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Abstract

Information regarding the magnitude and distribution of PM2.5 emissions is crucial in establishing 

effective PM regulations and assessing the associated risk to human health and the ecosystem. At 

present, emission data is obtained from measured or estimated emission factors of various source 

types. Collecting such information for every known source is costly and time consuming. For this 

reason, emission inventories are reported periodically and unknown or smaller sources are often 

omitted or aggregated at large spatial scale. To address these limitations, we have developed and 

evaluated a novel method that uses remote sensing data to construct spatially-resolved emission 

inventories for PM2.5. This approach enables us to account for all sources within a fixed area, 

which renders source classification unnecessary. We applied this method to predict emissions in 

the northeast United States during the period of 2002–2013 using high- resolution 1 km × 1km 

Aerosol Optical Depth (AOD). Emission estimates moderately agreed with the EPA National 

Emission Inventory (R2=0.66~0.71, CV = 17.7~20%). Predicted emissions are found to correlate 

with land use parameters suggesting that our method can capture emissions from land use-related 

sources. In addition, we distinguished small-scale intra-urban variation in emissions reflecting 

distribution of metropolitan sources. In essence, this study demonstrates the great potential of 

remote sensing data to predict particle source emissions cost-effectively.

Introduction

Fine particulate matter (PM2.5) is a major public health burden associated with a range of 

adverse health effects (Schwartz and Dockery 1992, Schwartz 2001, Pope et al. 2002, 

Schwartz, Laden, and Zanobetti 2002, Ren, Williams, and Tong 2006, Zanobetti and 

Schwartz 2006, Turner et al. 2011, Lepeule et al. 2012). As such, identifying particle sources 

and quantifying their emissions is of paramount importance to the development of air quality 

standards and the enforcement of emission reduction policies. The US Environmental 

Protection Agency (EPA) is responsible for developing a nationwide particle emission 

inventory, the National Emission Inventory (NEI)(EPA 2008, 2011), which is the most 

comprehensive database for criteria air pollutants (CAP) and hazardous air pollutants (HAP) 

emissions. The NEI is updated every three years using data collected from state, local and 

tribal air agencies as well as EPA emission trading programs. Collecting information on area 

and mobile emission sources can be challenging especially when there are many of small 
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sources widely dispersed over a large area. For instance, smaller stationary sources such as 

wood furnaces and stoves are not defined as major point sources in the NEI and thus are not 

rigorously regulated. However, these smaller sources may represent a large fraction of the 

total emissions as bigger industrial sources decrease in intensity due to strict regulations and 

improved technology. For PM, the current NEI aggregates mobile sources and nonindustrial 

sources at county level. Information for such broad geographic areas, in combination with 

measurement error and modeling uncertainties may limit effectiveness to implement 

emission regulations. Coarse spatial resolution also limits the utility of the NEI data to 

assess human health risks or develop air pollution models (EPA 2008).

Satellite data is increasingly important for air pollution exposure assessment because of 

scarce and ad hoc spatial-temporal coverage of the federal monitoring network. Satellite data 

has been incorporated in a variety of air quality applications, including tracking long-term 

pollution transport, identifying exceptional events such as wild fires, fireworks and dust 

storms, and estimating ground level pollution concentrations (Duncan et al. 2014). Satellite-

based sensors have provided information on important air pollutants, such as nitrogen 

dioxide (NO2), sulfur dioxide (SO2), volatile organic compounds (VOCs) and fine 

particulate matter (PM2.5)(Martin 2008). Specifically, a growing number of studies have 

successfully employed AOD data to characterize properties and patterns of PM2.5 (Gupta 

and Christopher 2009, Liu, Paciorek, and Koutrakis 2009, Kloog et al. 2011, Lee et al. 2012, 

Hu et al. 2014, Kloog et al. 2014).

AOD is a dimensionless measure of the attenuation of light due to the presence of aerosols 

that prevent light transmission via absorption or scattering. This fundamental property of 

AOD, with proper correction for absorption and scattering of gases in the atmosphere, makes 

it a suitable surrogate of the aerosol loading in the atmosphere (Hoff and Christopher 2009). 

Nevertheless, vigilant calibration of the AOD data is required due to several physical 

differences among AOD and ground-level PM2.5. A critical concern is that AOD represents 

the total amount of aerosols in the entire atmospheric column while measured PM2.5 only 

reflects particles at ground level. The relationship between AOD and PM2.5 is therefore 

highly dependent on the vertical distribution of aerosols. Moreover, like all satellite 

measurements, AOD readings are snapshots of the aerosol distribution at that exact moment, 

while filter-based PM2.5 samples are collected over a 24-hour period. This temporal 

mismatch also influences the association between AOD and ground level PM2.5. To address 

these concerns, multiple techniques including neural network, generalized additive models 

and hybrid models have been used to generate AOD-derived PM2.5 concentrations (Gupta 

and Christopher 2009, Lee et al. 2012, Hu et al. 2014, Kloog et al. 2014). Recent 

advancements in various predictive statistical models (Kloog et al. 2014) have enabled 

scientists to assess daily PM2.5 exposures with continuous spatial coverage, which are 

crucial for legislation development and health effects studies. Nonetheless, satellite data has 

yet to become a prime resource in predicting particle emissions.

In this study, we introduce a method using satellite AOD data to predict emission inventories 

for PM2.5. As a demonstration of the proposed method, we constructed spatially resolved 

PM2.5 emission inventories in the Northeast U.S. using 1 km × 1 km daily AOD retrievals 

during the period of 2002–2013. We derive the emission model based on the concept of one 
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compartment model, which has been applied to the ambient environment in the past to 

estimate emission fluxes (EPA 2001) as well as indoor emission sources (Spengler, Samet, 

and McCarthy 2001) Our approach has the potential to generate comprehensive emission 

inventories cost- effectively as oppose to the existing ones.

Methods

Data and Materials

PM2.5 ground monitoring concentration data—The study domain is the Northeast 

U.S. that includes the states of Connecticut (CT), Massachusetts (MA), Maine (ME), New 

Hampshire (NH), New York (NY), Rhode Island (RI) and Vermont (VT). We obtained daily 

averaged PM2.5 measurements, mostly from integrated filter samples, measured at 124 

monitoring sites among the U.S. Environmental Protection Agency (EPA) Compliance 

Network, Air Quality System(AQS) and the Interagency Monitoring of Protected Visual 

Environments (IMPROVE) database during the period of 2002 to 2013. Daily averaged 

monitoring PM2.5 is used to calibrate AOD data into AOD-derived-PM2.5 concentrations 

(Figure 1).

Satellite Aerosol Optical Depth—The Moderate Resolution Imaging Spectroradiometer 

(MODIS) instrument on board the Earth Observing System (EOS) Aqua satellite provides 

numerous aerosol measures including AOD product reflecting fine particle loading. In 2011, 

an advanced algorithm, the Multi-angle Implementation of Atmospheric Correction 

(MAIAC), was presented (Lyapustin et al. 2011) providing a set of AOD product with much 

finer resolution (1 km × 1km) compared to the standard MYD04 product at 10km × 10km 

resolution. A study evaluating the MAIAC AOD product concluded that it is more robust 

under partly cloudy conditions with fewer non retrieval days and pixels than the standard 

product. For this reason, MAIAC AOD also provides improved ability in capturing spatial 

patterns of particle loading (Chudnovsky et al. 2013). Furthermore, calibration of the 

MAIAC AOD product was shown to be successful for the New England Area (Kloog et al. 

2014). In this study, we took advantage of the MAIAC AOD Aqua product to predict 

spatially resolved (1 km × 1 km) emission inventories.

Meteorological data—Meteorological parameters such as vertical (VWND) and 

horizontal wind speed (UWND), relative humidity (RH), boundary layer height (PBL), snow 

coverage, precipitation (PRCP) and temperature (TEMP) for the period from 2002 to 2013 

were obtained from the National Oceanic and Atmospheric Administration (NOAA) North 

America Regional Reanalysis (NARR) database. This dataset assimilates multiple sources of 

measurements and optimizes estimation of meteorological fields as described by (Kalnay et 

al. 1996). The reanalysis dataset provides meteorological variables at a spatial resolution of 

32 km × 32 km and temporal resolution of 1 day. The PBL is used to estimate the columnar 

volume of air on a given day, and other meteorological variables are used to calibrate the 

AOD/PM2.5 relationship. All NARR daily meteorological variables were linearly 

interpolated to 1 km×1 km resolution for this study using a Matlab package, 

scatteredInterpolant. More detail on the package algorithm can be found in the MathWorks 
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online documentation (http://www.mathworks.com/help/matlab/ref/scatteredinterpolant-

class.html).

In building the emission prediction model, surface level wind speed is used to estimate the 

residence time of air mass inside a volume of 1km × 1km × PBL km, while wind direction is 

the key factor to identify the location of the upwind adjacent grid cell. After interpolating 

both wind field parameters into 1km × 1km resolution as described above, we calculated 

wind speed (WS) as the square root of sum of u2 and v2 and wind direction (WD) as the 

vector sum of UWND and VWND. We assumed that the daily wind direction and wind 

speed was constant within at all altitudes at the surface level defined by the NOAA land 

surface model(Mesinger et al. 2006).

Land use variables—Traffic-related variables including major roads (A1–A3) density 

and other roads (A4) density were gathered from the StreetMap USA database. Roads were 

classified using the Feature Class Code (A1–A4) from the US Census Bureau, Topologically 

Integrated Geographic Encoding and Referencing (TIGER) system. Annual averaged traffic 

count for major roads was obtained from the Highway Performance Monitoring System 

(HMPS) database. We used a Kernel density algorithm to calculate grid (1km × 1km) 

averages of the major traffic density parameters using ESRI® ArcMap software. Land cover 

data for the entire Northeast U.S. were obtained from the 2011 collection of the National 

Land Cover Database (NLCD). With more detailed classification of land use, land cover data 

for Massachusetts were also gathered from the Massachusetts Department of Environmental 

Protection (Mass DEP). Elevation raster data was obtained from the ESRI® database. All 

land use parameters except elevation were used only for emission validation and are 

excluded from both AOD/PM2.5 calibration and the emission model.

NEI emission data—Point, nonpoint, and mobile emissions were obtained from the 2008 

and 2011 U.S. EPA emission inventories. According to EPA’s definition, point emission 

contains larger industrial sources while nonpoint refers to smaller stationary sources that are 

inventoried at county level. Such sources (or sectors) include residential wood combustion, 

field burning, and consumer solvent use etc. Mobile sources pertains mostly transportation 

emissions such as road traffic, locomotive, aircraft and commercial marine vessels. Detailed 

sector descriptions can be found in the 2008 NEI report (EPA 2008). For this study, we 

aggregated the nonpoint and mobile EPA NEI emission data to evaluate the predicted 

particle emissions. The locations of NEI point emissions were intersected with the 

corresponding 1km × 1km AOD grid cell. A variable indicating the presence of NEI point 

sources was created and was included in the land use regression validation models.

Statistical Analysis

The PEIRS approach encompasses three analytical stages: First, we calibrated AOD to 

obtain AOD-derived PM2.5 predictions for all 1km × 1km grids in the study domain. Second, 

we fit an emission model for each grid cell to predict emissions released within the grid. 

Third, we deployed land use regression models and compared county-level predicted and 

NEI-reported emissions to evaluate our method.
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AOD/PM2.5 Calibration—Let us consider an air mass enclosed in a box with a base of 

1km × 1km (Pixel Area) and a height equal to that of the boundary layer (PBL). We can 

assume that AOD is proportional to the particle mass inside this box based on the previously 

established relationship between AOD and fine particles(Hoff and Christopher 2009). 

Subsequently, we can express the particle mass as the product of the average particle 

concentration (CPM2.5) and the box volume:

AOD ∝ MassPM2.5 = CPM2.5 × Volume = CPM2.5 × PBL × Pixel Area (1)

Since the pixel area remains constant (1 km2) and most particles are usually below the 

boundary layer, we can translate the relationship in eq 1. into the basis of a calibration model 

as follows:

CPM2.5 = β0 + β1
AOD
PBL (2)

Where β0 is the intercept and β1 is the slope or conversion factor of the simple calibration 

model. Because PBL, relative humidity and particle composition vary daily, we performed 

daily calibrations using a mixed-effects regression model. Including random slopes (α1, i: 
day) and intercepts (α0i) by day enables the model to capture day-to-day variability in the 

AOD/PM2.5 relationship (Lee et al. 2012, Kloog et al. 2014). Relative humidity (RH), wind 

speed (WS), snow coverage, precipitation, temperature (Temp) and elevation are also 

included as covariates to adjust for site-specific characteristics. We also added interaction 

terms between AOD and all meteorological parameters to further control their effects on 

particle extinction efficiency. However, we did not include any source related land use here 

because AOD-derived-PM2.5 concentrations are used to estimate emissions. For this reason, 

source related parameters should be excluded from the calibration process. The final 

calibration model is as follows:

CPM2.5 = α0i + β0 + α1i + β1
AOD
PBL + β2WS + β3RH + β4Temp + β5SnowCoverage +

β6Elevation + β7Precipitation + β8Temp × AOD
PBL + β9SnowCoverage × AOD

PBL + β10RH ×
AOD
PBL + β11WS × AOD

PBL + β12Precipitation × AOD
PBL

(3)

Subsequently, a 10-fold cross validation is conducted to evaluate the calibration model (eq. 

3). To perform cross validation, data from the monitoring stations are randomly separated 

into a 10% held-out set and a 90% training set. The calibration is a supervised linear 

regression model fitted based on the 90% training set and thereafter to predict the 10% held-

out data. The same procedure is repeated 10 times until all data are predicted once. We then 
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compare the calibrated prediction to the observed PM2.5 concentration and examine the 

variability explained by the prediction (R2) and bias (slope and intercept). The difference in 

R2 between the 10-fold calibration and training (where all data is used to fit the model) 

should be less than 10% otherwise the model is likely over fitted. After careful evaluation, 

we obtained AOD-derived-PM2.5 concentrations for all 1km × 1km cells in the study 

domain.

Emission model—We considered each box as a single compartment and modeled PM2.5 

concentration (C) using the mass balance concept as illustrated in Figure 2:

dC t
dt = ∑Sources − ∑Sinks (4)

Within a box, particles are transported from upwind cell (s) (Cu, PM2.5 concentration in the 

upwind cell) or released by sources located inside the box (local emissions). This includes 

primary emissions from local sources as well as formation of secondary particles from 

precursor gases emitted from local or distant sources. On the other hand, particle losses 

(sinks) within an atmospheric column are due to dry deposition (d), wet deposition (w) and 

air exchange (α) transport to the downwind cell. Wet deposition is not accounted for in this 

model because we omitted AOD retrievals during days with rain or clouds. As previously 

stated, we used PBL to estimate the volume of each 1 km × 1 km cell, and thus the predicted 

local emission Q is expressed in tons/km2/year. Moving forward we will discuss particle 

transport and model derivation in 2-dimensional space.

dC t
dt = αCu + Q

PBL − α + d C t − dCu (5)

Since dry deposition is usually considerably slower than the air exchange rate (Donateo and 

Contini 2014), we can simplify the mass balance equation by neglecting dry deposition:

dC t
dt = αCu + Q

PBL − αC t (6)

Assuming equilibrium, we can solve the differential eq 6. and obtain the following solution:

C = Cu + Q
α × PBL + C1e−αt (7)

In addition, if we assume that the transported pollution Cu is independent of local emissions 

Q, and the integration constant (C1), we can simplify eq 7. by assuming C1 equals to zero:
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C = Cu + Q
α × PBL (8)

Particle transport primarily occurs between two neighboring cells as shown in Figure 2. 

However, emissions may travel further depending on the wind speed and elevation of the 

source. Given the fine resolution (1km × 1km cells) of this study, transported emission is 

likely travelling from further than one upwind cell. In fact, PM2.5 concentrations of upwind 

cells within 3km distance strongly correlate to the concentration of the corresponding 

downwind cell. For this reason, 3 upwind cells are included in the emission model to 

account for all transported particles. The algorithm used to locate upwind cell(s) depends on 

wind direction in the downwind cell as illustrated in Figure 3.

In addition to the within-cell emission, secondary particles are formed from gaseous 

emissions originated from sources situated within and outside the downwind cell. In order to 

control for the secondary particles formed outside the downwind cell and were not captured 

by the upwind cell concentrations, we include temperature(°K) in our model as a surrogate 

of the various weather parameters associated with particle formation (Vehkamaki and 

Riipinen 2012):

C = ∑i = 1
3 Cui × Temperature + Q

α × PBL (9)

We fitted the above model (eq. 9) to predict emissions, Q, for all 1 km × 1 km cells within 

the study domain.

Land use regression—Since emissions are often closely related to land use parameters, 

we fitted regression (LUR) models to examine relationships between model predictions (Q) 

and source types, which is an indirect approach to evaluate PERIRS. The land cover data 

from MASS DEP provides a more detailed classification than that of the NEI. Therefore, we 

fitted a land use model specifically for Massachusetts to examine potential relationships 

between model predictions and different land cover types. In addition, we also included 

point emission estimates from the NEI in the LUR model to account for industrial or larger 

point sources that may not be included in the land use database. Toward this end, we 

included an indicator variable for point emission in the LUR models to determine whether 

higher Q values are associated with major point sources inside the 1km × 1km grid cell.

County level evaluation model—US EPA reports PM emission from all sources at the 

county level, and for this reason, we averaged our 12-year-averaged-emission predictions by 

county and compared them to the county NEI emission densities as a secondary validation 

(eq. 10). We performed two county-level evaluations using NEI 2008 and 2011, respectively. 

In addition, we conducted state-specific evaluations to examine differences among model 

predictions and NEI emissions. Although a better evaluation is to compare annual PEIRS 

emissions to the NEI in corresponding years, we currently do not predict annual emissions 
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with the PEIRS model. The reason being annual emission predictions could be biased due to 

imbalanced data since missing in AOD occurs seasonally.

NEI Emission = β0 + β1Qcountry averaged + ε (10)

Results and Discussion

AOD/PM2.5 Calibration Performance

Table 1 depicts the performance of AOD/PM2.5 calibration. The model training R square 

(0.85) is moderately high suggesting that the calibration model was well fitted. The cross-

validation analysis demonstrated that model predictive accuracy is high for temporal 

variability (R2=0.80) and moderate for spatial variability (R2=0.66). Among AOD-PM2.5 

calibration models, that of Kloog et al., has so far the strongest predictive power (temporal 

R2 = 0.87, spatial R2 = 0.87) (Kloog et al., 2014). While the temporal predictability is 

similar between our calibration and that reported by of Kloog et al., our spatial predictability 

is much lower. A possible reason for this difference is that Kloog et al., used a hybrid 

approach that includes not only meteorological covariates and elevation, but also many other 

land use variables, which are crucial PM25 predictors enhancing spatial predictability. As 

previously stated, the major goal of our model is to predict emissions based on remote 

sensing data, and it would not be appropriate to include source-related covariates such as 

land use terms.

Predicted emissions

Figure 4 depicts emissions predicted over the period of 2002 to 2013 in the northeast US. 

We observed emission hotspots with more than 35 tons/year/km2 in most highly populated 

areas such as Boston, New York City, and Long island. In addition, we observed 

transportation emissions along major highways. Finally, we predicted low emission levels 

for rural areas (<20 tons/year/km2).

Figure 5 shows the estimated emissions, land cover and population distributions in the 

Greater Boston, New York, and Providence areas. In general, we found similar spatial 

patterns among highly populated areas such as the Greater Boston and New York, reflecting 

typical urban activities. PEIRS predicted high emissions levels in developed areas (Figure 5d 

and 5e, color in red) in east Boston, New York City, and Long Island areas with a mixture 

sources including residential heating, transportation, industrial, and commercial activities. 

More importantly, we were able to capture intra-urban variation. For example, we predicted 

lower emissions for the east Cambridge where the Massachusetts Institute of Technology 

(MIT) Campus is located. As shown in figure 5a, emissions are noticeably lower (25~30 

tons/year/km2) as opposed to surrounding areas such as Somerville and west Cambridge. 

The campus area is less populated compared to neighboring cities and the school has been 

actively promoting green building and energy sustainability programs over the past decade, 

which both attribute to lower emission. Furthermore, we predicted high emissions at densely 

populated and commercially active areas in northern Brookline and lower emissions at 
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parks, large green spaces, and residential areas in the southwestern part of the town (Figure 

5a). Our results in New York (Figure 5b) show comparable intra-urban spatial pattern of 

PM2.5 to those reported by a previous study (Clougherty et al. 2013). Clougherty et al., 

found that large combustion boilers for residential heating, mostly burning oil, are 

concentrated in midtown and downtown Manhattan as well as in some neighborhoods of 

Brooklyn and Queens. These areas are all highly developed with similar population density 

and land use. Even surrounded by high intensity emission sources, we are able to identify 

intense oil-burning emissions in some of the grid cells that exceeded 60 tons/year/km2 in 

these neighborhoods.

Our model overestimated emissions in areas surrounded by water surfaces or wetlands, such 

as Providence and southeast Massachusetts (Figure 5c). For instance, the model estimated 

high emissions (20-30 tons/year/km2) in some green areas of southeast Massachusetts where 

anthropogenic sources are scarce. The possible overestimation is likely due to bias in AOD 

readings, as the MAIAC algorithm was developed to retrieve AOD over land, and is less 

reliable for retrievals over water surfaces(Lyapustin et al. 2011). Although we excluded 

pixels encompassing bodies of water prior, AOD retrieval near water or the shore can still be 

influenced by high humidity or ocean glint. Because we estimated PM2.5 concentrations 

using AOD data, biases in the AOD are likely to influence the final emission product as well. 

However, it is also possible that some of the predicted emissions are due to primary or 

secondary particles from natural sources.

Land use regression

Predicted emissions in the northeast United States are related to land use variables (R2 = 

0.65). Table 2 shows the predicted land-use-specific emissions where the predominant 

sources include developed area (high/medium/low density and open area), traffic, and 

population. The land use regression model predicts that large point sources emit on average 

0.58 tons/year/km2 that is close to the averaged NEI point emission in 2008 (0.53 tons/year) 

and 2011(0.26 tons/year). Figure 6a shows the residuals (25th percentile = −2.7, mean = 0, 

75th percentile = 2.5) of the land use regression model in the study area. As noted, the 

Providence and southeast Massachusetts areas have larger residuals (>5 tons/year/km2), 

which suggests that either the predicted emissions are overestimated or they are not 

correlated to land use covariates, e.g., biogenic sources, biogenic precursors or oceanic 

particles. Previous studies suggest that in remote areas most particles are secondary 

(Kanakidou et al. 2000, Spracklen et al. 2006, Andreae 2007), which are not accounted for 

by land use models.

In addition to the national land cover product, we also incorporated the land cover data 

classified by the Massachusetts Department of Environmental Protection (Mass DEP), and 

fitted a separate land use model for Massachusetts. Compared to the national model (R2 = 

0.65), the Massachusetts model has a slightly higher R2 of 0.67. As shown in Table 3, 

transportation, developed area, and population are the larger sources predicted by the land 

use model. With a finer classification, we can see the intra-urban variation related to 

industrial, residential, and commercial sources areas, which is not for the NEI database that 

are mostly county level averages (Figure 7 b and 7c). Crop and livestock farms emissions are 
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0.7 tons/year/km2, which are similar to those reported by the NEI program. Cranberry bogs, 

nurseries, and orchards generate more emissions than other croplands. Consistent with the 

results of the northeast US Land use regression, we observed high residuals in the 

southeastern Massachusetts. As noted above, this may be due to difficulties in measuring 

AOD near water bodies, or possibly, to the presence of sources whose emissions are 

independent of land use variables.

County level evaluation

We found a moderate correlation between predicted and 2008 NEI emissions (R2=0.52, 

CV=144%). The slope and intercept of the 2008 NEI county model (β1 = 2.6 β0 = −38.7) 

suggest that the model underestimated the county level emissions. Since the NEI emission 

data is right skewed (median = 4.9, mean = 11.8), we suspect the large error is due to 

extreme values (or outliers) in the NEI data. When restricting NEI data to less than 50 tons/

year/km2, we obtained a better model fit (R2 = 0.66, CV=20.0%, β1 = 0.65 and β0 = −5.6). 

This suggests that the model may underestimate the largest emission sources. The different 

temporal scale among emission predictions and NEI estimates could be another source of 

uncertainty leading to larger error and a larger deviation of the intercept. Nonetheless, the 

PEIRS method has great potential in predicting emissions at finer temporal scales and would 

reduce the temporal inconsistency error. We found similar results when comparing model 

emission predictions to those reported by the 2011 NEI. The model fit was significantly 

improved after removing high NEI emissions from the model (R2 = 0.65 ➔ 0.71, CV= 

105%➔17.9%, β1 = 3.4 ➔ 1.09, β0 = −47.8 ➔ −11.7, all data ➔ subset). Interestingly, 

the slope of the county regression model shows that our model overestimated emissions in 

comparison to the 2008 NEI, and slightly underestimated when in comparison to 2011 NEI. 

This is consistent with the emission changes documented in the 2011 NEI report where 

emissions overall increased by 25 to 250% compared to 2008 due to resuspension of road 

dust and more frequent wildfires (EPA 2011).

Table 4 and Table 5 show the state specific county level evaluation results compared to 2008 

and 2011 NEI data, respectively. We observed fair agreement for Connecticut and New 

Hampshire than that for states with large sources such as New York and Massachusetts. In 

general, the agreement was improved when outliers were removed from the analysis. 

Predicted emissions were weakly related to NEI data in Vermont suggesting that the model 

is less sensitive to low level emission variations. As shown in Figure 7, for most counties in 

Vermont both model predicted and NEI-reported emissions are low. The relatively high 

emissions predicted for Grand Isle county, VT, which is surrounded by Lake Champlain, 

may be due to water bias in the AOD. In addition, we did not find a good agreement for 

Franklin, Chittenden, and Addison counties of Vermont where the model predicts higher 

emissions (6 ~15 tons/year/km2) than those reported by NEI (< 5 tons/year/km2). However, 

we found out that emissions of particles precursors such as NH3, NOx and VOC are 

relatively high in these three counties according to the NEI 2008 report. Therefore, it is 

possible that differences are due to the formation of secondary particles and high biomass 

burning sources, which are accounted for by the model but not included in the NEI database. 

In fact, counties where predicted emissions are higher than those reported by the NEI are 

locations with high precursor emissions. These include urban counties in Greater Boston, 
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New Haven, New York City, and Long Island, as well as agriculture-driven counties in the 

upper west New York state.

Conclusions

In this paper, we have proposed a new method (the PEIRS approach) to construct spatially 

resolved emission inventories for fine particulate matter. The predicted emissions in the 

northeast US are in a reasonable agreement with those reported in the 2008 and 2011 NEI. 

Our model can capture small-scale intra-urban variations in emissions and formation of 

secondary particles. Although inherent biases from the satellite data, possibly due to 

humidity interference and ocean glint, may reduce model accuracy, generally they manifest 

in remote areas with little population. Future research should examine whether the allegedly 

higher emissions are due to AOD measurement artifacts or the presence of secondary formed 

from biogenic precursors.

Overall, we have demonstrated the potential of satellite AOD data to predict PM2.5 

emissions at a fine spatial scale (1km × 1km). In contrast to conventional methods collecting 

emission data for known sources, we developed a model, based on the physical properties of 

particles, that captures emissions from all sources within a specific area. We can take 

advantage of the breadth of satellite based remote sensing data to predict emission with a 

high spatial and temporal resolution at low cost. As satellite remote sensing improves, more 

robust data with better temporal and spatial resolution will become available for predicting 

emissions not just for particles but for different gaseous air pollutants.
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Figure 1. 
Study area and EPA monitoring network.
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Figure 2. 
Box model dynamics.
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Figure 3. 
Example of upwind cells identification. wd: wind direction, N: North, NW: Northwest, W: 

west.
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Figure 4. 
Estimated emission in north east US.
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Figure 5. 
Estimated emission in (a) Greater Boston, (b) New York, and (c) Providence. Land cover 

type from NLCD 2011 database in (d) Greater Boston, (e) New York, and (f) Providence. 

Population of year 2000 in (g) Greater Boston, (h) New York, and (i) Providence.
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Figure 6. 
Residual map of land use regression (LUR) model in (a) northeast US and (b) 

Massachusetts. The residuals are emissions that are not related to land use parameters.
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Figure 7. 
(a) Estimated emission vs. EPA NEI nonpoint emission in (b) 2008 and (c) 2011 at county 

level.
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Table 1

10 fold cross validation

R2 (dimensionless) Temporal Spatial

RMSE (μg/m3) R2 RMSE R2 RMSE

Training Performance 0.85 2.56 0.75 0.90

10 fold Cross Validation 0.80 2.85 0.66 1.06
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Table 2

LUR estimated emission from different land use for north east US

Land use type/emission sources
Averaged emission

(ton/yr/km2)

On road A1–A3 Major road 0.4 ~ 28

Developed area High density 13

Medium density 13

Low density 6.7

Open area 5.6

Population 250 people/cell 0.1

10,000 people/cell 2.7

Farms Crop & Livestock 0.34

NEI point source (NEI 2008 mean = 0.53) 0.58

Model R2 = 0.65
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Table 3

LUR estimated emission from different land use for Massachusetts

Land use type/emission sources
Averaged emission

(ton/yr/km2)

On road A1–A3 Major road 0.4 ~ 24.5

Public transit 2.5

Developed area High density residential 3.6

Medium density residential 3.5

Low density residential 1.8

Multifamily residential 2.1

Open area 2.4

Industrial 4.3

Mining 2.4

Commercial 3.1

Junkyard 4.6

Population 400 people/cell 0.32

10,000 people/cell 8

Farms Crop & Livestock 0.7

Cranberry bog, nursery, orchard gardens 2.2 ~ 7.8

NEI point source 1.5

Model R2 = 0.67
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Table 4

Evaluation results of estimated emission vs. EPA NEI emission 2008 at county level

R2 CV Slope (β1) Intercept (β0)

Connecticut 0.85 6.61% 0.73 −6.8

Maine 0.65 9.11% 0.54 −5.5

New Hampshire 0.86 15.0% 1.44 −15.5

Massachusetts 0.58 (0.87) 75.4% (6.97%) 1.84 (0.47) −26.8 (1.0)

Rhode Island 0.21 13.3% 0.20 5.03

New York 0.58 (0.67) 211.1% (26.3%) 2.99 (0.71) −45.44 (−6.6)

Vermont 0.01 7.45% 0.02 3.40

*
(): are model parameter when data is restricted to counties with ≤50 tons/yr NEI emission

J Air Waste Manag Assoc. Author manuscript; available in PMC 2018 April 19.



N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

Tang et al. Page 25

Table 5

Evaluation results of emission estimates vs. EPA NEI emission 2011 at county level

R2 CV Slope (β1) Intercept (β0)

Connecticut 0.88 7.15% 1.41 −11.7

Maine 0.70 7.69% 0.76 −8.87

New Hampshire 0.89 8.13% 1.35 −14.6

Massachusetts 0.63 (0.27) 60.1% (16.1%) 2.37 (0.43) −32.3 (3.7)

Rhode Island 0.49 10.7% 0.50 −0.47

New York 0.70 (0.80) 159.6% (21.2%) 3.80 (1.26) −54.7 (−14.3)

Vermont 0.08 6.98% 0.11 1.96

*
(): are model parameter when data is restricted to counties with ≤50 tons/yr NEI emission
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