
Submitted 8 January 2018
Accepted 13 March 2018
Published 16 April 2018

Corresponding author
Sivaramakrishnan Rajaraman, sivara-
makrishnan.rajaraman@nih.gov

Academic editor
Henkjan Huisman

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj.4568

Distributed under
Creative Commons Public
Domain Dedication

OPEN ACCESS

Pre-trained convolutional neural
networks as feature extractors toward
improved malaria parasite detection in
thin blood smear images
Sivaramakrishnan Rajaraman1, Sameer K. Antani1, Mahdieh Poostchi1,
Kamolrat Silamut2, Md. A. Hossain3, Richard J. Maude2,4,5, Stefan Jaeger1 and
George R. Thoma1

1 Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD,
United States of America

2Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
3Department of Medicine, Chittagong Medical Hospital, Chittagong, Bangladesh
4Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford,
Oxford, United Kingdom

5Harvard TH Chan School of Public Health, Harvard University, Boston, MA, United States of America

ABSTRACT
Malaria is a blood disease caused by the Plasmodium parasites transmitted through
the bite of female Anopheles mosquito. Microscopists commonly examine thick
and thin blood smears to diagnose disease and compute parasitemia. However,
their accuracy depends on smear quality and expertise in classifying and counting
parasitized and uninfected cells. Such an examination could be arduous for large-scale
diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-
aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to
microscopic images of the smears using hand-engineered features demand expertise in
analyzing morphological, textural, and positional variations of the region of interest
(ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning
(DL) models promise highly scalable and superior results with end-to-end feature
extraction and classification. Automated malaria screening using DL techniques could,
therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance
of pre-trainedCNNbasedDLmodels as feature extractors toward classifying parasitized
and uninfected cells to aid in improved disease screening.We experimentally determine
the optimal model layers for feature extraction from the underlying data. Statistical
validation of the results demonstrates the use of pre-trained CNNs as a promising tool
for feature extraction for this purpose.
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INTRODUCTION
Malaria is a mosquito-borne blood disease caused by the Plasmodium parasites transmitted
through the bite of the female Anopheles mosquito. Different kinds of parasites including
P. ovale, P. malariae, P. vivax and P. falciparum infect humans; however, the effects of
P. falciparum can be lethal. In 2016, the World Health Organization (WHO) reported
212 million instances of the disease across the world (WHO, 2016). Microscopic thick
and thin blood smear examinations are the most reliable and commonly used method
for disease diagnosis. Thick blood smears assist in detecting the presence of parasites
while thin blood smears assist in identifying the species of the parasite causing the infection
(Centers for Disease Control and Prevention, 2012). The diagnostic accuracy heavily depends
on human expertise and can be adversely impacted by the inter-observer variability and
the liability imposed by large-scale diagnoses in disease-endemic/resource-constrained
regions (Mitiku, Mengistu & Gelaw, 2003). Alternative techniques such as polymerase
chain reaction (PCR) and rapid diagnostic tests (RDT) are used; however, PCR analysis is
limited in its performance (Hommelsheim et al., 2014) and RDTs are less cost-effective in
disease-endemic regions (Hawkes, Katsuva & Masumbuko, 2009).

In the process of applying machine learning (ML) methods to medical data analysis,
meaningful feature representation lies at the core of their success to accomplish desired
results. A majority of image analysis-based computer-aided diagnosis (CADx) software
use ML techniques with hand-engineered features for decision-making (Ross et al., 2006;
Das et al., 2013; Poostchi et al., 2018). However, the process demands expertise in analyzing
the variability in size, background, angle, and position of the region of interest (ROI) on
the images. To overcome challenges of devising hand-engineered features that capture
variations in the underlying data, Deep Learning (DL), also known as deep hierarchical
learning, is used with significant success (LeCun, Bengio & Hinton, 2015). DL models use
a cascade of layers of non-linear processing units to self-discover hierarchical feature
representations in the raw data. Higher-level features are abstracted from lower-level
features to aid in learning complex, non-linear decision-making functions, resulting
in end-to-end feature extraction and classification (Schmidhuber, 2015). Unlike kernel-
based algorithms like Support Vector Machines (SVMs), DL models exhibit improved
performance with an increase in data size and computational resources, making them
highly scalable (Srivastava et al., 2014).

For images, an important source of information lies in the spatial local correlation
among the neighboring pixels/voxels. Convolutional Neural Networks (CNN), a class
of DL models, are designed to exploit this information through the mechanisms of local
receptive fields, sharedweights andpooling (Krizhevsky, Sutskever & Hinton, 2012). In 2012,
Alex Krizhevsky proposed AlexNet, a CNN based DL model that won the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) and substantially boosted the performance
of CNNs toward classifying natural images (Krizhevsky, Sutskever & Hinton, 2012). Several
representative CNNs like VGGNet (Simonyan & Zisserman, 2015), GoogLeNet (Szegedy
et al., 2014), and ResNet (He et al., 2016) demonstrated significant improvements in
succeeding ILSVRC annual challenges. A model named Xception was proposed that uses
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depth-wise separable convolutions (Chollet, 2016) to outperform the Inception-V3 model
(Szegedy et al., 2016) on the ImageNet (Deng et al., 2009) data classification task. A CNN
variant called Densely Connected Convolutional Networks (DenseNet) was proposed
(Huang et al., 2016) that utilizes a network architecture in which each layer is directly
connected to every later layer. The model has achieved noteworthy improvements over the
state-of-the-art while using significantly fewer parameters and computations.

The promising performance of CNNs is accompanied by the availability of a huge
amount of annotated data. With scarcity for annotated medical imagery, Transfer Learning
(TL)methods are usedwhere pre-trainedDLmodels are either fine-tuned on the underlying
data or used as feature extractors to aid in visual recognition tasks (Razavian et al., 2014).
These models transfer their knowledge gained while learning the generic features from
large-scale datasets like ImageNet to the underlying task. The transfer of previously-learned
skills to a new situation is generalized, rather than unique to the situation. Since the results
published in Razavian et al. (2014), it is recognized that CNNs trained on large-scale
datasets could serve as feature extractors for a wide range of computer vision tasks to aid in
improved performance, as compared to state-of-the-art methods (Bousetouane & Morris,
2015).

At present, researchers across the world have begun to apply DL tools and obtain
promising results in a wide variety of medical image analyses/understanding tasks
(Rajaraman et al., 2017; Suzuki, 2017). Literature also reveals studies pertaining to applying
DL methods to the task of malaria parasite detection. Dong et al. (2017) compared the
performance of SVM and pre-trained DL models including LeNet (LeCun et al., 1998),
AlexNet, and GoogLeNet toward classifying parasitized and uninfected cells. The authors
segmented the red blood cells (RBCs) from thin blood smear images and randomly split into
train and test sets. A total of 25% of the training images were randomly selected to validate
the models. Liang et al. (2017) proposed a 16-layer CNN toward classifying the uninfected
and parasitized cells. Features were extracted using the pre-trained AlexNet and an SVM
classifier was trained on the extracted features. The performance of the proposedmodel was
compared to that of the pre-trained CNN. The study reported that the custom model was
more accurate, sensitive and specific than the pre-trained model. Images were resampled
to 44 × 44 pixel resolution to compensate for the lack of computational resources. Bibin,
Nair & Punitha (2017) proposed a 6-layer deep belief network toward malaria parasite
detection in peripheral blood smear images. The authors reported 96.4% accuracy in the
task of classifying a dataset of 4,100 cells with randomized train/test splits.Gopakumar et al.
(2018) employed a customized CNN model for analyzing videos containing a focus stack
of the field of views of Leishman stained slide images toward the process of automated
parasite detection. The authors used a customized portable slide scanner and off-the shelf
components for data acquisition and demonstrated sensitivity and specificity of 97.06%
and 98.50% respectively. In summary, existing DL studies have been evaluated on relatively
small image sets and/or randomized train/test splits. None of the studies have reported the
performance of the predictive models at the patient level. Although the reported outcomes
are promising, existing approaches need to substantiate their robustness on a larger set
of images with cross-validation studies at the patient level. Evaluation on patient-level
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provides a more realistic performance evaluation of the predictive models as the images
in the independent test set represent truly unseen images for the training process, with
no information about staining variations or other artifacts leaking into the training data.
This would help to reduce bias and generalization errors. Tests for statistically significant
differences in performance would further assist in the process of optimal model selection
prior to deployment. It is reasonable to mention that the state-of-the-art still leaves much
room for progress in this regard.

In this work, we evaluated the performance of pre-trained CNN based DL models as
feature extractors toward classifying the parasitized and uninfected cells to aid in improved
disease screening. The important contributions of this work are as follows: (a) presentation
of a comparative analysis of the performance of customized and pre-trained DL models as
feature extractors toward classifying parasitized anduninfected cells, (b) cross-validating the
performance of the predictive models at the patient level to reduce bias and generalization
errors, (c) analysis and selection of the optimal layer in the pre-trained models to extract
features from the underlying data, and (d) testing for the presence/absence of a statistically
significant difference in the performance of customized and pre-trainedCNNmodels under
study. The following paper is organized as follows: ‘Materials and Methods’ elaborates on
the materials and methods, ‘Results’ presents the results, and ‘Discussions and Conclusion’
discusses the results and concludes the paper.

MATERIALS AND METHODS
Data collection
To reduce the burden for microscopists in resource-constrained regions and improve
diagnostic accuracy, researchers at the Lister Hill National Center for Biomedical
Communications (LHNCBC), part of National Library of Medicine (NLM), have
developed a mobile application that runs on a standard Android R© smartphone attached
to a conventional light microscope (Poostchi et al., 2018). Giemsa-stained thin blood
smear slides from 150 P. falciparum-infected and 50 healthy patients were collected and
photographed at Chittagong Medical College Hospital, Bangladesh. The smartphone’s
built-in camera acquired images of slides for each microscopic field of view. The images
were manually annotated by an expert slide reader at the Mahidol-Oxford Tropical
Medicine Research Unit in Bangkok, Thailand. The de-identified images and annotations
are archived at NLM (IRB#12972). We applied a level-set based algorithm to detect and
segment the red blood cells (Ersoy et al., 2012).

Cross-validation studies
The dataset consists of 27,558 cell images with equal instances of parasitized and
uninfected cells. Positive samples contained Plasmodium and negative samples contained
no Plasmodium but other types of objects including staining artifacts/impurities. We
evaluated the predictive models through five-fold cross-validation. Cross-validation has
been performed at the patient level to ensure alleviating model biasing and generalization
errors. The count of cells for the different folds is shown in Table 1.
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Table 1 Data for cross-validation studies.

Folds Parasitized Uninfected

1 2,756 2,757
2 2,758 2,758
3 2,776 2,762
4 2,832 2,760
5 2,657 2,742
Total 13,779 13,779

The images were re-sampled to 100 × 100, 224 × 224, 227 × 227 and 299 × 299
pixel resolutions to suit the input requirements of customized and pre-trained CNNs
and normalized to assist in faster convergence. The models were trained and tested on a
Windows R© system with Intel R© Xeon R© CPU E5-2640v3 2.60-GHz processor, 1 TB HDD,
16 GB RAM, a CUDA-enabled Nvidia R© GTX 1080 Ti 11GB graphical processing unit
(GPU), Matlab R© R2017b, Python R© 3.6.3, Keras R© 2.1.1 with Tensorflow R© 1.4.0 backend,
and CUDA 8.0/cuDNN 5.1 dependencies for GPU acceleration.

Customized model configuration
Wealso evaluated the performance of a customized, sequential CNN in the task of classifying
parasitized and uninfected cells toward disease screening. We propose a sequential CNN
as shown in Fig. 1, similar to the architecture that LeCun & Bengio (1995) advocated for
image classification.

The proposed CNN has three convolutional layers and two fully connected layers.
The input to the model constitutes segmented cells of 100×100×3 pixel resolution. The
convolutional layers use 3× 3 filters with 2 pixel strides. The first and second convolutional
layers have 32 filters and the third convolutional layer has 64 filters. The sandwich design
of convolutional/rectified linear units (ReLU) and proper weight initialization enhances
the learning process (Shang et al., 2016). Max-pooling layers with a pooling window of
2 × 2 and 2 pixel strides follow the convolutional layers for summarizing the outputs
of neighboring neuronal groups in the feature maps. The pooled output of the third
convolutional layer is fed to the first fully-connected layer that has 64 neurons, and the
second fully connected layer feeds into the Softmax classifier. Dropout regularization
(Srivastava et al., 2014) with a dropout ratio of 0.5 is applied to outputs of the first fully
connected layer. The model is trained by optimizing the multinomial logistic regression
objective using stochastic gradient descent (SGD) (LeCun, Bengio & Hinton, 2015) and
Nesterov’s momentum (Botev, Lever & Barber, 2017). The customized model is optimized
for hyper-parameters by a randomized grid search method (Bergstra & Bengio, 2012). We
initialized search ranges to be [1e−7 5e−2], [0.8 0.99] and [1e−10 1e−2] for the learning
rate, SGD and L2-regularization parameters, respectively. We evaluated the performance
of the customized model in terms of accuracy, Area Under Curve (AUC), sensitivity,
specificity, F1-score (Lipton, Elkan & Naryanaswamy, 2014) and Matthews correlation
coefficient (MCC) (Matthews, 1975).
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Figure 1 Architecture of the customized model.
Full-size DOI: 10.7717/peerj.4568/fig-1

Feature extraction using pre-trained models
We evaluated the performance of pre-trained CNNs including AlexNet (winner of ILSVRC
2012), VGG-16 (winner of ILSVRC’s localization task in 2014), Xception, ResNet-50
(winner of ILSVRC 2015) and DenseNet-121 (winner of the best paper award in CVPR
2017) toward extracting the features from the parasitized and uninfected cells. The models
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were optimized for hyper-parameters by the randomized grid searchmethod.We initialized
search ranges to be [1e−5 5e−2], [0.8 0.99] and [1e−10 1e−2] for the learning rate,
Nesterov’s SGD and L2-regularization parameters, respectively. We instantiated the
convolutional part of the pre-trained CNNs and trained a fully-connected model with
dropout (dropout ratio of 0.5) on top of the extracted features. We also empirically
determined the optimal layer for feature extraction to aid in improved classification. We
evaluated the performance of the pre-trained CNNs in terms of accuracy, AUC, sensitivity,
specificity, F1-score, and MCC. The model architecture and weights for the pre-trained
CNNs were downloaded from GitHub repositories (Chollet, 2017; Yu, 2016).

Statistical analysis
We performed statistical analyses to choose the best model for deployment. Statistical
methods like one-way analysis of variance (ANOVA) are used to determine the presence
or absence of a statistically significant difference between the means of three or more
individual, unrelated groups (Rossi, 1987). One-way ANOVA tests the null hypothesis
(H0) given by H0: µ1=µ2= ··· =µk where µ= mean of parameters for the individual
groups and k= total number of groups. If a statistically significant result is returned by the
test, H0 is rejected and the alternative hypothesis (H1) is accepted to infer that a statistically
significant difference exists between themeans of at least two groups under study. However,
it would be appropriate to use this parametric test only when the underlying data satisfies
the assumptions of independence of observations, absence of significant outliers, normality
of data and homogeneity of variances (Daya, 2003). When the conditions are violated, a
non-parametric alternative like Kruskal-Wallis H test (also called the one-way ANOVA
on ranks) could be used (Vargha & Delaney, 1998). This is an omnibus test that couldn’t
identify the specific groups that demonstrate statistically significant differences in their
mean values. A post-hoc analysis is needed to identify these groups that demonstrate
statistically significant differences (Kucuk et al., 2016). We performed Shapiro–Wilk test
(Royston, 1992) to check for data normality and Levene’s statistic test (Gastwirth, Gel &
Miao, 2009) to study the homogeneity of variances for the performance metrics for the
different models under study. Statistical analyses were performed using IBM R© SPSS R©

statistical package (IBM SPSS Statistics for Windows, Version 23.0; IBM Corp., Armonk,
NY, USA).

RESULTS
Cell segmentation and detection
We applied a level-set based algorithm to detect and segment the RBCs as shown in Fig. 2.
The first step is the cell detection where we applied a multi-scale Laplacian of Gaussian
(LoG) filter to detect centroids of individual RBCs. The generated markers are used to
segment the cells within a level set active contour framework to confine the evolving
contour to the cell boundary. Morphology opening operation is applied as post-processing
to remove false detected objects such as staining artifacts using average cell size. White
blood cells (WBCs) are filtered out using a one-to-one correspondence based on cell
ground-truth annotations since WBCs are not ROIs for this work. We have evaluated our
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Figure 2 RBC detection and segmentation using level sets. (A) Input image. (B) Initial cell detection
using LoG. (C) Final RBC segmentation mask. (D) Segmentation results superimposed on the original
image.

Full-size DOI: 10.7717/peerj.4568/fig-2

cell detection based on the manual point-wise annotation of infected and uninfected cells.
To do so, we applied a one-to-one point matching scheme: For each segmented cell, we
checked the number of manual ground-truth points in the segmented cell region. If there
was exactly one point in the region, we counted this as a true positive (TP). If there was
no point in the region, we counted this as a false positive (FP). If there was more than one
point in the region, we considered this as an under-segmentation or false negative (FN).
These counts then allowed us to compute the presented values for positive predictive value
(PPV), sensitivity and F1-score. For cell detection, we obtained a PPV of 0.944, sensitivity
of 0.962 and F1-score of 0.952.

Performance metrics evaluation
For the customized and pre-trained models, we empirically determined the optimum value
to be 0.9 and 1e–6 for the SGD momentum and L2-regularization, respectively. For the
learning rate, we determined the optimum value to be 1e–5 and 1e–6 for the customized
and pre-trained CNNs respectively. The second fully connected layer from AlexNet,
VGG-16 and the last layer before the final classification layer from Xception, ResNet-50,
and DenseNet-121 were selected for feature extraction. Table 2 lists the performance
metrics achieved by the models in the process of classifying parasitized and uninfected

Rajaraman et al. (2018), PeerJ, DOI 10.7717/peerj.4568 8/17

https://peerj.com
https://doi.org/10.7717/peerj.4568/fig-2
http://dx.doi.org/10.7717/peerj.4568


Table 2 Performance metrics.

Models Accuracy AUC Sensitivity Specificity F1-score MCC

AlexNet 0.937± 0.012 0.981± 0.007 0.940± 0.017 0.933± 0.034 0.937± 0.011 0.872± 0.024
VGG-16 0.945± 0.015 0.981± 0.007 0.939± 0.022 0.951± 0.019 0.945± 0.016 0.887± 0.030
ResNet-50 0.957± 0.007 0.990± 0.004 0.945± 0.020 0.969± 0.009 0.957± 0.008 0.912± 0.014
Xception 0.890± 0.107 0.948± 0.062 0.931± 0.039 0.835± 0.218 0.895± 0.100 0.772± 0.233
DenseNet-121 0.931± 0.018 0.976± 0.023 0.942± 0.023 0.926± 0.032 0.931± 0.017 0.894± 0.036
Customized 0.940± 0.010 0.979± 0.009 0.931± 0.026 0.951± 0.030 0.941± 0.010 0.880± 0.020

Notes.
Bold text indicate the performance measures of the best-performing model/s.

Table 3 Candidate layers giving the best performance.

Model Optimal layer

AlexNet fc6
VGG-16 block5_conv2
ResNet-50 res5c_branch2c
Xception block14_sepconv1
DenseNet-121 Conv5_16_x2

Table 4 Performance metrics achieved with feature extraction from optimal layers.

Models Accuracy AUC Sensitivity Specificity F1-score MCC

AlexNet 0.944± 0.010 0.983± 0.006 0.947± 0.016 0.941± 0.025 0.944± 0.010 0.886± 0.020
VGG-16 0.959± 0.009 0.991± 0.004 0.949± 0.020 0.969± 0.016 0.959± 0.009 0.916± 0.017
ResNet-50 0.959± 0.008 0.991± 0.005 0.947± 0.015 0.972± 0.010 0.959± 0.009 0.917± 0.017
Xception 0.915± 0.005 0.965± 0.019 0.925± 0.039 0.907± 0.120 0.918± 0.042 0.836± 0.088
DenseNet-121 0.952± 0.022 0.991± 0.004 0.960± 0.009 0.944± 0.048 0.953± 0.020 0.902± 0.041
Customized 0.927± 0.026 0.978± 0.012 0.905± 0.074 0.951± 0.031 0.928± 0.041 0.884± 0.002

Notes.
Bold text indicate the performance measures of the best-performing model/s.

cells. We also evaluated the performance of pre-trained CNNs by extracting features from
different layers in the process of identifying the optimal layer for feature extraction from
the underlying data. The naming conventions for these layers are based on the models
obtained from Keras R© DL library. Layers that gave the best values for the performance
metrics are listed in Table 3. Table 4 shows the results obtained by extracting the features
from the optimal layers toward classifying the parasitized and uninfected cells.

While performing statistical analyses, we observed that the results of Shapiro–Wilk
test were statistically significant for all the performance metrics (p< 0.05) to signify
that the normality of data has been violated. For this reason, we opted to use the non-
parametric Kruskal-Wallis H test. The consolidated results of Kruskal-Wallis H and
post-hoc analyses are given in Table 5. We observed that, in terms of accuracy, there
existed a statistically significant difference in performance between the different CNNs
(χ2(5)= 15.508, p= 0.008). Post-hoc tests further revealed that the statistically significant
difference existed between the pre-trained Xception, VGG-16, ResNet-50, and customized
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Table 5 Consolidated results of Kruskal–Wallis H and post-hoc tests.

Metric Kruskal-Wallis H summary Mean ranks Post-hoc

AlexNet 11.20
VGG-16 22.30
ResNet-50 23.00
Xception 7.20
DenseNet-121 19.60

Accuracy χ 2(5)= 15.508, p= 0.008

Customized 9.70

Xception & ResNet-50 (p = 0.005)
Xception & VGG-16 (p = 0.007)
Customized & ResNet-50 (p= 0.017)

AlexNet 13.00
VGG-16 21.70
ResNet-50 21.50
Xception 4.50
DenseNet-121 22.90

AUC χ 2(5)= 18.958, p= 0.002

Customized 9.40

Xception & ResNet-50 (p = 0.034)
Xception & VGG-16 (p = 0.030)
Xception & DenseNet-121 (p= 0.014)

AlexNet 16.20
VGG-16 17.30
ResNet-50 15.80
Xception 11.40
DenseNet-121 21.80

Sensitivity χ 2(5)= 5.518, p= 0.356

Customized 10.50

–

AlexNet 9.80
VGG-16 20.70
ResNet-50 21.30
Xception 13.30
DenseNet-121 14.10

Specificity χ 2(5)= 6.639, p= 0.249

Customized 13.80

–

AlexNet 11.70
VGG-16 22.20
ResNet-50 22.60
Xception 6.90
DenseNet-121 19.50

F1-score χ 2(5)= 14.798, p= 0.011

Customized 10.10

Xception & ResNet-50 (p = 0.005)
Xception & VGG-16 (p = 0.006)
Xception & DenseNet-121 (p= 0.023)

AlexNet 11.30
VGG-16 22.30
ResNet-50 22.60
Xception 7.60
DenseNet-121 19.40

MCC χ 2(5)= 14.487, p= 0.013

Customized 9.80

Xception & ResNet-50 (p = 0.007)
Xception & VGG-16 (p = 0.008)
Xception & DenseNet-121 (p= 0.034)
Customized & ResNet-50 (p= 0.021)

Notes.
Bold text indicate the performance measures of the best-performing model/s.

model. In terms of AUC, a statistically significant differenfce was observed (χ2(5)= 18.958,
p= 0.002) in the performance between Xception, ResNet-50, VGG-16, and DenseNet-121.
Similar results were observed for the F1-score (χ2(5)= 14.798, p= 0.011) and MCC
(χ2(5) = 14.487, p= 0.013). No statistically significant difference was observed across the
models in terms of sensitivity (χ2(5)= 5.518, p= 0.356) and specificity (χ2(5)= 6.639,
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p= 0.249). However, ResNet-50 obtained the highest mean ranks for accuracy, specificity,
F1-score, and MCC.

DISCUSSIONS AND CONCLUSION
The customizedmodel converged to an optimal solution due to hyper-parameter optimiza-
tion, implicit regularization imposed by smaller convolutional filter sizes and aggressive
dropouts in the fully connected layers. Usage of L2 regularization reduced the effect of
model overfitting and converging to a better solution (Simonyan & Zisserman, 2015).

Each layer of the CNNs produces an activation for the given image. Earlier layers capture
primitive features like blobs, edges, and colors that are abstracted by the deeper layers to
form higher level features to present a more affluent image representation (Zeiler & Fergus,
2014). Studies from the literature reveal that while using pre-trained CNNs for feature
extraction, the features are extracted from the layer right before the classification layer
(Razavian et al., 2014). For this reason, we extracted the features from the second fully
connected layer for AlexNet and VGG-16 and the last layer before the final classification
layer fromXception, ResNet-50, and DenseNet-121models. We observed from the patient-
level cross-validation studies (Table 2) that ResNet-50 outperformed the customized and
other pre-trained CNNs in all performancemetrics toward the task of classifying parasitized
and uninfected cells. Literature studies reveal that DenseNet-121 outperformed ResNets
and other pre-trained CNNs in the ImageNet data classification task (Huang et al., 2016). In
our case, for the binary task of classifying parasitized and uninfected cells, the variability in
data is several orders of magnitude smaller. The top layers of deep CNNs like DenseNet-121
are probably too specialized, progressively more complex and not the best candidate to
re-use for the task of our interest. For this reason, we evaluated the performance of
pre-trained CNNs by extracting features from different layers in the process of identifying
the optimal layer for feature extraction from the underlying data (Table 3). We observed
that for the pre-trained CNNs, the performance of the layer before the classification layer
was degraded compared to the other layers. In contrast to the results shown in Table 2,
DenseNet-121 achieved the best values for sensitivity but demonstrated similar AUC values
as ResNet-50 and VGG-16 (Table 4). Both VGG-16 and ResNet-50 were equally accurate
and demonstrated equal values for AUC and F1-score. However, ResNet-50 was highly
specific, demonstrated high MCC and performed relatively better than the other models
under study. These results demonstrate that the final layer of pre-trained CNNs is not
always optimal for extracting the features from the underlying data. In our study, features
from shallow layers performed better than deep features to aid in improved classification
of parasitized and uninfected cells. Literature studies reveal that MCC is an informative
single score to evaluate the performance of a binary classifier in a confusion matrix
context (Chicco, 2017). In this regard, ResNet-50 demonstrated statistically significant
MCC metrics as compared to the other models. The consolidated results demonstrated
that the pre-trained ResNet-50 relatively outperformed the other models under study
toward classifying the parasitized and uninfected cells. While performing Kruskal-Wallis
H and post-hoc analyses, we observed that the pre-trained ResNet-50 obtained the highest
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Table 6 Comparison with the state-of-the-art literature.

Method Accuracy Sensitivity Specificity AUC F1-score MCC

Proposed model (cell level ) 0.986 0.981 0.992 0.999 0.987 0.972
Proposed model (patient level ) 0.959 0.947 0.972 0.991 0.959 0.917
Gopakumar et al. (2018) 0.977 0.971 0.985 – – 0.731
Bibin, Nair & Punitha (2017) 0.963 0.976 0.959 –
Dong et al. (2017) 0.981 – – –
Liang et al. (2017) 0.973 0.969 0.977 –
Das et al. (2013) 0.840 0.981 0.689 –
Ross et al. (2006) 0.730 0.850 – –

Notes.
Bold text indicate the performance measures of the best-performing model/s.

mean ranks for accuracy, specificity, F1-score, and MCC. If we were to select a model
based on a balance between precision and sensitivity as demonstrated by the F1-score,
we could observe that the pre-trained ResNet-50 outperformed the other models under
study. We have demonstrated the performance of the models in terms of mean (µ) and
standard deviation (σ ) to present a measure of the dispersion in the performance metrics.
The pre-trained ResNet-50 outperformed the other models by achieving 0.947 ± 0.015
sensitivity and 0.972 ± 0.10 specificity. Statistical analyses show that the predictive model
could capture all observations within three standard deviations from the mean [−3σ3σ ],
i.e., the model could exhibit sensitivity and specificity in the range [0.902 0.992] and
[0.942 1.00] respectively. However, our study is focused on disease screening, therefore,
the sensitivity metric carries significance. We also determined the number of RBCs that
need to be analyzed by the proposed model to confidentially return a positive test result.
We used the epiR tools for the Analysis of Epidemiological Data (Stevenson et al., 2015)
for these computations. The number of cells needed to diagnose (NND) is defined as the
number of RBCs to be tested to yield a correct positive test. Youden’s index gives a measure
of the performance of the model, the value ranges from−1 to+1 with values closer to 1 for
higher values of sensitivity and specificity. With a confidence level (CI) of 0.95 (p< 0.05),
we found that 11 RBCs need to be tested to return 10 positive results.

To our knowledge, we could find no comparable literature that performed cross-
validation studies at the patient level, with a large-scale clinical dataset for the underlying
task. For this reason, we also performed cross-validation studies at the cell level and
compared with the state-of-the-art (Table 6). In the process, we found that the pre-trained
ResNet-50 outperformed the state-of-the-art in all performance metrics. Das et al. (2013)
achieved similar values for sensitivity with a small-scale dataset but demonstrated sub-
optimal specificity. The lack of performance at the patient level is attributed to the staining
variations between patients. We observed that it is harder for the classifier to learn the
different stains, which indicates that we may need to acquire more images with different
staining colors for training or apply color normalization techniques. However, by validating
the predictive models at the patient-level, which we believe simulate real-world conditions,
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we ensure getting rid of bias, reduce overfitting and generalization errors toward optimal
model deployment.

We are currently performing pilot studies in deploying the customized and pre-trained
DLmodels intomobile devices and analyzing the performances. From the literature studies,
we observed that we could either train/predict on the mobile device or train the model
offline and import it to the mobile device for predictions (Howard et al., 2017). Currently,
Android and IOS ML libraries (like CoreMLStudio) offer the flexibility for dynamic
allocation of CPU and GPU based on the computational cost, thus, memory allocation
is not an issue. From our pilot studies, we observed that the proposed model occupied
only 96 MB and took little RAM to do prediction on the test data. The deployed model
could serve as a triage tool and minimize delays in disease-endemic/resource-constrained
settings.
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