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Abstract

Automated cell segmentation and tracking is essential for dynamic studies of cellular morphology, 

movement, and interactions as well as other cellular behaviors. However, accurate, automated, and 

easy-to-use cell segmentation remains a challenge, especially in cases of high cell densities where 

discrete boundaries are not easily discernable. Here we present a fully automated segmentation 
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algorithm that iteratively segments cells based on the observed distribution of optical cell volumes 

measured by quantitative phase microscopy. By fitting these distributions to known probability 

density functions, we are able to converge on volumetric thresholds that enable valid segmentation 

cuts. Since each threshold is determined from the observed data itself, virtually no input is needed 

from the user. We demonstrate the effectiveness of this approach over time using six cell types that 

display a range of morphologies, and evaluate these cultures over a range of confluencies. Facile 

dynamic measures of cell mobility and function revealed unique cellular behaviors that relate to 

tissue origins, state of differentiation and real-time signaling. These will improve our 

understanding of multicellular communication and organization.

Index Terms

Cell segmentation; iterative thresholding; quantitative phase microscopy; optical volume; 
volumetric distribution

I. Introduction

CELL segmentation and tracking within populations of cultured cells is often used to study 

two-dimensional migration and morphology as cells are genetically or chemically 

influenced, enabling the study of cellular communication and movement during 

differentiation in states of health and disease, and aiding in the optimization of culture 

conditions to better model development and behavior. Despite being bandwidth limited and 

prone to error, manual and computer-aided cell segmentation and tracking remains the most 

accessible way to analyze time-dependent cellular behavior in culture. Thus, the 

improvement and automation of both these tasks is a goal that promises to fundamentally 

change how we analyze individual and grouped cell behaviors in response to a variety of 

stimuli. As the precursor to automatic, long-term, large population tracking systems, cell 

segmentation plays the vital role of detection, shape analysis, spatiotemporal assignment, 

and determination of intercellular separation for each cell in a given field-of-view.

Many automated cell segmentation algorithms have been developed, and several of them 

have been designed to work with ubiquitous phase contrast and differential interference 

contrast data. The most commonly seen approaches include intensity-based thresholding [1, 

2], feature detection and linear filtering [3, 4], morphological and nonlinear filtering [5], 

region accumulation [3], and deformable model fitting [3, 6–8]. Software packages have also 

been developed to combine many of these common approaches, including CellProfiler [9, 

10] and plugins for ImageJ [11, 12]. But even with packages combining approaches, these 

efforts are tailored toward specific modalities not well suited for segmentation, primarily 

because of how widely used these modalities are. Strategies to circumvent these issues are to 

precondition common modalities into more segmentation-independent modes [13], or to use 

machine learning algorithms including bag-of-Bayesian classifiers [14] and supervised 

random forest classifiers [15] that make these approaches more flexible to accommodate 

various modalities.

Several toolkits have been devised that are easy to use and applicable across multiple cell 

lines and modalities, including Ilastik [15] and FogBank [16]. In the former case, user 
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defined labels are classified in real-time using generic, nonlinear features that are modality-

independent. In the latter case, seed points for geodesic region growing are determined via 

histograms and user-defined size constraints.

As has been reviewed, none of the existing approaches are perfect [17]. Most segmentation 

algorithms begin to break down as cell densities approach confluency. Other algorithms 

cater to specific cell types and their unique morphologies. More general weaknesses can 

include under- or over-segmentation, involved user-controlled parameters, complications of 

low signal-to-noise ratios (SNR), and manual detection for initialization. Additionally, many 

of these techniques focus on detecting smooth, generalized cell shapes and require 

postprocessing for accurate cell boundary detection. Much of this can be attributed to 

analyzing data sets that are qualitatively intuitive, but challenging to work with 

quantitatively.

In terms of analyzing segmented cell image data, several distribution models have been 

demonstrated in the literature to model or fit data comparable to those obtained here. For 

example, lognormal distributions have been fitted to blood platelet volumes [18–20] and 

Gamma distributions have been used with protein levels [21–23], but most studies of this 

kind are limited to a kernel density estimation (KDE) of the data [24].

In this work, we present the first unique cell segmentation algorithm designed specifically 

for use with quantitative phase microscopy (QPM), taking advantage of the modality’s 

ability to both measure optical thickness and clearly detect cell boundaries, offering more 

useful information for segmentation than just cell area or staining efficiency. Our iterative 

thresholding and flexible segmentation scheme allows for a wide range of cell types and 

morphologies to be segmented with high accuracy, requiring virtually no input from the user. 

We briefly introduce QPM and our specific time-lapse imaging setup in Section II. In 

Section III, we describe our algorithm in detail, demonstrating our iterative segmentation 

scheme and search for optimal volumetric thresholds. In Section IV, we show our results 

from testing on eight data sets and on six different cell types, demonstrating our 

performance on highly diverse cell morphologies, sizes, and densities; and validate our 

method by comparing our results to images manually labeled by biologists familiar with 

QPM. Finally, we conclude with a discussion in Section V emphasizing the benefits of a 

flexible, automated approach for cell boundary segmentation.

II. Imaging With QPM

Quantitative phase microscopy (QPM) is an interferometric optical modality used to 

generate contrast intrinsically in optically transparent specimens, generating an optical path 

length (OPL) map for an entire field of view (FOV) [25]. The physical thickness of the 

sample h(x,y) is proportional to the measured phase ϕ(x,y), wavelength λ, and difference 

between the refractive indices of the cells and the medium in which they reside Δn:

h x, y = λ/2πΔn ϕ x, y . (1)
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This enables direct measurement and monitoring of nanoscale membrane fluctuations [26], 

growth and division cycles [27], overall dry mass [25, 28, 29], and volume [30] in living 

cells. Automated segmentation was not required for these studies, but an automated 

segmentation scheme could introduce statistical relevance to any study by enabling the 

simultaneous study of hundreds or thousands of cells at a time. By integrating phase over the 

area of a cell, we obtain what we call optical volume. With careful calibration using 

measured indices of refraction, absolute cell volume measurements are possible, but not 

necessary for this approach.

For the purposes of segmentation, QPM compares favorably to commonly used modalities 

such as Zernike phase contrast, differential interference contrast (DIC), and fluorescence 

microscopy. As demonstrated in Figure 1, QPM is uniquely suited for automated 

segmentation. Phase contrast microscopy (Fig. 1a) highlights most cell boundaries with its 

halo artifact, but cell regions without resolvable details fail to differentiate from background, 

and highly packed cells lack consistent halos. DIC microscopy (simulated, Fig. 1b) provides 

highlighting of features within cells, but smoothly tapered features and boundaries can be 

hard to discern. Fluorescence microscopy (Fig. 1c) can provide signals comparable to QPM 

when cells exhibit uniform fluorescence intensity, but suffers from a range of issues 

resulting in inconsistent labeling and photobleaching. In addition, transfection and labeling 

cells to generate fluorescence can alter cell properties and behaviors. In comparison to these 

modalities, QPM (Fig. 1d) provides consistent and more informative cell signal with low 

background. Intracellular signal comes in the form of optical thickness, rather than 

scattering and absorption or integrated fluorescence, which are difficult to standardize. Since 

QPM signals are proportional to physical thickness, segmentation decisions can be made 

according to a cell’s optical volume instead of area. Furthermore, QPM’s relatively low light 

exposure and lack of exogenous labels or dyes makes it well suited for time-lapse 

experiments and for imaging especially sensitive cell types.

QPM has two major drawbacks. The first is the requirement that each image be extracted 

digitally from a raw interferogram. Although this is an extra step not needed for other 

modalities, it is not of great concern in terms of running time, as QPM data can be acquired 

and processed in real-time, if needed [32, 33]. A bigger problem is that this reconstruction is 

prone to error in the form of phase wraps, which are caused by an optically thick specimen 

and abrupt changes in phase.

The second major drawback is sensitivity to optical misalignment. QPM requires some 

minor adjustments to maintain alignment and a fresh background image at the start of each 

experiment. Optical misalignments (e.g., angle between the camera’s sensor and the stage) 

result in a ramp signal, and are a major source of background signal in our experiments. This 

effect is observed regardless of imaging location on the petri dish. Alignment of our system 

is simplified by utilizing a partially common-path design, which is highly stable. Some 

groups avoid this issue entirely by illuminating asymmetrically and computationally 

calculating comparable phase imaging data [34].
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A. Optical Setup

Of the many QPM variants in literature, we implemented a recent method referred to as 

diffraction phase microscopy (DPM) [35], shown in Figure 2, which enables single shot 

acquisitions and high temporal stability. In our DPM system, we obtain spatially coherent 

light from a white light LED (Luxeon Rebel) that is collimated by a 50 mm lens and passed 

through a band-pass filter centered at 525 nm with a 50 nm bandwidth (Omega Optical 

525AF45). Green filtering enables us to sample the interferogram at twice the resolution of 

red or blue on a Bayer-filtered RGB camera sensor, and limiting the bandwidth mitigates 

chromatic aberrations from the beam splitter. Our inverted microscope (Olympus IX50) uses 

a 10X, 0.3 NA, infinity-corrected objective lens to collect the light before directing it 

through the output port in collimated form.

Outside the microscope, a transmission grating beam splitter (Edmund Optics, 110 

lines/mm) at the image plane generates diffraction orders each containing full spatial and 

phase information. A 4 f lens system (f2/f1 = 75 mm / 75 mm = 1) is used to provide a 

Fourier filtering plane. At said plane, a micro-machined mask with 350 μm pinhole spatially 

low-pass filters the 0th order (reference) beam, passes one of the 1st order (sample) beams, 

and blocks all other orders. The two beams then interfere on the camera sensor (Amscope 

MU1403, 13.5 MP, CMOS). With the camera’s pixel size of 1.4 μm × 1.4 μm, we sample the 

interferogram with 8–16 pixels per fringe, depending on final magnification [19]. The 

interferometer is implemented as an additive module to a commercial microscope. The 

resolution and FOV of our final, reconstructed image is 2.7 μm and 350 μm × 450 μm, 

respectively. Lateral resolution for our QPM setup is slightly lower than that of the standard 

microscope platform being used due to a lack of a condenser lens matching illumination NA 

with the objective’s collection NA.

Time-lapse imaging experiments are controlled through a custom graphical user interface 

(GUI) and software written in Visual Basic. The GUI allows the user to control, among other 

parameters, number of wells in the culture plate, number of images per well, frame rate, 

integration time, lighting power, autofocus settings, and the imaging location within each 

well. The FOV is translated by an XY stage and DC servomotor (ASI MS-2000). This 

translation stage is mounted to the microscope’s stage, and includes a custom incubation 

fixture that holds the sample. The incubator includes top and bottom thermal plates (Tokai 

Hit) for controlling temperature and preventing condensation on the cover plate, as well as a 

5% CO2 input and water bath for humidity control.

B. Optical Path Length Map Reconstruction

In order to obtain the OPL map from an acquired interferogram image, we employ the 

Hilbert transform-based reconstruction method proposed by Pham, et al [36]. In this method 

the raw interferograms from both the sample image and reference image (taken without the 

sample in place) are each Fourier transformed, circularly shifted such that the peak 

corresponding to the first order is centered, and inverse transformed. The final OPL map is 

then calculated as the angle of the quotient of the two transformed images. By taking the 

arctangent after dividing by a reference image, we cancel out much of the noise to which the 

tangent operation is highly sensitive.
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In comparison to single-shot reconstruction algorithms, this method also eliminates the 

linear phase ramp introduced by off-axis interferometry by using pixel-wise division during 

reconstruction, as opposed to after. Without this linear phase ramp in the reconstructed 

image, two-dimensional unwrapping is no longer needed, saving significant computational 

cost and preventing unnecessary reconstruction errors [37]. And because the optical setup is 

nearly common-path, it is robust enough to allow just a single reference image be used in the 

reconstruction for every image in a time-lapse experiment. Reconstruction takes on the order 

of a few seconds per image, quick enough not to impede data acquisition during a time-lapse 

experiment.

III. Iterative Segmentation

A. Image Preparation and Pre-Processing

By concatenating multiple images into one, we obtain two advantages beyond just 

improving our FOV. First, the use of multiple images provides better sampling of 

background phase and avoids the need for imaging an empty well as a control. This is 

because as we mechanically translate between adjacent FOVs, we progressively observe 

different areas of the common unobstructed background due to different cell layouts. 

Second, we obtain a larger ratio of cells fully sampled to those lying on the FOV’s boundary, 

reducing artificial skewedness in optical volume distributions generated later. By combining 

nine images into a 3×3 montage, we obtain a combined FOV of 1.05 mm × 1.35 mm. Larger 

montages are of course possible, but can limit temporal resolution in multi-well experiments 

due to the finite bandwidth of the camera and stage motors.

Errors like stiction and backlash in the stepper motors controlling our sample’s positioning 

can result in slight misalignments between adjacent FOVs in the montage. These errors are 

small enough to avoid significant skewing of volumetric data, but contain high frequency 

artifacts that can interfere with cell boundary detection. Realigning neighboring frames is 

possible, but takes time, limiting the system’s throughput. We apply a simple averaging 

scheme to smooth out these up to 3 um-sized artifacts along each frame’s boundary with its 

neighbor.

After the montage is compiled and misalignments are filtered, we perform a background 

subtraction to eliminate any minor signals caused by optical aberrations or misalignment. 

Each frame in the montage is averaged together and low-pass filtered to obtain the 

background image. This background image is then reduced in magnitude by 20% before 

subtraction to avoid removing small cell features or low-contrast cell boundaries. If we were 

to remove too little background during this stage, the absolute volumetric measurements 

would be affected, skewing the raw distributions left or right. However, because we 

normalize these distributions to within [0, 1], ending up with relative distributions, this effect 

is largely mitigated.

To search for phase wraps introduced by physically thick samples and abrupt phase changes 

we calculate the image gradient and retain the strongest 1% of responses. Areas with large 

high-frequency spatial variation are then median-filtered. This removes sharp phase 
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responses but retains much of the phase intensity, keeping a rough volumetric estimation of 

the cell.

The final pre-processing step before segmentation is to apply a median filter with kernel 

height and width approximately equal to twice our lateral resolution. This helps to mitigate 

minute fluctuations within the cell that could lead to over-segmentation, and also helps to 

preserve the naturally convex shape the cells exhibit, smoothing both cell boundaries and 

cutting lines.

B. Iterative Thresholding

The iterative segmentation process is shown in Algorithm 1 and in Figure 3, where output 

bw is a binary mask for a single large feature with an apparent single boundary (a.k.a. blob 

consisting of a single cell or grouping of cells), input grey_blob is a grayscale blob, input 

volume_thresh is a volumetric threshold corresponding to the minimum expected cell 

volume (explained in Section III-C), and variable cc is a binary connected component 

region. The output of this algorithm, bw, shows distinct cell areas as connected components 

(true), and cutting lines as zeros (false). A blob can be a cell or connected grouping of cells, 

with either grayscale or binary representation.

The iterative segmentation process occurs independently for each grayscale blob grey_blob 
in the original image. As such, each cut made is based on local observations uninfluenced by 

other, more distant cells. Thresholding a single grayscale blob begins with the minimum 

observed signal and increases toward the maximum observed signal. Scaling the image 

intensity to [0, 1] without saturating preserves relative volumetric readings and offers a 

consistent range over which to iterate. Each of these iterations produces a binary mask 

bw_blob of the blob with smaller and smaller area. If at any point during this process the 

bw_blob contains more than one connected component (cc), we check the optical volumes in 

the grayscale image corresponding to each binary component. If two or more of these 

volumes is greater than our predefined volumetric threshold volume_thresh, we immediately 

break and perform the corresponding watershed cut(s). Connected components 

corresponding to volumes smaller than our threshold are removed from the mask.

Following a successful pass, we then calculate the Euclidean distance transform [38] of the 

binary mask bw_blob. The distance transform reassigns each pixel to the distance between 

the current pixel’s location and the nearest nonzero pixel’s location. In doing so, we treat 

each connected component as a “catchment basin”, and calculate the watershed transform 

[39] of the resultant image to find our cutting, or “watershed”, lines.

Once every blob in our image has undergone this iterative thresholding process, we deem 

one round of cutting complete, generate images and move on to the next round (Figure 4). If 

after any round no cuts have been made, the segmentation process is finished for a given 

volumetric threshold. This entire process may be repeated in order to identify the optimum 

volumetric threshold and corresponding segmentation results.
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C. Volumetric Distributions

Our segmentation scheme is highly dependent on a single threshold parameter, which is not 

known a priori. Instead, we make several passes using different values for volume_thresh, 

and analyze the resulting distributions of cell volumes to find the optimum value.

We generate a histogram of relative cell volume measurements after each segmentation 

iteration, normalized to within the interval [0, 1] for data fitting. We then fit a Gamma 

distribution with probability density function (PDF) of the form

f x α, θ = 1
θαΓ α

xα − 1exp −x/θ , (2)

where x is the positive data being fitted and Γ(·) is the Gamma function. Maximum 

likelihood estimation is used to solve for positive shape parameter α and scale parameter θ. 
The density of the distribution is then normalized to match the total area of the histogram, 

and a fitting error is calculated on a per bin basis [40]. The summed fitting error among all 

bins is used as our quality metric during our search for the optimum volumetric threshold.

Both shape parameter α and scale parameter θ are always larger than zero, but vary based on 

round of segmentation, cell type, and confluency rate. For example, one 48 hr time-lapse 

imaging pluripotent cells resulted in shape (α) values between 1.81 and 5.32 and scale (θ) 

values between 0.155 and 0.195. Alternatively, the image of iPSCs from Figure 4 

undergoing multiple rounds of segmentation resulted in shape (α) values between 0.15 and 

4.54 and scale (θ) values between 0.03 and 0.07.

We chose to model our volumetric distributions as Gamma-like for three reasons: (1) each 

image’s data is skewed right with a unimodal distribution, (2) the data is strictly positive, but 

normalized, and (3) we wanted a model flexible and general enough for fitting data from all 

stages of segmentation, even the exponential-like distributions from early rounds of 

segmentation. To quantitatively evaluate our choice, we fitted over 20 different distribution 

types to volumetric distributions from all stages of segmentation and across all cell types, 

and measured goodness of fit. Although the Gamma distribution showed the most consistent 

goodness of fit, other continuous, univariate, semi-infinite interval distributions performed 

well, including Burr and Weibull distributions. Qualitative assessments using quantile-

quantile (Q-Q) plots verified these findings.

Algorithm 1

Iterative Thresholding

1: Input: Masked grayscale image of single blob grey_blob and volume threshold volume_thresh

2: Output: Binary mask bw corresponding to grey_blob, with applicable cuts made

3: increment = 0.05, thresh = increment, bw = grey_blob > 0

4: while thresh < 1 do

5:  bw_blob = grey_blob > thresh
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6:  for each cc in bw_blob do

7:   volume = cc.* grey_blob

8:   if volume < volume_thresh then

9:    remove cc from bw_blob

10:   end if

11:  end for

12:  num_ccs = number_of_ccs(bw_blob)

13:  if num_ccs > 1 then

14:   break

15:  end if

16:  thresh += increment

17: end while

18: if num_blobs > 1 then

19:  dists = distance_transform(bw_blob)

20:  basins = watershed(dists)

21:  cut lines = basins == 0

22:  bw = and(bw, ~cut_lines)

end if

Algorithm 2

Volumetric Threshold Search

1: Input: Integer values for upper and lower volumetric threshold bounds, maximum number of iterations 
max_iterations, if desired

2: Output: Volumetric threshold volume_thresh corresponding to the global minimum distribution fitting error

3: min_thresh = lower_bound, max_thresh = upper_bound, current_thresh = min_thresh

4: for i=l: max_iterations do

5:  if i > 1 do

6:   current_thresh = max_thresh

7:  else do

8:   sorting_indices = sort(errors, ‘ascending’)

9:   current_thresh = round(men(threshes(sorting_indices (1)), threshes(sorting_indices (2))))

10:  end

11:  past_threshes(i) = current_thresh

12:  if past_threshes(i) = past_threshes(i−1) do

13:   break

14:  end

15:  segment image using current_thresh

16:  generate histogram of volumetric data

17:  calculate fitting_error for Gamma distribution

18:  past_errors(i) = sum(fltting_error)

19:  end
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D. Automated Threshold Convergence

As described earlier, Algorithm 1 showcases how the optical volumetric threshold parameter 

volume_thresh controls segmentation decisions. This single value defines the minimum 

acceptable cell volume and is thus responsible for dictating which blobs are too small to be 

recognized as cells as well as when to segment. Forcing the user to input values for this 

parameter would either lead to under- or over-segmentation choices or require a priori 
knowledge of volumetric data for the specific cell type being studied. Instead, we present a 

fully automated method for finding the optimal volumetric threshold based on the observed 

distribution of volumes in a given FOV.

Algorithm 2 describes the search for volume_thresh, in which we attempt to find the 

volumetric threshold that maximizes the goodness of fit, and minimizes the summed fitting 

error fitting_error, between our volumetric histogram and a fitted Gamma distribution. We 

initialize the search with reasonable upper and lower volumetric bounds, acting as our seed 

thresholds from which to start. These bounds represent the smallest and largest volumetric 

measurements expected, which can be set by the user manually. These parameters have little 

effect on the final results, and are included as a way to correct for differences in image 

magnification and resizing Larger and higher magnification images will require a larger 

upper bound, for example.

For each iteration, we find the two lowest total fitting_errors for each segmentation result, 

and the corresponding volumetric thresholds used for those attempts. The next iteration is 

the mean of those two values, rounded to the nearest integer. If the current volumetric 

threshold matches that from the last iteration, the search has converged and is ended. If there 

are multiple threshold solutions that result in comparable fitting errors (<5% difference), the 

larger threshold is chosen in an attempt to further avoid over-segmentation.

Figure 5 demonstrates this search graphically. The total Gamma distribution fitting error, in 

number of cells, typically exhibits a roughly convex shape, allowing us to find a global 

minimum. This shape was too rough for algorithms sensitive to local minima such as 

gradient descent. However, when plotted as a percentage, the fitting error across the range is 

nearly linear due the exponential dependence of the total number of cells on volumetric 

threshold.

The convergence of finding a volumetric threshold is designed to require as little prior 

knowledge as possible. We make no assumptions about rates of cell growth, proliferation, or 

migration into or out of the FOV. Each cell population is considered asynchronous (i.e., in 

different growth stages) and non-steady-state. As we move from frame to frame in a 

continuous time-lapse, we observe differences in the number of cells, as well as in the 

distribution of cells pertaining to certain phases. This results in sporadic shifting of the 

Gamma curves’ shape and scale parameters, as well as to volumetric threshold. The only 

parameter that seems to have a positive correlation with time is goodness of fit, due to 

generally increasing numbers for a proliferating population. However, this too, is noisy, and 

would not be applicable for all studies. Thus, a complete search is required at each time 

point in a time-lapse data set. The benefit from this is that no changes to the algorithms or 

parameters therein are required when switching from individual images to time-lapse data 
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sets. This choice to treat each image in a time-lapse as discrete and unrelated reinforces the 

idea that no preceding knowledge should be required to segment data in a fully automated 

fashion.

IV. Results

A. Cell Lines

Our segmentation algorithm was tested on six cell types:

1) Human bladder-derived smooth muscle cells (BD-SMCs)

2) CD31/CD34 double negative induced pluripotent stem cells (iPSCs), verified 

using fluorescence-activated cell sorting (FACS)

3) CD31/CD34 double positive iPSCs, verified using FACS

4) H9 human embryonic stem cells (hESCs)

5) Huf3 human fibroblasts (FBs)

6) Pluripotent stem cells shed from an embryoid body (EB)

Montages were acquired every 10–20 minutes during each 24–72 hour time-lapse. Montages 

can be single images, 2×2, or 3×3 individual images stitched together. Proliferation was 

uninhibited during each experiment, resulting in a wide range of confluency rates on which 

to test. The maximum observed confluency rate was ~70%, based on a 100% confluency rate 

of 103 cells/mm2. Figure 6 demonstrates segmentation results on cells imaged for 25 hours 

representing a range of densities. Between the start of imaging and 25 hours later, cell 

confluency doubled from 37.5% to 66.0%, with no significant drop of in segmentation 

accuracy.

B. Run Time

Due to its iterative approach, the algorithm’s run time increases nearly linearly with both 

number of cells and image size. Downscaling (resizing) the image prior to processing greatly 

decreases computational cost, but sacrifices cell boundary resolution. For example, it takes 

~45 s for each round of segmentation on a 1.4 MP image sampling approximately 500 cells, 

but only ~20 s per round for the same image scaled down by 50% to 0.7 MP. For an image 

from that same time-lapse, taken 24 hours later with approximately double the cells, 

segmentation takes ~93 s for a 1.4 MP version and ~44 s for a 0.7 MP version. As we iterate 

through the segmentation process, run time for each round increases directly with the 

number of blobs, thus these numbers represent the average time per round.

If an image takes between five and ten rounds of segmentation for each volumetric 

threshold, then testing a single threshold takes anywhere between 1.7 min and 15 min for the 

best and worst cases presented above, respectively. If seven volumetric threshold iterations 

are required to reach convergence, as was the case in Figure 5, total run times grows to 11.7 

min and 108.5 min. When considering throughput and data density, calculating run time on a 

per cell basis results in 1.4 s to 6.5 s per cell.
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All calculations and image processing are implemented on a laptop with a 2.3GHz Intel 

Core i7 processor and 16GB of memory, running OS X 10.10.5. All scripts are written and 

executed in MathWorks Matlab R2013a (64-bit).

C. Accuracy

To determine segmentation accuracy, one montage from each data set was randomly chosen 

for accuracy measurements. Two experts familiar with QPM then independently scrutinized 

each segmented image on a cell-by-cell basis. We categorized errors into six mutually 

exclusive classes: (1) false negatives, (2) false positives, (3) poor boundary detection, (4) 

under-segmented cell clusters, (5) over-segmented cells, and (6) cell clusters segmented into 

the correct number of cells but at the wrong location. An example of each error type is 

demonstrated in Figure 7. Total error rates are the sum of these six categories. As shown in 

Table 1, we obtained an average combined detection and segmentation accuracy rate of 

91.5% over the 5,377 observed cells.

False negatives, or cells left undetected, were rare, only occurring four times. False positives 

were only slightly more common, occurring 14 times. On the other hand, poor boundary 

detection was a significant issue, occurring 131 times. Together, these errors represent a 

detection failure rate of 2.78%. Most of these errors are caused by parts of cells flattening to 

the point where the cell’s boundary is difficult to observe, and SNR approaches one. Some 

error is also attributed to overly aggressive background removal. Although most of the cell is 

detected and segmented correctly, this is still counted as an error.

Over-segmentation occurred about 2.5 times as often as under-segmentation and about 1.8 

times as often as poor segmentation location. This mix of under- and over-segmentation 

errors shows the algorithm is approaching an optimum volumetric threshold and has 

successfully mitigated watershed’s tendency to over-segment.

Although the number of cells we can check for accuracy is throughput-limited, we observe 

some cell type-dependent error bias. Pluripotent cells tended to have less than average error 

rates, with the notable exception being the EB data set, which had the highest error rate in 

the test (12.4%). This was the only data set comprised of 1×1 montages, limiting how many 

cells we could image at a time. Additionally, this set also showed the lowest observed 

contrast and resolution. Error rates for fully differentiated cells did not vary as much as those 

for pluripotent cells. SMCs had a slightly lower than average error rate of 7.64%, while FBs 

had a combined error rate of 9.11%. We hypothesize this is due to FBs being more elongated 

in shape than SMCs, which tends to increase occlusion. Our algorithm makes no attempt to 

account for cells occluding one another. This results in some dendritic-like extensions of 

cells being detected as whole, accounting for a large portion of poor segmentation location 

errors.

D. Flexibility

Figure 8 demonstrates the range and density of morphologies segmented with this approach. 

In comparing major and minor axis lengths in the left plot, cells along the 1:1 boundary 

appear round, while those farthest away from that boundary are greatly elongated. Analyzing 

Loewke et al. Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



how far away cells are from the origin on this plot may help in identifying mitosis or 

apoptosis.

From plotting convexity vs. solidity in the second plot, we see a range of dendritic-like 

features and smooth perimeters. Convexity is calculated as the ratio of the convex hull’s 

perimeter over the cell’s actual perimeter, and is sensitive to the number and shapes of 

protrusions and cavities. Solidity is calculated as the ratio of actual area over convex area, 

and is sensitive to the size of these features relative to overall cell size. In the plot, samples 

are densely populated all the way up to the 1:1 limit, suggesting that large ratios in either 

direction could contribute to identifying poor cell boundary detection or segmentation 

location. No settings or parameters were changed during this testing.

E. Comparison to Other Algorithms

To offer a point of comparison for our approach to segmentation, and to demonstrate how 

other algorithms might work on QPM data, we evaluated six other established algorithms 

designed for use on more commonly used modalities such as bright field, phase contrast, and 

fluorescence. These six algorithms are: (1) k-means++ clustering [41, 42], (2) marker-based 

watershed segmentation [39], (3) distance regularized level set evolution (DRLSE) [43], (4) 

level sets using active contours without edges (ACWE) [44], (5) Ilastik [15], and (6) 

FogBank [16]. These approaches are represented here because of their efficacy outside of 

QPM and their collective range of approach. K-means++ and watershed are relatively basic, 

but widely applicable algorithms. DRLSE and ACWE are more state-of-the-art applications 

of level set algorithms, but with different methods of control over the propagation of 

different numbers of segmentation contours. Ilastik and FogBank are software packages 

designed for broad applicability and ease of use. Ilastik is unique in this group, as its random 

forest classifier requires user defined labels and offers real time classification feedback. 

FogBank is based on modified morphological watershed principles, making it a comparable 

but more advanced version of the classic watershed transform. The qualitative results of 

these algorithms (except DRLSE) and our own applied to different cell types and packing 

densities are shown in Figure 9.

As expected, K-means++ clustering and watershed segmentation, although easy to work 

with, show that they alone are not effective enough for accurate cell detection and 

segmentation, but can be useful as part of a more intricate solution. K-Means++ detects most 

cells showing strong contrast, but lacks a solution for segmenting closely packed cells. 

Conversely, watershed tends to over segment when left unconstrained.

We evaluated two forms of level set-based algorithms. Distance regularized level set 

evolution (DRLSE) is a somewhat traditional level set algorithm, which depends on the 

image’s gradient to stop its curve evolution. This introduces a dependence on clear cell 

boundaries for accurate detection, which is often, but not always, the case with QPM. 

DRLSE isn’t designed to segment objects placed close together, as it uses a single level set 

equation. (We omit these results from Figure 9 because of this.) This could be overcome by, 

for example, detecting and using cell center points as initial conditions for multiple level set 

equations, but the reliance on clearly defined cell edges would remain. A more applicable 

algorithm for this modality can be found in active contours without edges. By using a 
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stopping term based on the Mumford-Shah functional [45] rather than on the gradient, the 

Chan-Vese algorithm can deal with cells that have ambiguously defined boundaries. While 

we found this algorithm to perform much better than more traditional level set methods, high 

confluency rates and low contrast still limit it. Modifying this algorithm to include (a) a 

heuristic for finding initial contours, (b) a volume or area constraint to aid with 

segmentation, and/or (c) more sensitive detection could greatly improve this approach for 

use with QPM.

Finally, we compared two processing toolkits designed for ease of use across different cell 

lines and modalities. Ilastik is a supervised learning model featuring point-and-click 

labeling, a random forest classifier trained on a set of generic, nonlinear features, and real-

time classifier feedback. As such, it is extremely easy to use and can provide accurate results 

for lower cell densities. We found that with its use of textures and its corresponding need to 

label image areas, there exists a direct tradeoff between accurate boundary detection and 

ability to segment closely packed cells. We also found that training and testing must occur 

on the same cell line under the same conditions for best results. If this technique could detect 

when cells are closely packed, and replace its area classifier with a drawn boundary, it could 

prove very useful for densely packed cells. Another easy to use toolkit is FogBank, a 

morphological watershed-based technique using geodesic region growing and histogram 

binning for detecting seed points. These two features limit watershed-based over 

segmentation and preserve and accurate cell boundaries. Because it is designed to segment 

cells that are physically touching, segmentation on lower packing densities can result in 

boundaries that are too large and inclusive. Additionally, we found it to be extremely 

sensitive to its area parameters, which may need adjustment as time-lapse studies elapse. Of 

all the compared techniques shown here, FogBank shows the most potential applicability for 

QPM and segmenting densely packed cells, as long as its area-based constraint can 

eventually be swapped for a volume-based one.

V. Discussion and Conclusions

In this work we evaluated a fully automated algorithm that uses QPM measurements of 

optical thickness and volumetric distributions to drive decision making for cell 

segmentation. The algorithm iteratively segments cell clusters and checks for valid cuts 

according to a minimum acceptable optical volume threshold. This process is repeated for 

several thresholds, converging when the resulting volumetric distribution best matches a 

fitted Gamma curve. We evaluate our approach quantitatively on eight data sets with six 

different cell types and confluency of up to 70%, achieving a combined, average detection 

and segmentation accuracy rate of 91.5%.

By using a volumetric threshold instead of an area- or amplitude-based one, we gain a more 

complete picture of when segmentation should or should not occur. Under this scheme, cells 

undergoing apoptosis or mitosis are shown with no bias over flatter cells with larger areas 

but lower average thickness. And by using QPM, a modality that inherently transforms 

physical thickness into signal amplitude, we are able to identify optimum segmentation 

locations using a modified, but simple, watershed algorithm.
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In designing our algorithm, we assumed all cell populations to be monolayer. However, we 

failed to take into account minor occlusions caused by extreme cell elongation and dense 

cell packing. Future development might include some method to account for this, perhaps by 

searching for these dendritic-like extensions and treating them separately, or by allowing cell 

boundaries to overlap one another.

We anticipate that this algorithm could be applied to cell mixtures, in which a mixture of 

Gamma distributions could be applied to volumetric distributions for data fitting and finding 

volumetric thresholds. The segmentation results shown here hold promise as the first step in 

a whole solution for automated cell tracking using QPM, regardless of a cell population’s 

purity.

There are three immediate options for run time optimization of this approach. The first and 

simplest solution is to move from an interpreted language to a compiled one such as C# or C

++. The second is to include a low-resolution version of the code that downsamples images 

greatly prior to calculating volumetric distributions and segmenting locations. The third is to 

improve on the iterative search for volumetric thresholds when using time-lapses by 

constraining the search bounds based on data from previous time points.

The advent of automated segmentation, particularly for densely packed cell populations and 

time-lapse studies, could open the door for studying localized environmental effects on cell 

growth and division, as well as on localized orientation and neighboring or social 

phenomena. For example, automated segmentation could enable the study of how densely 

packed and oriented cardiomyocytes impede localized electrical potentials. Automated 

segmentation and tracking could also help us understand how local abrasians or temperature 

fluctuations affect the formation of scar tissue or functional muscle tissue. One recent study 

used semi-automated cell segmentation and tracking on phase contrast data to understand 

how pluripotent stem cells, which are inherintely heterogeneous in terms of functional 

properties and observed dynamics, require neighbors and socialization in order to thrive 

long-term [46]. Fully automated software could strengthen any of these studies by increasing 

throughput and allowing for supplementary variables to be tested.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Comparison of common microscopy methods using viable cultured MCF-7 breast cancer 

cells expressing green fluorescent protein (GFP). Modalities shown: (a) Phase contrast, (b) 

simulated DIC, (c) fluorescence, and (d) QPM. Corresponding signal intensity plots are 

shown below. Phase contrast and fluorescence images were taken on an Invitrogen EVOS FL 

epiillumination microscope 30 minutes after the QPM image was taken. The DIC image (b) 

was simulated from (d) by calculating the one-dimensional gradient [31]. The bright artifact 

in the center-left of (d) is a phase wrap caused by residual error during the phase 

reconstruction process, and is smoothed out prior to segmentation, Scale bars represent 50 

μm.
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Fig. 2. 
Schematic of QPM optical setup.
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Fig. 3. 
Demonstration of a single iteration of segmentation for a single blob. (a) Original image of 

H9 hESC cells with QPM. (b-g) Close-up view of region selected in (a) and (h). (b) Contrast 

enhanced region from (a). (c) Single connected blob passed to the segmenter. (d) Initial 

binary mask. (e) Threshold results showing first instance of connected component 

separation. (f) Watershed transform. (g) Cutting mask applied to binary blob. (h) Final 

segmentation results. Scale bars represent 50 μm. Color bar in (h) indicates relative optical 

cell volume from the minimum (red) to the maximum (blue).
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Fig. 4. 
Iterative segmentation results for CD31/CD34 double negative iPSCs. Top row, left to right: 

Segmentation results after 0, 1, 2, and 6 rounds of iterative segmentation. Cell boundaries 

are overlaid with a diverging red-blue colormap indicating each cell’s volume relative to all 

those observed in the current FOV. Bottom row, left to right: Corresponding distribution of 

volumetric data. With each round of segmentation, the distribution of cell volume data 

moves away from an exponential-like distribution and toward a Gamma-like one. Per-bin 

fitting error between histogram data and fitted Gamma curve plotted in red. Each image 

represents a 3×3 montage of the same FOV. Scale bars represent 500 μm. Color bars in top 

row indicate relative optical cell volume from the minimum (red) to the maximum (blue).
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Fig. 5. 
Iterative optimization of volumetric threshold. Top: The search for a global minimum of 

total Gamma distribution fitting errors, taking 7 iterations. The undersampled line (light 

blue) was generated using threshold values from 5 to 100 in intervals of 5, and is not known 

a priori. Bottom: The total number of cells (blue) decreases exponentially with volumetric 

threshold. Because of this, the percent fitting error (red) lacks a convex region.
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Fig. 6. 
Segmentation results for time-lapse imaging of Huf3 FBs sampled at three different time 

points. From left to right: images taken at 0, 12.5, and 25 hours (shown left to right). During 

this time, the total number of cells within our FOV nearly doubles, increasing from 500 cells 

to just fewer than 1,000 cells. Each image represents a 3×3 montage of the same FOV. Scale 

bars represent 500 μm. Color bars in bottom row indicate relative optical cell volume from 

the minimum (red) to the maximum (blue).
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Fig. 7. 
Examples of each error type: (a) false negative, (b) false positive, (c) poor boundary 

detection, (d) under-segmented cell cluster, (e) over-segmented cells, and (f) poor 

segmentation location. False negatives are usually caused by poor contrast. False positives 

are usually caused by dead cell material, dust, or bubbles. Poor boundary detection usually 

comes in the form of under-sensitive detection of low contrast cell boundaries, especially if 

there is a dip in signal between branch-like areas and the bulk of the cell, but can also 

include over-sensitive detection of background regions. Poor segmentation location has little 

to do with detection sensitivity. It occurs when cells are segmented into the correct number 

of cells, but at an incorrect location, caused by phase variations within the cell triggering the 

watershed algorithm. Although subjective, we aimed to count an error for each cell boundary 

that underestimates or overestimates a cell’s area by about 25%. Under- and over-

segmentation errors are most common for tightly packed cells, but drops in signal from a 

cell’s nucleus can also affect segmentation. Poor segmentation location is most often caused 

by occlusion and phase wraps. Examples are taken from H9 hESC image data during 

different (not necessarily final) rounds of iterative segmentation. Each FOV is 50 × 50 μm. 

Scale bars represent 15 μm.
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Fig. 8. 
Range and density of segmented cell morphologies. Top heat map plots major vs. minor axis 

length, quantifying how round or slender cells appear. Bottom heat map plots convexity vs. 

solidity, quantifying perimeter energy and how spread out each cell is. Each heat map is 

accompanied by four example cells representing morphologies of different areas of the map. 

Data shown includes one image from each of our data sets, totaling over 5,000 cells.
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Fig. 9. 
Qualitative comparison of segmentation techniques on QPM data. Different cell lines are 

presented row-wise, from top to bottom: (1) double positive CD31/CD34 iPSCs, (2) H9 

hESCs, and (3 and 4) BD-SMCs from different experiments and time-points. Different 

segmentation techniques are shown column-wise, from left to right: (a) original data, (b) k-

means++, (c) marker-based watershed, (d) active contours with level sets, (e) Ilastik, (f) 

FogBank, and (g) our iterative algorithm. Although none of these approaches were designed 

for use with QPM, most show strong potential for utility. Outlines are shown with random 

color assignments to help visualize boundary separation. Each FOV is 145 × 145 μm. Scale 

bars represent 50 μm.
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