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ABSTRACT Metabolomics is increasingly popular for the study of pathogens. For
the malaria parasite Plasmodium falciparum, both targeted and untargeted metabo-
lomics have improved our understanding of pathogenesis, host-parasite interactions,
and antimalarial drug treatment and resistance. However, purification and analysis
procedures for performing metabolomics on intracellular pathogens have not been
explored. Here, we purified in vitro-grown ring-stage intraerythrocytic P. falciparum
parasites for untargeted metabolomics studies; the small size of this developmental
stage amplifies the challenges associated with metabolomics studies as the ratio be-
tween host and parasite biomass is maximized. Following metabolite identification
and data preprocessing, we explored multiple confounding factors that influence
data interpretation, including host contamination and normalization approaches (in-
cluding double-stranded DNA, total protein, and parasite numbers). We conclude
that normalization parameters have large effects on differential abundance analysis
and recommend the thoughtful selection of these parameters. However, normaliza-
tion does not remove the contribution from the parasite’s extracellular environment
(culture media and host erythrocyte). In fact, we found that extraparasite material is
as influential on the metabolome as treatment with a potent antimalarial drug with
known metabolic effects (artemisinin). Because of this influence, we could not detect
significant changes associated with drug treatment. Instead, we identified metabo-
lites predictive of host and medium contamination that could be used to assess
sample purification. Our analysis provides the first quantitative exploration of the ef-
fects of these factors on metabolomics data analysis; these findings provide a basis
for development of improved experimental and analytical methods for future
metabolomics studies of intracellular organisms.

IMPORTANCE Molecular characterization of pathogens such as the malaria para-
site can lead to improved biological understanding and novel treatment strate-
gies. However, the distinctive biology of the Plasmodium parasite, including its
repetitive genome and the requirement for growth within a host cell, hinders
progress toward these goals. Untargeted metabolomics is a promising approach
to learn about pathogen biology. By measuring many small molecules in the par-
asite at once, we gain a better understanding of important pathways that con-
tribute to the parasite’s response to perturbations such as drug treatment. Al-
though increasingly popular, approaches for intracellular parasite metabolomics
and subsequent analysis are not well explored. The findings presented in this re-
port emphasize the critical need for improvements in these areas to limit misin-
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terpretation due to host metabolites and to standardize biological interpretation.
Such improvements will aid both basic biological investigations and clinical ef-
forts to understand important pathogens.

KEYWORDS Plasmodium falciparum, apicomplexan parasites, intracellular pathogen,
metabolomics

Malaria continues to be responsible for hundreds of thousands of deaths annually,
most of which result from infection with the protozoan parasite Plasmodium

falciparum (1). Characterization of the biology of this important pathogen can lead to
improved treatment strategies. Omics approaches, such as genomics, transcriptomics,
and proteomics, are widely used, but the limited annotation of the parasite’s genome
makes these data sets challenging to interpret. One way to alleviate this lack of
functional knowledge is to use network-based modeling to contextualize noisy or
sparse data and facilitate the interpretation of complex data (2). Additionally, the
measurement of direct mediators of the phenotype, such as signaling and biosynthetic
metabolites, can improve the ability to characterize phenotypes mediated by proteins
that are not yet annotated in the genome. For this reason, metabolomics is becoming
increasingly popular in studies of intraerythrocytic stages of P. falciparum (3–12). These
studies have improved our understanding of malaria pathogenesis (7), strain-specific
phenotypes (11), and host-parasite interactions (9). Recent studies have successfully
identified metabolic signatures that correlate well with biological function, such as
time- and dose-dependent responses to antimalarial treatment (3, 5) and resistance-
conferring mutations (12).

Previous studies on P. falciparum have been confined to the larger, late-intra-
erythrocyte-stage parasites. This is mainly due to the characteristics of the available
purification approaches used; for example, magnetic purification specifically enriches
late-stage parasites that contain paramagnetic hemozoin while excluding early ring
stages and uninfected host cells (13). Accordingly, the study of the smaller, early-ring-
stage parasite is more challenging due to an inability to isolate adequate amounts of
parasite material from host material (12). However, specific functionality (i.e., artemis-
inin resistance) can be observed only in the early parasite stages and metabolic details
would greatly advance our understanding of such phenotypes.

There are distinct challenges that need to be considered in performing metabo-
lomic studies in obligate intracellular pathogens such as P. falciparum; chief among
these are acquiring adequate material and the potential for contamination from
host cells. Due to inefficient purification methods, samples typically have few
parasites and yet abundant host erythrocyte material. Uninfected host cells are
often �10 times more prevalent than P. falciparum-infected host cells in laboratory
culture and clinical infections, and the host erythrocyte contains up to 10-fold more
cellular material (14, 15).

In this study, we sought to define critical parameters that can be used to overcome
these challenges and facilitate the collection of high-quality metabolomics data. We
chose to investigate an extreme case, namely, metabolically perturbing early-ring-stage
P. falciparum parasites, to determine if the extensive extraparasite contamination
present after employment of commonly used isolation methods can be removed
analytically. We show that both the choice of analytic parameters (in particular, the
normalization approach) and extraparasite contamination heavily influence the inter-
pretation of metabolic changes. However, even appropriate normalization fails to
remove environmental noise completely. Contamination from the media and host cells
is as influential on the metabolome as sample treatment. Thus, we propose that the
combination of improved purification and improved analytic parameters could gener-
ate more accurate measures of the metabolome, increasing the utility of untargeted
metabolomics to investigate intracellular parasite biology.
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RESULTS
Metabolomics. We conducted metabolomics on early-ring-stage (0 to 3 h) Plasmo-

dium falciparum parasites lysed from host erythrocytes. Two parasite clones were
grown in matched conditions, lysed and washed from the host cell, and analyzed via
ultra-high-performance liquid chromatography coupled with mass spectrometry
(UPLC/MS) (Fig. 1A). Prior to isolation, each clone (representing either a drug-sensitive
or a drug-resistant line) was either left untreated or treated with 700 nM dihydroarte-
misinin (for 6 h), generating four sample groups with matched blood batches, media,
and purification approaches (Fig. 1B). Dihydroartemisinin, the active component of the
antimalarial artemisinin, is a known metabolic disruptor (3, 5, 16). Both sensitive and
resistant parasites are known to enter a unique metabolic state, called dormancy,
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FIG 1 Metabolomics pipeline and metabolite identification. (A) Metabolomics purification and analysis pipeline. (Step 1) Laboratory-
adapted P. falciparum clones are cultured in host erythrocytes. Parasite count is collected at this step (total erythrocyte number multiplied
by percent parasitemia yields total parasite value; see Materials and Methods). (Step 2) If enriching for late-stage parasites is desired,
cultures are passed through a magnetic column to retain paramagnetic late-stage-infected erythrocytes. Note that this was not done for
the present study. iHost, infected host erythrocytes; uHost, uninfected host erythrocytes. (Step 3) Host erythrocytes are lysed using
saponin, but parasites remain intact. Samples are washed to remove hemoglobin and other intracellular host material and quenched on
liquid nitrogen. Total protein is quantified at this step (prior to freezing). (Step 4) Soluble metabolites are extracted from precipitated
protein using methanol and centrifugation. Double-stranded DNA is quantified at this step. (Step 5) Metabolites are separated via liquid
chromatography and identified using mass spectroscopy. Metabolite spectra are compared to a library of authenticated standard
metabolites for high-confidence identification. (Step 6) Abundance data for each metabolite are normalized to an appropriate parameter
(i.e., DNA content or parasite number), log transformed, centered with respect to the median, and scaled with respect to variances, prior
to employing statistical comparisons. (B) Experimental comparison. All samples were grown in RPMI media supplemented with AlbuMAX
and hypoxanthine and with one of three blood batches (matched across treatment conditions). At the early ring stage (�3 h
postinvasion), 10 samples were treated with dihydroartemisinin (DHA; 700 nM) for 6 h and 10 samples were matched with respect to
protocol and condition (blood batch, medium batch, and stage) without drug treatment (see Table S3). Images shown were taken at the
6-h time point (�100 magnification); dormancy was observed at 24 h. (C) Summary of identified metabolites. Metabolites (each
represented by one point) from various metabolic subgroups were not uniformly detected in all five replicates for any sample group. How
frequently a metabolite was measured across replicates is indicated by the metabolite point placed in data corresponding to 1 to 5
replicates (y axis). The majority of metabolites detected were lipid species, as indicated by the large number of blue dots. A full list of
identified metabolites is provided in the supplemental material.
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following treatment. Dormancy is characterized by reduced metabolic activity (17–19);
thus, treated ring-stage parasites should have a metabolome distinct from that seen
with untreated parasites.

Mass spectrometry analysis of these samples detected 297 identifiable metabolites;
155 metabolites were detected in every sample. Samples contained between 182 and
267 metabolites. The detected metabolites represented 10 energy-associated metab-
olites, 159 lipid species, 108 peptides and amino acids, 40 nucleotides, 28 cofactors, 20
carbohydrates, and 10 in other categories (see Table S1 in the supplemental material).
Lipid species were the most consistently detected metabolites in every sample (as
measured by the percentage of metabolite found in every sample), and amino acids
were often unique to individual samples (Fig. 1C). Several metabolites were measured
that are not known to be part of P. falciparum metabolism, including kynurenine
(detected in 25% of samples), phenol red (phenolsulfonphthalein; detected in 95% of
samples), and HEPES (detected in all samples; see Table S1).

Host contamination. Despite implementation of the current best practices, includ-
ing erythrocyte lysis and washing steps to remove parasites from their intracellular
milieu (Fig. 1A; see, e.g., references 3 and 8), parasite separation from the host is poor.
Microscopy confirmed that the parasites lysed from host cells remained embedded in
erythrocyte membranes and that washes failed to isolate parasite material (Fig. 2A) (20).
Importantly, over 68% of parasites remained associated with the host membrane
(Table S2). This result emphasized that erythrocyte “ghosts” (cell membranes with
associated metabolites) remained abundant in the sample and could have heavily
contributed to the metabolome. Thus, we sought analytic approaches to remove host
contamination post hoc.

Normalization. We first explored the use of normalization with three distinct
approaches. Metabolomics preprocessing methods can influence results (21, 22), but
the role of normalization, particularly in intracellular pathogens, has not been exten-
sively explored. Both host- and parasite-derived metrics (double-stranded DNA or

BA

10um

protein parasite count metabolites

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

dsDNA

FIG 2 Host persistence is detected using multiple approaches. (A) Visualization of parasites within erythrocyte ghosts. Fluorescent imaging (�40
magnification) reveals parasites (blue, DAPI) retained within erythrocyte ghosts (red, phycoerythrin-conjugated CD235a antibody) following
saponin treatment. Approximately 70% of the parasites remain associated with host membranes (see Table S2). (B) Sample characteristics.
Samples were evaluated for levels of double-stranded DNA (dsDNA; quantified in micrograms per milliliter on the x axis), protein amounts (black;
quantified in micrograms on the y axis [ranging from 67.0641 to 130.0936 �g] in the left panel), and parasite counts (blue; quantified on the y axis
[ranging from 1,306,500 to 6,946,875 parasites] in the center panel) prior to analysis. The total number of metabolites detected per sample (red;
quantified on the y axis [ranging from 182 to 267 metabolites] in the right panel) was significantly correlated with sample dsDNA quantification
(P � 9.8 � 10�5; r2 � 0.76). Protein amount and parasite count were not significantly correlated with dsDNA. The fit line uses a linear model, and
the shaded region represents the standard error.
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dsDNA, protein, and parasite levels) were evaluated in the experimental setup (Fig. 1A).
Sample replicates contained 1.3 to 6.9 million parasites (Table S3). As expected, no two
normalization metrics were correlated across samples (Fig. 2B; see the supplemental
materials for codes). Metabolite yield (as measured by the number of identified
metabolites) was correlated only with DNA abundance (P � 9.8 � 10�5, r2 � 0.76)
(Fig. 2B), indicating that DNA abundance is associated best with total biomass.

Initially, we anticipated that dsDNA should come primarily from the parasite fraction,
as host erythrocytes are anucleate and growth medium does not contain any intact
DNA; however, we found that host cells and AlbuMAX (a medium component) did
contribute to sample dsDNA (see Fig. S1 in the supplemental material). Protein was
likely also derived from all three culture components, namely, parasite, host erythro-
cyte, and media (via AlbuMAX supplementation). Although parasite counts represent a
direct measure of the parasite fraction, this variable was collected several steps up-
stream of metabolome quantification (Fig. 1A) and may have been suboptimal com-
pared to metrics collected later in the pipeline.

We normalized metabolomes with respect to these parasite-derived and host-
derived metrics to determine if normalization reduces extraparasite noise to reveal
parasite metabolomes. Normalization of metabolite levels can be calculated by a variety
of methods (Table 1; Fig. 3), all aiming to enhance interpretation of results by control-
ling for technical or nonbiological variation. To normalize, we divide the value repre-
senting the abundance of each metabolite in a sample by the corresponding sample
variable to control for sample-to-sample variation (Fig. 3). As illustrated in Fig. 3,
normalization can significantly affect interpretation of results and should be selected
carefully based on experimental design and knowledge of samples.

Because the effect of normalization has not been explored in intracellular parasites,
we normalized to parasite number (parasite derived), dsDNA amount (parasite, me-
dium, and host derived), and total protein amount (parasite, medium, and host derived)
and then performed principal-component analysis with all sample metabolomes
(Fig. 4A to D). The normalization methods all yield distinct principal component
structures, and yet none clearly separate the four sample groups (as measured by
clustering of the sample groups by permutational multivariate analysis of variance
[PERMANOVA]; P values are provided in the figure under the �Normalization� heading).
However, with DNA normalization, we are able to separate drug-treated parasites from
untreated parasites or clonal groups (Fig. 4B); with parasite number normalization, we
can distinguish clonal groups (Fig. 4D).

Consistent with the lack of distinct separation, univariate statistical analysis revealed
no metabolites that were differentially abundant among the four groups (see the
supplemental material for code). When normalization is employed, metabolome differ-
ences between groups are highly dependent on the approach; the top differentially
abundant metabolites are normalization method dependent (data not shown; see the
supplemental material for code). These findings emphasize that biological interpreta-
tions can change significantly depending on the chosen analytic parameters and thus
that the selected normalization metric is a critical parameter and must be shared for
analytic reproducibility.

Data filtering. We next examined and removed extraparasite metabolites in our
data set in order to explore the effect of sample contamination. Because there are no
unique metabolites associated with the host, we explored medium-specific metabo-
lites, specifically, phenol red and HEPES. Both phenol red (a pH indicator) and HEPES (a
buffer) are components of the growth medium and should not be utilized by cells.
These metabolites are routinely excluded from metabolomics analysis for this reason.

Interestingly, the abundances of 82 (of a total of 298) metabolites were correlated
with phenol red (Fig. 4E) and the abundances of 76 metabolites were correlated with
HEPES (data not shown); the abundances of 59 metabolites were correlated with both
compounds. Many (�39%) of these metabolites remained correlated with the compo-
nents of the media even after normalization (phenol red data are shown in Fig. 4E).

Analysis of Intracellular Parasite Metabolomics

March/April 2018 Volume 3 Issue 2 e00097-18 msphere.asm.org 5

msphere.asm.org


Because phenol red and HEPES appeared to increase in abundance in drug-treated
samples (nonsignificant trend; data not shown), we argue that this extraparasitic
fraction may influence the interpretation of drug treatment data. If we remove these
medium-associated metabolites from our analysis, surprisingly, sample separation into
the four treatment groups does not provide an improvement in comparison to the
results seen with DNA normalization alone (based on the remaining 216 metabolites;
see Fig. 3F compared to Fig. 3B). Thus, both post hoc data filtering methods were
insufficient to remove the effect of extraparasite contamination in our low-powered
study.

Machine learning. We next used machine learning to attempt to separate the
extraparasite-associated metabolome from the parasite metabolome. Here, we lever-
aged the multiple blood batches used in parasite culture (Fig. 1A). Our four sample
groups were grown in three different blood batches (Table S3). Univariate statistical
analysis revealed only one metabolite with differential abundance results among the
blood batches (1-arachidonoyl-GPE; see the supplemental material for code). To further
explore the host contribution to the metabolome, we built random forest classifiers for

TABLE 1 Parameters in metabolomics analysis of intracellular parasites, including Plasmodiuma

Parameter Option(s) Factor(s) to consider

Growth conditions Ring stage Limited biomass (1–2 �m; Fig. 1A and B), haploid genome; few
enrichment options

Late stage Larger in size (3–10 �m), polyploid genome; can use magnetic
enrichment (Fig. 1A)

Mixed stages Effects of stage variation on data
Media batches Relevant if using serum-based media formulations
Blood batches Must be recorded and matched within comparisons (Table S3); useful

to assess host contamination levels (Fig. 5 and 6)

Additional controls Uninfected erythrocytes Used to identify or control for host metabolites; used in addition to
normalization

Enrichment methods Saponin, other lytic reagents Compatible with all stages (Fig. 1A); parasites remain in erythrocyte
ghosts (Fig. 2A) (need improved methods that isolate parasite
from host cell)

Magnetic purification Increases parasite-to-host ratio (Fig. 1A)

Metabolite detection NMR Limited metabolite detection but higher confidence
Mass spectrometry Industry standard for broad detection
Radio labeling Targeted approach with high confidence
Single metabolite assays High-confidence, targeted approach with low throughput

Preanalysis normalization Cell number normalization Can be combined with any postanalysis normalization but requires sample
manipulation

Postanalysis normalization Parasite-derived parameters That is, parasite number; selection requires knowledge of
experimental design

Parameters with mixed
derivation (host, parasite)

That is, protein, DNA; can fail to remove undesired noise (Fig. 2 and 4)

Internal standards Dependent on metabolomics facilities

Centering Mean Standard centering
Median Less sensitive to outliers
Other See reference 54 for a summary of alternative approaches

Scaling Within-group SD Requires no additional samples
Z-scoring Requires control samples (i.e., untreated or uninfected erythrocytes)

Statistical analysis Univariate Requires multiple-comparison corrections
Multivariate Reveals group differences based on multiple variables
Machine learning (e.g.,

random forest)
Classification more stringent than with univariate tests but can

identify nonlinear effects
aNote that most parameters do not have strict recommendations, as they are dependent on experimental design. Bolded text indicates methods that were employed
and/or evaluated during this study. NMR, nuclear magnetic resonance.
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analysis of blood batch and drug treatment data (Fig. 5). Random forest analysis is an
internally validated machine learning approach, used here to classify samples into
groups based on their metabolome (Fig. 5A) and to identify individual variables that are
important for prediction accuracy (Fig. 5B).

We first built classifiers for analysis of blood batch data across all samples. Ninety-
five metabolites (of 298) improved classifier accuracy in analysis of blood batch data
(using the DNA normalized data set; see the supplemental material for code). Many of
these metabolites are correlated in abundance with the components of the media
explored (Fig. 4E), including CDP-ethanolamine, AMP, ADP-ribose, and aspartate, which
are among the top 10 most influential metabolites in this classifier. The remaining
metabolites (203 in total) had no effect on the performance of the classifier or
worsened its predictive ability, indicating they are not associated with blood batch due
to high variability or association with other features that differentiate samples. The
classifier built from DNA-normalized metabolomes predicted blood batch data with a
30% error rate (Fig. 6A). We also built a blood batch classifier from each of the other
normalization approaches (Fig. 6A).

To determine if blood batch is as influential on the metabolome data as a potent
antimalarial drug treatment, we built similar classifiers for analysis of artemisinin
treatment. Parasites were classified into two treatment conditions with a 30% class
error rate using DNA-normalized metabolomes (Fig. 6A). A total of 118 metabolites (of
298) improved the accuracy of this classification, including medium-correlated metab-
olites such as pipecolate, several dipeptides, and phenol red (see the supplemental
material for code).

The performance of our classifier (Fig. 6A) was relatively poor due to the small
sample size, and the results indicated that only a subset of the measured metabolomes
was predictive of blood batch or drug treatment. Classifiers built from data under
alternative normalization approaches were comparable in performance, but different
metabolites contributed to their accuracy (Fig. 6B). Removal of phenol red and asso-
ciated metabolites from the data set (listed as phenol red correction data; Fig. 6A)
reduced blood batch classifier performance more than it did treatment classifier
performance; this result is not surprising, because both the components of the media
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FIG 3 Normalization approaches impact the final metabolite abundance. Normalization controls for
sample-to-sample variation were performed. Normalization requires sample metabolite abundance to be
divided by the quantified normalization factor, the sample variable (the equation is in the blue box;
normalization factors are shown left of the box). The examples of results shown in the table indicate
abundances of X metabolites given several different sample metrics for normalization. For example,
identical samples with different cell counts (sample 1 and sample 2) reveal the importance of normalization;
without it, the data corresponding to the identical samples show a 2-fold difference in the values
determined for metabolite X. The values determined for identical parasite samples 3 and 4 also show a
nearly 2-fold difference in metabolite abundance after normalizing to protein levels, due to host bias for
protein measures.
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and the host cells are extraparasitic. Thus, by removing medium contamination, we may
also be removing host contamination and data associated with the blood batch.
However, phenol red is associated with both blood batch classifier accuracy and
treatment classifier accuracy (Fig. 6B); this result supports the idea of the necessity of
removing extraparasitic metabolites during sample preparation, as they can skew
meaningful biological interpretation.
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Interestingly, when the classifier was built using a different normalization approach,
the set of metabolites that most extensively contributed to accuracy changed (repre-
sentative examples are shown in Fig. 6B; code for the full analysis is available in the
supplemental material). Although some metabolites (such as CDP-ethanolamine or
valyl leucine) were consistently associated with blood classifier accuracy or treatment
classifier accuracy, respectively, some metabolites (such as succinate and hypoxan-
thine) gave contradictory results depending on the data normalization approach
(Fig. 6B). 1-Arachidonoyl-GPE, identified by univariate statistics, was not among the top
most predictive metabolites in any classifier but did contribute to accuracy in some
blood batch classifiers. Thus, sample metabolome can classify both blood batch and
sample group, indicating that sample treatment and blood batch influence the
metabolome and that this is normalization approach dependent.
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FIG 5 Random forest analysis. (A) Building a random forest classifier. Samples are randomly classified into subsets (training
and test data sets); from the training subsets, decision trees are built to separate samples into groups (see panel B). Trees
are evaluated by testing classification performance on the remaining samples from the test data sets. See Materials and
Methods for more details on the analyses. (B) Evaluating metabolite importance. Metabolite importance is calculated by
determining the effect of removal of the metabolite from the data set on classifier performance. See Materials and
Methods for further details.
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FIG 6 Blood batch and antimalarial treatment influence metabolomes. (A) Classifier performance.
Classifiers were built to predict blood batch or treatment conditions using the metabolomics data with
or without 4 normalization approaches. The classifier error rate varies with the normalization approach.
(B) The normalization method determines the important metabolites. A sample consisting of five
metabolites associated with improved or worsened classifier accuracy is shown. These metabolites are
shown in accordance with their importance in classifier performance and their interesting behavior
across classifiers. Upward-pointing arrows indicate that the metabolite improves classifier accuracy in
one classifier, and downward-pointing arrows indicate they worsen accuracy in one classifier (arrows
represent the normalization approaches from panel A); if the metabolite does not improve or worsen
accuracy, a dash is shown. Contradictory results (both upward-pointing and downward-pointing arrows
for one metabolite) indicate that the normalization method changes the importance of the metabolite.
Note that valyl leucine, hypoxanthine, and phenol red were removed upon phenol red filtering and,
therefore, are present in only 4 classifiers, as indicated by the four arrows and dashes.

Analysis of Intracellular Parasite Metabolomics

March/April 2018 Volume 3 Issue 2 e00097-18 msphere.asm.org 9

msphere.asm.org


DISCUSSION

The lifestyle of intracellular parasites presents challenges to implementing tradi-
tional metabolomics protocols, predominately due to host metabolite contamination
and limitations in the amounts of parasite material. These challenges are exacerbated
when studying early parasite stages (such as the Plasmodium ring stage studied here),
when the parasite is smallest. In our study, we conducted a detailed assessment of
the impact of extraparasite contamination and investigated analytic approaches to
improve metabolome interpretation. We recommend improved discussion of normal-
ization methods in the metabolomics field, especially for intracellular parasites, as
normalization significantly effects the interpretation of a data set. Additionally, we
propose several analytic approaches to explore the effect of host contamination.

Metabolome interpretation is normalization approach dependent. Normaliza-
tion limits nonbiological variation and is absolutely essential for biological interpreta-
tion (Fig. 3). Normalization factors can be calculated using a variety of methods, and
normalization is implemented either before or after metabolite quantification and
identification (described as preanalysis or postanalysis) (Table 1) (21, 22). Often, pre-
analysis normalization is conducted by isolating the same number of cells for analysis
(23) but this is not typically used in the study of P. falciparum as generating adequate
biomass can be challenging (3, 5, 12). Furthermore, the use of inaccurate quantification
methods may negate the utility of this step by introducing more variability. Postanalysis
normalization methods are also routinely used; these include the use of internal
standards (4, 21), corrections for protein amounts (often used for supernatant or
cell-free metabolomics [24]), DNA content (an approach validated in mammalian cells
[25] and applied to bacterial cells [26]), or cell number (typically used for bacterial
populations [27]).

To our knowledge, normalization was never described in detail in previous metabo-
lomics studies of P. falciparum, perhaps due to the technical challenges that we
explored here. We evaluated three postanalysis normalization approaches, namely, the
protein, double-stranded DNA, and parasite number approaches (Fig. 3 and 4A to D).
Overall, we conclude that normalization significantly affects the interpretation of results
(Fig. 4 and 6). The normalization approach influences the metabolites with the greatest
differential abundances (data not shown because they did not reach significance) and
the metabolites predictive of sample group shift with data normalization (Fig. 6).

In the present studies, only the parasite count data were entirely parasite derived.
The extracellular environment (including components of media and host erythrocyte)
likely contributes heavily to protein abundance. Accordingly, parasite count and pro-
tein abundance are not correlated. We also show that the host cell contributes to
dsDNA levels, despite lacking a nucleus (see Fig. S1 in the supplemental material). This
material may be contributed by the small proportion of dying white blood cells that
remain after erythrocyte preparation. Despite this finding, our analysis shows that
dsDNA normalization of early-ring-stage metabolomes best distinguished sample and
treatment groups and removed medium contamination (Fig. 4). Much variability still
remained after this step; we did not identify any differentially abundant metabolites
even though artemisinin has been reported to have metabolic effects on late-stage
parasites (3, 5, 16) and dormancy induces metabolic shifts in ring-stage parasites
(17–19). Although dsDNA normalization was the most effective approach in our data
set, it is not appropriate for all experimental cases; for example, this type of analysis
would introduce variability in comparisons of groups of different parasite stages due to
known genome copy number differences (28, 55).

Media and host contribute to the measured metabolome. We found that ex-
traparasite material contributed by host erythrocytes and components of media can
also heavily impact the metabolome. Many studies employ erythrocyte lysis prior to
sample purification (3, 8, 9, 12) (see Materials and Methods). However, several results
from our study show that this step does not eliminate the potential for host contam-
ination.
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First, lipid species were the major class of metabolites detected in our analysis
(Fig. 1C), perhaps due to the abundance of the erythrocyte membranes or “ghosts”
present in the preparations (Fig. 2A). Second, more than a quarter of the metabolome
is correlated with the components of the media (phenol red [Fig. 4E] and HEPES [data
not shown]). Unlike HEPES (11), phenol red has not been shown to be imported into the
parasite; neither metabolite is produced or biochemically consumed by the parasite.
Thus, it is likely that these medium-derived metabolites remained associated with cells
following in vitro culture in medium. This medium also contains high levels of other
metabolites such as glutathione, hypoxanthine, glutamine, and many amino acids,
which are correlated with phenol red and/or HEPES abundances. Third, we measured
metabolites not expected to be produced or consumed by Plasmodium (2). For exam-
ple, kynurenine is present in erythrocytes, derived from the amino acid L-tryptophan
(29, 30), and is not known to be involved in P. falciparum metabolism (31). Lastly, the
only differentially abundant metabolite in our entire analysis that reached significance
was associated with the blood batch (1-arachidonoyl-GPE). This metabolite has not
been studied in the context of erythrocyte or Plasmodium metabolism but can be
explored as a potential marker of host contamination.

In fact, we were able to predict a set of metabolites that are most likely to be
influenced or derived from the host erythrocyte by identifying the metabolites that are
most predictive of blood batch (Fig. 5B and 6B; see figures in the supplemental material
code for a comprehensive list). Going forward, it may be possible to use specific
metabolite markers to assess levels of host contamination and parasite sample purity
and to control for host contamination during analysis.

Future recommendations. Parasite metabolomics is a rapidly expanding field; thus,
well-documented methodologies and rigorous evaluation criteria will enhance data
reproducibility and the quality of metabolomics-derived observations. In this study, we
compiled evidence of host erythrocyte and medium contamination in untargeted
metabolomics studies of intracellular parasites and explored the analytical decisions
that influence metabolome interpretation. We showed that analytic approaches can
improve the accuracy and interpretability of intracellular parasite metabolomes but
that, ultimately, better methods are needed to extract biological differences from
samples.

A common approach used in the study of P. falciparum involves the use of an
uninfected erythrocyte control to adjust for the presence of host metabolites (4, 6, 7,
9–11), but even with the use of this control, interpretation of data remains challenging
(see, e.g., reference 32). Uninfected erythrocyte controls are used for z score metabolite
abundance calculations (infected relative to uninfected), for differential abundance
calculations (infected divided by uninfected), or for calculations involving subtraction of
“host” metabolite data from infected-population data. However, we hypothesize that,
in some cases, the use of the uninfected erythrocyte control alone is not sufficient; as
we show in Fig. 4F and 6, correcting the data set by removing extraparasite contam-
ination data (medium-associated metabolites) fails to improve treatment classification.
We suggest that the quantitative analytic methods applied here must also be used to
evaluate the efficacy of the uninfected erythrocyte control.

Another common analytic step involves the removal of extraparasitic metabolites,
such as phenol red, as they are considered to represent noise from culture media.
However, these metabolites contain valuable information about experimental variation
and could be used for quality control, as indicated by the frequent correlation between
phenol red abundance and other metabolites (Fig. 4E). For this reason, these metab-
olites should not be excluded from the data set and subsequent analysis.

We suggest a set of considerations and recommendations for enhancing the accu-
racy of parasite metabolomics (Table 1 and below). First, samples must be better
purified away from host material. Purification could involve enrichment methods to
increase parasitemia prior to lysis (reducing the ratio of uninfected host cells to
parasites) or the direct removal of host material postlysis. Currently, enrichment ap-
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proaches exist only for late-stage malaria parasites. Second, markers of host contami-
nation must be used to evaluate the level of medium and host contamination. The
number of metabolites with abundances correlated with phenol red or HEPES can be
used to assess the contribution of the media. The visual detection of ghost material (via
microscopy) combined with assessment of host-specific metabolite markers is an
effective option to assess sample purity. Additionally, analytic approaches (such as
blood batch classification) can be used to identify remaining or experiment-specific
markers of contamination. Finally, data must be normalized to appropriate measure-
ments to maximize the metabolome signal associated with the treatment of interest;
subsequent subtraction of metabolites associated with host or media (e.g., uninfected
erythrocyte control or known components of media) can further reduce metabolite
influence mediated by extraparasite conditions. Importantly, we propose that, similarly
to studies in Leishmania (33–35), normalization and discussion of the chosen normal-
ization metrics should become standard during metabolomics analysis of intraerythro-
cytic parasites. With these considerations, metabolomics has the potential to become
a powerful tool in the study of intracellular parasites.

MATERIALS AND METHODS
Parasite cultivation. Laboratory-adapted P. falciparum clonal lines were cultured in RPMI 1640

(Thermo Fisher Scientific, Waltham, MA) containing HEPES (Sigma-Aldrich, St. Louis, MO) supplemented
with 0.5% AlbuMAX II lipid-rich bovine serum albumin (BSA) (Sigma-Aldrich, St. Louis, MO) and 50 mg/
liter hypoxanthine (Thermo Fisher Scientific, Waltham, MA). Parasite cultures were maintained at 3%
hematocrit and diluted with human red blood cells (blood batch noted in Table S3) to maintain
parasitemia at between 1% and 3%, with changes of culture medium every other day (Fig. 1A; step 1).
Cultures were incubated at 37°C with 5% oxygen, 5% carbon dioxide, and 90% nitrogen (36). Some
samples were treated with artemisinin, an antimalarial with metabolic effects (dihydroartemisinin; see
antimalarial treatment details in Table S3) (3, 5). Cultures were tested for mycoplasma monthly using a
LookOut Mycoplasma PCR detection kit (Sigma-Aldrich); none tested positive.

Parasite isolation. Two distinct laboratory-adapted clinical isolates of P. falciparum (BEI Resources,
NIAID, NIH; Plasmodium falciparum strains IPC 5202/MRA-1240 and IPC 4884/MRA-1238, contributed by
Didier Ménard) containing mixed stages with �50% rings were synchronized using 5% sorbitol (Sigma-
Aldrich, St. Louis, MO) (37). The resultant early-stage cultures were incubated at 37°C in AlbuMAX media
to allow the development of a predominantly schizont population. After the late-stage population was
confirmed using microscopy, cultures were checked every 1 to 2 h for the development of newly invaded
ring-stage parasites. If the parasites were treated with dihydroartemisinin, the treatment was performed
at this stage. Fourteen 25-cm3 flasks containing early-ring-stage parasites (�3 h postinvasion, treated
with dihydroartemisinin or left untreated) were subsequently lysed from the erythrocyte membrane
using 0.15% saponin, as previously described (38) (Fig. 1A; step 3). Prior to lysis, a sampling of parasite
material was taken for determination of erythrocyte count (hemocytometer) and parasitemia (Sybr
green-based flow cytometry [39]), which contributed to parasite number determination (total number of
erythrocytes � percent parasitemia yields the total parasite count). Additional samples were obtained
following erythrocyte lysis for protein quantification using Bradford reagent (Sigma-Aldrich, St. Louis,
MO). A series of three wash steps were then performed using 1� phosphate-buffered saline (PBS)
(Sigma-Aldrich, St. Louis, MO) and centrifugation at 2,000 � g to remove soluble erythrocyte metabolites.
Purified material was kept on ice until it was flash frozen using liquid nitrogen (to quench metabolism),
followed by storage at �80°C until sent for analysis. This procedure was performed five times for both
parasite clonal lines (strains IPC 5202/MRA-1240 and IPC 4884/MRA-1238) to provide 10 drug-treated
replicates for metabolomic analysis. Additionally, matched parasites (same parasite lineage, medium
type, stage, blood batches, and purification methods) were also grown without drug treatment (Table S3)
to generate 10 additional control samples (see comparison in Fig. 1B).

Metabolite preparation, analysis, and identification. Metabolites were identified using ultra-high-
performance liquid chromatography coupled with tandem mass spectroscopy (UPLC/MS-MS) by Metabo-
lon, Inc. (Durham, NC). All sample preparations and metabolite identifications were performed according
to standard protocols of Metabolon, Inc. (briefly summarized here). Double-stranded DNA was quantified
in all samples using a Quant-it PicoGreen dsDNA assay kit (Thermo Fisher, Waltham, MA) according to the
manufacturer’s instructions. Proteins were precipitated using methanol for 2 min with vigorous shaking
and then centrifuged for extraction (Fig. 1A; step 4). Sample extracts were separated into aliquots, dried,
and suspended in appropriate standard-containing solvents for analysis by four methods. These four
methods facilitate the measurement of metabolites with different biochemical properties and include
two reverse-phase UPLC/MS-MS methods, one with positive ion electrospray ionization (ESI) optimized
for hydrophilic compounds and one optimized for hydrophobic compounds, and a third method with
negative-ion-mode ESI. Additionally, a UPLC/MS-MS method with negative-ion-mode ESI following
elution from a hydrophilic interaction chromatography column was used. Waters Acquity ultraperfor-
mance liquid chromatography and a Thermo Scientific Q Exactive high-resolution/accurate mass spec-
trometer were used for all metabolite detection procedures (Fig. 1A; step 5).
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To evaluate the quality of the mass spectrometry pipeline, several controls were used. Ultrapure
water or the solvent alone or both were used as blank samples to control for nonspecific signals in the
pipeline. Technical controls were employed to ensure that the instruments were working within
specifications; a pooled sample of human plasma and a pooled aliquot of experimental samples were
used to distinguish biological from technical variability. A set of recovery and internal standards were
also used to quantify variability and instrument performance. Variability scores for all runs included in
this analysis met the acceptance criteria specified by Metabolon, Inc.

Raw data were extracted using hardware and software developed by Metabolon, Inc. Metabolites
were quantified using the area under the curve and were identified by comparison to a library of several
thousands of preexisting entries of purified standards or recurrent unknown compounds. Each library
standard was uniquely authenticated by retention time/indices, mass-to-charge ratios, and chromato-
graphic data. Named metabolites corresponded to library standards or were predicted with confidence
according to the standard protocols specified by Metabolon, Inc.

DNA quantification. Measurement of host-derived dsDNA levels was performed by incubating
uninfected erythrocytes at 3% hematocrit for 48 h in PBS or RPMI 1640 alone or RPMI 1640 with
50 mg/liter hypoxanthine or RPMI with 50 mg/liter hypoxanthine and 0.5% AlbuMAX II lipid-rich BSA.
Erythrocytes were subjected to saponin lysing and washed prior to dsDNA quantification using a Quant-it
PicoGreen dsDNA assay kit as described above.

Microscopy. Laboratory-adapted P. falciparum clones (BEI Resources, NIAID, NIH; Plasmodium
falciparum, patient line strain E/MRA-1000 or strain IPC 5202/MRA-1238, contributed by Didier
Ménard) at 1.5% parasitemia with �60% rings were lysed using 0.15% saponin, as previously
described (38). Samples were washed twice using 1� PBS (Sigma-Aldrich, St. Louis, MO) and
centrifugation at 2,000 � g for 5 min. For bright-field images, parasites were fixed with methanol
and stained with Giemsa stain for 15 min. Images were obtained on a Nikon Eclipse Ci microscope
(�100) using an Imaging Source microscope camera and Nikon NIS Elements imaging software.
Representative images are shown. For production of fluorescent images, samples were stained on
slides with either DAPI (4=,6-diamidino-2-phenylindole) (Sigma-Aldrich, St. Louis, MO) at 1:20,000 or
CD235a-phycoerythrin (CD235a-PE) antibody (Thermo Fisher Scientific, Waltham, MA) at 1:100.
Fluorescent images were acquired using an Evos FL cell imaging system (Thermo Fisher Scientific,
Waltham, MA). Representative images are shown, and quantification of 1,214 parasites associated
with erythrocyte membranes was performed for 11 preparations.

Data preprocessing and statistical analysis. Following the analytical protocol outlined in reference
40, we first preprocessed metabolite abundances for each sample by imputing missing values corre-
sponding to half of the lowest detectable metabolite abundance. Next, we normalized metabolite
abundances by sample features (Fig. 3), followed by normalization using metabolite features with log
transformation, centering, and scaling (Fig. 1A, step 6) (41).

Specifically, to limit intersample variability, metabolite abundances for each replicate were normal-
ized to the sample value for double-stranded DNA, protein, or parasite number. To limit intermetabolite
variability, metabolite abundances were log transformed, centered with respect to the median (42), and
scaled by standard deviation (Fig. 1A; step 6).

The resultant processed metabolite abundances were used for calculation of univariate and multi-
variate statistics, as well as for classification. All analyses were conducted using R with tidyverse (43), knitr
(44), reshape2 (45), pracma (46), grid and gridExtra (47), extrafont (48), and RSvgDevice (49) for data
wrangling and visualization and vegan (50) and base R (51) for analysis. Analyses of variance (ANOVAs)
were used to compare group means for determinations of differential abundances, and P values were
adjusted using the false-discovery rate (Benjamini and Hochberg) (52) to correct for multiple testing. The
significance cutoff was 0.05. PERMANOVAs were used to compare population separation data (Fig. 4A to
D and F). Correlations were conducted using a two-sided Pearson’s product moment correlation with
false-discovery rate (Benjamini and Hochberg) in R. See the supplemental material for code documenting
a detailed analysis.

Random forest analysis. Random forest analysis is a machine learning technique and was used here
to classify sample groups (Fig. 5A). Within a random forest classifier, individual trees are built from
subsets of the data and internally validated with respect to the remaining data set (Fig. 5A). With this
approach, variables (metabolites) are ranked by their effect on classifier accuracy, as measured by a
change in performance following removal of the variable (Fig. 5B). Classifiers were built with each data
normalization method to predict drug treatment or blood batch. These analyses were conducted in R
using the RandomForest package and base R (51, 53). See the supplemental material for code and
detailed analysis.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSphere.00097-18.
FIG S1, TIF file, 1.7 MB.
TABLE S1, XLSX file, 0.1 MB.
TABLE S2, DOCX file, 0.01 MB.
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