal recessive disease. Moreover, we were able to illustrate 

molecular examples in which WES did not correctly identify pathogenic variants.

5. Conclusion

Patients with Pompe disease frequently harbor pathogenic variants that are not reliably 

detected by WES. As treatment is available for this metabolic myopathy, clinicians should 

be aware of the limitations of the test and rule out the disorder by specific GAA gene and 

enzyme testing. The limitations of WES should also be recognized for other genetic 

conditions caused by genes in which deletion or intronic pathogenic variants are common, or 

when coverage is poor because of systematic artifacts or non-uniform coverage. If WES is 

ordered and does not result in a diagnosis, a specific diagnostic test for Pompe disease 

should be considered if clinical suspicion for Pompe disease remains. Acid alpha-

glucosidase (GAA) enzyme activity assay on dried blood spot is a less-invasive and cost-

effective test with a quick turnaround time [55]. PCR/Sanger sequencing of the GAA gene, 

which is specifically designed to detect the common intronic pathogenic variant and exon 18 

deletion, is helpful if the enzyme testing is not available or indicates an indeterminate result. 

Clinicians are also advised to be aware of other limitations of WES that are not discussed in 

this paper, such as its inability to detect repeat expansion variants that may underlie 

disorders such as oculopharyngeal muscular dystrophy, or methylation variants that may 

underlie conditions such as Prader-Willi syndrome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Concordance data between Sanger sequencing based molecular analysis of GAA gene and 

WES detected mutation type; total 173 mutations (n = 93 patients). Mutations in red were 

either missed or miscalled by WES. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.)
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Fig. 2. 
Concordance data between mutation type through Sanger molecular sequence analysis of 

GAA and WES detected mutant alleles; 79 Unique Mutations (n = 93 patients).
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Table 1

Genotype and phenotype of samples and WES genotype detection.

Pathogenic variant 1 Pathogenic variant 2 Phenotype Onset for LOPD

c.1075G > T(p.Gly359*) c.1075G > T(p.Gly359*) IOPD

c.1195-19_2190-17del(p.Asp399fs*6)U c.1195-19_2190-17del (p.Asp399fs*6)U IOPD

c.1209delC(p.Asp531Glyfs*37)U c.1209delC(p.Asp531Glyfs*37) IOPD

c.148_859-11del(p.Glu50Hisfs*37; exons2–4deletion) c.686insCGGC (p.Arg229fsProfs*102) IOPD

c.546+2_5deltggg c.1650dupG(p.Thr551Aspfs*85) IOPD§1

c.546+2_5deltggg c.1650dupG(p.Thr551Aspfs*85) IOPD§1

c.546+2_5deltggg c.2501_2502delCA (p.Thr834Argfs*49) IOPD

c.1754+1G > A c.722_723delTT (p.Phe241Cysfs*88) IOPD

c.1826dupA(p.Tyr609*) c.2238G > A(p.Trp746*) IOPD

c.1978C > T(p.Arg660Cys) c.2221G > A(p.Asp741Asn) IOPD

c.2237G > A(p.Trp746*) c.437delT(p.Met146Argfs*7) IOPD

c.2560C > T(p.Arg854*) c.1654delC(p.Leu552Serfs*26) IOPD

c.2560C > T(p.Arg854*) c.1292_1295dupTGCA (p.Gln433Alafs*74) IOPD

c.2560C > T(p.Arg845*) c.2560C > T(p.Arg854*) IOPD

c.2560C > T(p.Arg854*) c.2560C > T(p.Arg854*) IOPD

c.2560C > T(p.Arg854*) c.2560C > T(p.Arg854*) IOPD

c.2560C > T(p.Arg854*) c.2560C > T(p.Arg854*) IOPD

c.2560C > T(p.Arg854*) c.2560C > T(p.Arg854*) IOPD

c.2560C > T(p.Arg854*) c.2560C > T(p.Arg854*) IOPD

c.2560C > T(p.Arg854*) c.2560C > T(p.Arg854*) IOPD

c.2560C > T(p.Arg854*) c.1129G > C(p.Gly377Arg) IOPD

c.2560C > T(p.Arg854*) c.1710C > G(p.Asn570Lys) IOPD

c.2560C > T(p.Arg854*) c.2236T > C(p.Trp746Arg) IOPD

c.2560C > T(p.Arg854*) c.2459_2461delCTG(p.Ala820del) IOPD

c.722_723delTT(p.Phe241Cysfs*88) c.1687C > T(p.Gln563*) IOPD

[del Exons 15–20]U c.2012T > G(p.Met671Arg) IOPD

c.1411_1414del4(p.Glu471fs*5) c.460_465del6(Arg154_Thre155del)1 IOPD

c.1099T > C(p.Trp367Arg) c.1802C > T(p.Ser601Leu) IOPD

c.1293_1312del20(p.Gln433Aspfs*66) c.1716C > G(p.His572Gln) IOPD

c.1327-2A > C c.1327-2A > C IOPD

c.1438-1G > C c.1655T > C(p.Leu552Pro) IOPD

c.1933G > A(p.Asp645Asn) c.1933G > A(p.Asp645Asn) IOPD

Mutation1 Mutation2 Phenotype Onset for LOPD

c.1933G > A(p.Asp645Asn) c.1933G > A(p.Asp645Asn) IOPD

c.1942G > A(p.Gly648Ser) c.1942G > A(p.Gly648Ser) IOPD

c.2238G > A(p.Trp746*) c.1843G > A(p.Gly615Arg) IOPD

c.2481+102_2646+31del (p.Gly828_Asn882del)U c.437delT(p.Met146Argfs*7) IOPD
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Pathogenic variant 1 Pathogenic variant 2 Phenotype Onset for LOPD

c.2481+102_2646+31del (p.Gly828_Asn882del)U c.1210G > A(p.Asp404Asn) IOPD

c.2481+102_2646+31del (p.Gly828_Asn882del)U c.1912G > T(p.Gly638Trp) IOPD

c.2481+102_2646+31del (p.Gly828_Asn882del)U c.525delT(p.Glu176Argfs*45) IOPD

c.2481+102_2646+31del (p.Gly828_Asn882del)U c.525delT(p.Glu176Argfs*45) IOPD

c.2481+102_2646+31del (p.Gly828_Asn882del)U c.2481+102_2646+31del (p.Gly828_Asn882del)U IOPD

c.2512C > T(p.Gln838*) c.2105G > T(p.Arg702Leu) IOPD

c.2815_2816delGT(p.Val939fs*78) c.1935C > A(p.Asp645Glu) IOPD

c.525delT(p.Glu176Argfs*45) c.1799G > T(p.Arg600Leu) IOPD

c.525delT(p.Glu176Argfs*45) c.1880C > T(p.Ser627Phe) IOPD

c.525delT(p.Glu176Argfs*45) c.1655T > C(p.Leu552Pro) IOPD

c.655G > A(p.Gly219Arg) c.1979G > A(p.Arg660His) IOPD

c.655G > A(p.Gly219Arg) c.655G > A(p.Gly219Arg) IOPD

c.-32-17_-32-10delins TCCCTGCTGAGCCTCCTACAGGCCTCCCGCW c.1447G > A(p.Gly483Arg) IOPD

c.1210G > A(p.Asp404Asn) c.1924G > T(p.Val642Phe) IOPD

c.525delT(p.Glu176Argfs*45) c.-32-13T > GF IOPD

c.2015G > T(p.Arg672Leu)) c.2783A > G(p.Tyr928Cys) LOPD Juvenile

c.1655T > C(p.Leu552Pro) c.1655T > C(p.Leu552Pro) LOPD Juvenile

c.1437+2T > C c.-32-13T > GF LOPD Juvenile

c.953T > C(p.Met318Thr) c.-32-13T > GF LOPD Juvenile

c.1796C > A(p.Ser599Tyr) c.-32-13T > GF LOPD Juvenile

c.1396_1397insG(p.Val466fs*39) c.-32-13T > GF LOPD Adult

c.1143delC(p.Ala382Leufs*10) c.-32-13T > GF LOPD Adult

c.1441T > C(p.Trp481Arg) c.-32-13T > GF LOPD Adult

c.1445C > G(p.Pro482Arg) c.-32-13T > GF LOPD§2 Adult

c.1445C > G(p.Pro482Arg) c.-32-13T > GF LOPD§2 Adult

c.1548G > A(p.Trp516*) c.-32-13T > GF LOPD Adult

c.1548G > A(p.Trp516*) c.-32-13T > GF LOPD Adult

c.1655T > C(p.Leu552Pro) c.-32-13T > GF LOPD Adult

c.1798C > T(p.Arg600Cys) c.-32-13T > GF LOPD Adult

c.1827delC(p.Tyr609*) c.-32-13T > GF LOPD Adult

c.1835A > C(p.His612Pro)2 c.-32-13T > GF LOPD Adult

c.1880C > T(p.Ser627Phe) c.-32-13T > GF LOPD Adult

c.2238G > A(p.Trp746*) c.-32-13T > GF LOPD Adult

c.2238G > A(p.Trp746*) c.-32-13T > GF LOPD Juvenile

c.2242dupG (p.Glu748Glyfs*48) c.-32-13T > GF LOPD Adult

c.2481+102_2646+31del (p.Gly828_Asn882del)U c.-32-13T > GF LOPD Adult

c.2481+102_2646+31del (p.Gly828_Asn882del)U c.-32-13T > GF LOPD Adult
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Pathogenic variant 1 Pathogenic variant 2 Phenotype Onset for LOPD

c.2481+102_2646+31del (p.Gly828_Asn882del)U c.-32-13T > GF LOPD Adult

c.2481+102_2646+31del (p.Gly828_Asn882del)U c.-32-13T > GF LOPD Adult

c.2481+102_2646+31del (p.Gly828_Asn882del)U c.-32-13T > GF LOPD Adult

c.2560C > T(p.Arg854*) c.-32-13T > GF LOPD Adult

c.2608C > T(p.Arg870*) c.-32-13T > GF LOPD Adult

c.525delT(p.Glu176Argfs*45) c.-32-13T > GF LOPD Adult

c.525delT(p.Glu176Argfs*45) c.-32-13T > GF LOPD Adult

c.525delT(p.Glu176Argfs*45) c.-32-13T > GF LOPD Adult

c.525delT(p.Glu176Argfs*45) c.-32-13T > GF LOPD Adult

c.742delC(p.Leu248Profs*20) c.-32-13T > GF LOPD Adult

c.743T > C(p.Leu248Pro) c.-32-13T > GF LOPD Adult

c.784G > A(p.Glu262Lys) c.-32-13T > GF LOPD Adult

c.784G > A(p.Glu262Lys) c.-32-13T > GF LOPD§3 Adult

c.784G > A(p.Glu262Lys)3 c.-32-13T > G3F LOPD§3 Adult

c.836G > A(p.Trp279*) c.-32-13T > GF LOPD Adult

c.877G > A(p.Gly293Arg) c.-32-13T > GF LOPD Adult

c.925G > A(p.Gly309Arg)F c.-32-13T > GF LOPD Adult

c.925G > A(p.Gly309Arg)U c.-32-13T > GF LOPD Adult

c.1143delC(p.Ala382Leufs*10) c.-32-13T > GF LOPD§4 Adult

c.1143delC(p.Ala382Leufs*10) c.-32-13T > GF LOPD§4 Adult

IOPD infantile Pompe disease.

LOPD late-onset Pompe disease.

1
The significance of this variant is unknown. This patient also had c.752C > T(p.Ser251Leu) and c.761C > T(p.Ser254Leu) variants, both of which 

were detected by WES.

2
The significance of this variant is unknown.

3
Genotype for this patient was assumed based on the genotype of her sib.

§
Sib pairs.

F
The variant was called but filtered out by the tertiary analysis pipeline.

W
The variant was detected but was called as a wrong genotype by the variant caller.

U
The variant was not called by the variant caller.
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