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Cardiovascular diseases (CVDs) are major causes of death worldwide. Identification of promising targets for prevention and treatment

of CVDs is paramount in the cardiovascular field. Numerous transcription factors regulate cellular function through modulation of spe-

cific genes and thereby are involved in the physiological and pathophysiological processes of CVDs. Although Krüppel-like factors

(KLFs) have a similar protein structure with a conserved zinc finger domain, they possess distinct tissue and cell distribution patterns

as well as biological functions. In the vascular system, KLF activities are regulated at both transcriptional and posttranscriptional

levels. Growing in vitro, in vivo, and genetic epidemiology studies suggest that specific KLFs play important roles in vascular wall

biology, which further affect vascular diseases. KLFs regulate various functional aspects such as cell growth, differentiation, activa-

tion, and development through controlling a whole cluster of functionally related genes and modulating various signaling pathways

in response to pathological conditions. Therapeutic targeting of selective KLF family members may be desirable to achieve distinct

treatment effects in the context of various vascular diseases. Further elucidation of the association of KLFs with human CVDs, their

underlying molecular mechanisms, and precise protein structure studies will be essential to define KLFs as promising targets for

therapeutic interventions in CVDs.
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Introduction

Cardiovascular disease (CVD) ranks the number 1 cause of death

worldwide with an estimated 17.5 million people dying from CVD

in 2012, according to the World Health Organization. The presence

of one or more high risk factors, such as hypertension, diabetes,

hyperlipidemia, and smoking, contributes to the pathophysio-

logical process of CVDs. CVDs are complicated genetic and environ-

mental factors-driven diseases. Identification of promising targets

for prevention and treatment of CVDs is assiduously pursued in the

cardiovascular field. Vascular wall cells, such as endothelial cells

(ECs) and vascular smooth muscle cells (VSMCs), are strictly regu-

lated to maintain blood vessel structure and functions. Injury or

inflammatory mediators destroy blood vessel homeostasis leading

to vascular cell dysfunction and resulting in blood vessels narrow-

ing (e.g. atherosclerosis, restenosis), blockage (thrombosis), regen-

eration (angiogenesis), stiffening (hypertension), or expansion and

rupture (aneurysms). Recent studies suggest that the Krüppel-like

factor (KLF) family plays a critical role in the maintenance of body

homeostasis including cardiovascular, immune, digestive, respira-

tory, and hematopoietic systems.

The first member of KLFs, KLF1 (EKLF), was identified in 1993 in

erythroid cells, where KLF1 binds to the β-globin promoter (Miller

and Bieker, 1993). To date, 18 KLFs (from KLF1 to KLF18) have

been identified with distinct tissue distribution patterns and func-

tions (McConnell and Yang, 2010; Pei and Grishin, 2013). KLFs

have a conserved protein structure among human, mouse, and rat

and amongst themselves. Three conserved Cys2His2-type zinc fin-

gers in the carboxy-terminus of the KLF proteins bind to GC-rich

sites in the promoter of target genes. Transactivation domain and

transrepression domain are located at the amino-terminus of KLF

proteins (Figure 1A) (McConnell and Yang, 2010). Although the

similarity in DNA-binding ability leads to overlapping regulation of

genes, KLF members have different biological functions and exhibit

distinct phenotypes in various diseases, mostly resulting from their

N-terminal sequences, which provide unique protein interaction

motifs and posttranslational modification sites (McConnell and

Yang, 2010). By regulation of gene expression, KLFs are involved in

numerous biological processes (Figure 1B). Based on the published

HPA RNA-seq from 95 human individuals representing 27 normal

different tissues (Fagerberg et al., 2014), we performed additional

analysis to identify the top KLF-expressing tissues, and summar-

ized the findings in Table 1.

KLFs are critical regulators of vascular homeostasis, and

some KLFs exhibit beneficial effects on prevention or inhibition
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of vascular diseases. Dysfunction of ECs and VSMCs induced by

pathologic stimuli initiates or exacerbates various vascular dis-

eases. To further underscore the significance of KLFs in these

cells, we determined the mRNA abundance of KLFs in human

coronary artery endothelial cells (HCAECs) and human aortic

smooth muscle cells (HASMCs), introduced in Table 2. Herein,

we summarize and discuss evidence underscoring the essential

role of the KLF family in the regulation of vascular wall biology,

specifically in ECs and VSCMs, and underlying mechanisms of

KLF functions in vascular diseases and highlight the potential

for KLFs as therapeutic targets in prevention and treatment of

vascular diseases.

Roles of KLFs in ECs

Healthy endothelium is critical to maintain normal vascular

homeostasis. Vascular ECs can respond to various physiological

or pathophysiological signals by dynamic changes in a wide

range of factors that regulate cellular adhesion, vascular inflam-

mation, thromboresistance, vascular tone, and EC-dependent

regulation of smooth muscle cell homeostasis. Prolonged and/

or repeated exposure to CVD risk factors ultimately leads to EC

dysfunction. KLFs, such as KLF2, KLF4, KLF6, and KLF11, exert

distinct biological functions in ECs (Figure 2).

KLF2 and ECs

The last decades have witnessed growing research on KLF2 in

relation to EC biology. KLF2 was first identified in 1995, using the

zinc finger region of erythroid Krüppel-like factor (EKLF, KLF1) as

the hybridization probe (Anderson et al., 1995), and first termed

as lung Krüppel-like factor (LKLF), since it was found to be primar-

ily expressed in lung (Anderson et al., 1995). Nonetheless, as early

as E9.5, KLF2 is expressed in the mouse embryo vascular ECs.

Klf2–/– mice die on E12.5 to E14.5 because of intra-embryonic

hemorrhages (Kuo et al., 1997). Despite normal vascularization

and angiogenesis, Klf2–/– mice embryos display impaired smooth

muscle cell migration and blood vessel maturation (Wu et al.,

2008). Mouse embryos with EC-specific loss of KLF2 die due to

loss of normal vessel tone and lethal heart failure (Lee et al.,

2006). Mice with KLF2 hemizygous deficiency (Klf2+/–) on an

Figure 1 Schematic representation of KLF functional domains and

gene regulation. (A) The transactivation and transrepression

domains are located at the N-terminus of KLF proteins. Three con-

secutive zinc finger motifs are located at the C-terminus. (B)

Diagram illustrating the regulatory patterns for KLFs in gene tran-

scription. KLFs induce or repress gene expression in cooperation

with co-activators or co-repressors or through interaction with other

specific transcription factors. TF, transcription factor; CBP, CREB-

binding protein; PCAF, p300/CBP-associated factor; HDACs, histone

deacetylases; CtBP, C-terminal-binding protein; Sin3A, SIN3 tran-

scription regulator family member A.

Table 1 Tissue distribution of KLFs.

Human KLFs Top 3 expressing tissues (RPKM) Heart (RPKM)

KLF1 Bone marrow, placenta, spleen N/A

KLF2 Fat, ovary, bone marrow 4.09

KLF3 Colon, gall bladder, esophagus 4.69

KLF4 Colon, esophagus, skin 9.10

KLF5 Skin, esophagus, colon 0.79

KLF6 Bone marrow, gall bladder, esophagus 13.44

KLF7 Bone marrow, endometrium, fat 1.51

KLF8 Skin, fat, esophagus 0.54

KLF9 Fat, gall bladder, liver 16.83

KLF10 Bone marrow, gall bladder, lung 10.54

KLF11 Testis, lung, fat 6.47

KLF12 Lymph node, spleen, brain 2.17

KLF13 Bone marrow, lung, thyroid 11.78

KLF14 Testis, adrenal gland, fat N/A

KLF15 Fat, ovary, kidney 2.13

KLF16 Brain, colon, spleen 0.73

KLF17 Testis, endometrium, esophagus 0.003

Summary of the KLF abundance as calculated here from the HPA RNA-seq analysis

of normal tissue samples from 95 human individuals representing 27 different tis-

sues (Fagerberg et al., 2014). The reads per kilobase per million mapped reads

(RPKM) for KLFs in the top 3 KLF-expressing tissues and heart are listed in the

table. N/A, not available.

Table 2 KLF abundance in HCAECs and HASMCs.

Human KLFs (KLF/GAPDH) ×
104 in HCAECs

(KLF/GAPDH) ×
104 in HASMCs

KLF1 N/A N/A

KLF2 93.46 25.14

KLF3 89.76 357.97

KLF4 0.79 184.43

KLF5 3.42 51.33

KLF6 549.30 424.61

KLF7 41.39 176.19

KLF8 0.49 2.75

KLF9 49.33 559.83

KLF10 167.61 176.32

KLF11 2.00 63.30

KLF12 30.91 226.97

KLF13 28.89 368.51

KLF14 0.11 N/A

KLF15 2.42 3.27

KLF16 95.04 58.03

KLF17 N/A 0.72

Cultured human coronary artery endothelial cells (HCAECs) and human aortic

smooth muscle cells (HASMCs) were subjected to RNA-sequencing analysis when

grown at 90% confluence. The fragments per kilobase of transcript per million

mapped reads (FPKM) for KLFs were normalized with those of GAPDH. N/A, not

available.
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ApoE–/– background exhibit augmented atherosclerosis, attributed

mostly to enhanced macrophage lipid uptake (Atkins et al., 2008).

KLF2 and inflammation. EC activation is an early stage in athero-

sclerosis, the major cause of heart attacks, strokes, and peripheral

vascular disease (Davignon and Ganz, 2004). Microarray profiling

shows that KLF2 overexpression confers anti-inflammatory and

anti-thrombosis properties in ECs (Parmar et al., 2006). KLF2

induces endothelial nitric oxide synthase (eNOS) and simultan-

eously inhibits proinflammatory cytokine-induced adhesion mole-

cules (E-selectin and VCAM1) through recruitment of co-activator

p300/cyclic AMP response element-binding protein (CBP) to

reduce NF-κB activity (SenBanerjee et al., 2004). Besides the NF-

κB pathway, KLF2 could suppress constitutive proinflammatory

transcription via inhibition of ATF2 phosphorylation (Fledderus

et al., 2007) and Jun NH2-terminal kinase (JNK) (Boon et al.,

2010), thus controlling the contribution of cytoskeletal rearrange-

ments to EC inflammation. In addition, KLF2 inhibits inflammation

through upregulation of anti-inflammatory genes in a laminar

flow-dependent fashion. KLF2 mediates laminar flow-dependent

upregulation of ENTPD1, which protects ApoE–/– mice from ath-

erosclerosis (Kanthi et al., 2015). KLF2 upregulates PPAP2B, a

laminar flow sensitive and anti-inflammatory gene in ECs that

preserves integrity of the endothelial layer (Wu et al., 2015).

The presence of antiphospholipid antibody is the marker for

the antiphospholipid syndrome Lupus, characterized by high

risk of thrombosis. Antiphospholipid antibody activates EC via

inhibition of KLF2 and KLF4, with ensuing NF-κB activation

(Allen et al., 2011).

KLF2 and vascular tone. EC is the key cell type controlling vascular

tone in vivo. The KLF2–eNOS pathway mediates amelioration of

vasospasm after subarachnoid hemorrhage (SAH) in rats treated

with scutellarin, a flavonoid extracted from the traditional Chinese

herb Erigeron breviscapus (Li et al., 2016a), providing an experi-

mental basis for clinical use of scutellarin treatment in SAH

patients. In the apelin-null mice, which develop more severe pul-

monary artery hypertension (PAH), KLF2 and eNOS were decreased

in the lung, implicating the KLF2–eNOS pathway in the pathological

progression of PAH (Chandra et al., 2011).

KLF2 and angiogenesis. Endothelial survival, permeability, migra-

tion, and proliferation contribute to angiogenesis. KLF2 inhibits

angiogenesis by multiple signaling pathways such as inhibition of

transcription of VEGF receptor 2 (VEGFR2) (Bhattacharya et al.,

2005) and hypoxia-inducible factor 1 (HIF-1) (Kawanami et al.,

2009). KLF2 inhibits proliferation, migration, and tube formation in

human liver sinusoidal ECs via suppression of ERK1/2 pathway

(Zeng et al., 2015). Consistent with in vitro data, KLF2 heterozy-

gous mice (Klf2+/−) show increased microvessel density in the

brain (Kawanami et al., 2009). Vascular ECs are highly glycolytic

and have relatively low oxygen demand. During angiogenesis, EC

changes from a quiescent to a metabolically active phenotype, rely-

ing on glycolysis as energy source (De Bock et al., 2013). KLF2 inhi-

bits glycolysis by downregulation of key glycolytic enzymes such as

6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase-3 (PFKFB3),

phosphofructokinase-1, and hexokinase 2 (Doddaballapur et al.,

2015), thus further inhibiting angiogenesis. However, in the

zebrafish model, KLF2 is required for angiogenesis during aor-

tic arch development (Meadows et al., 2009; Renz et al.,

2015), indicating a distinct role of KLF2 in vascular develop-

ment and postnatal regeneration.

KLF2 and thrombosis. The endothelium is an important barrier to

maintain blood fluidity. In ECs, KLF2 inhibits pro-thrombotic factors

such as plasminogen activator inhibitor 1 (PAI-1) and tissue factor

(TF), and upregulates anti-thrombotic factor thrombomodulin (TM)

under inflammatory conditions (Lin et al., 2005; Boon et al.,

2007). Inhibition of the inhibitory kappa-B kinase-β (IKKβ)
increases thrombomodulin (TM) expression via induction of KLF2

(Pathak et al., 2014). Patients with multiple myeloma, receiving

proteasome inhibitors as a part of the chemotherapeutic regimen,

appear to be at lower risk for thromboembolic events (Musallam

et al., 2009). Mechanistically, proteasome inhibitors increase TM

by inducing KLF2 and KLF4, independently of the NF-κB pathway

(Hiroi et al., 2009; Nayak et al., 2014), making KLF2 and KLF4

potential targets for inhibition of thrombosis.

Figure 2 The roles of KLFs in vascular wall biology. KLFs regulate inflammation, proliferation and differentiation in ECs and VSMCs, and are

further involved in various vascular diseases, underscoring an important role of KLFs in maintaining vascular homeostasis.
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KLF2 and endothelial barrier. The pathological process in ische-

mic stroke shares many similarities with ischemic heart attack.

KLF2 reduces infarction size by improving blood–brain barrier

function in the focal cerebral ischemia mouse model (Shi et al.,

2013). Indeed, KLF2 increases the expression of the key junction

protein occludin and phosphorylation of myosin light chain, to pre-

serve endothelial barrier and vascular integrity (Lin et al., 2010).

Other functions of KLF2 in ECs. Autophagy is of importance in

maintaining cellular homeostasis. A positive loop between autop-

hagy and KLF2 in ECs has been discovered, in which KLF2

improves microvascular function after acute liver injury induced by

cold storage and warm reperfusion (Guixe-Muntet et al., 2017). In

addition, KLF2 inhibits complement-mediated lysis (Kinderlerer

et al., 2008) and suppresses oxidized LDL-induced apoptosis

(Wang et al., 2006), indicating a protective role of KLF2 in ECs. A

recent study reported that gain of MEKK3–KLF2/4 function causes

cerebral cavernous malformations (CCM) in a neonatal mouse

model of CCM disease (Zhou et al., 2016), suggesting that

MEKK3–KLF2/4 signaling is a causal mechanism for CCM patho-

genesis. These studies implicate a distinct role of KLF2 in vascular

and cerebrovascular development.

KLF4 and ECs

KLF4 was first identified as gut-enriched Krüppel-like factor

(GKLF) (Yet et al., 1998). KLF4 mRNA is abundant in mouse gastro-

intestinal and skin epithelial cells and induces growth arrest in

numerous cell types (Shields et al., 1996). KLF4-deficient mice

exhibit neonatal death due to loss of the skin barrier function

(Segre et al., 1999). However, KLF4 is also expressed in the vas-

cular wall, including ECs and VSMCs, and plays a critical role in

vascular wall biology. Noteworthy, KLF4 is one of the ‘Yamanaka

factors’ (along with Oct3/4, Sox2, and c-Myc) used to induce

pluripotency in both mouse and human somatic cells (Takahashi

and Yamanaka, 2006).

KLF4 and vascular protection. Similar to KLF2, KLF4 confers an

anti-inflammatory and vasoprotective phenotype in ECs by inhi-

biting NF-κB activation (Hamik et al., 2007), and inducing eNOS

expression (Shen et al., 2009; Mun and Boo, 2012). EC-specific

Klf4–/– mice exhibit increased atherosclerosis and thrombosis

(Yoshida et al., 2014), aggravated LPS-induced lung injury and

pulmonary edema through impaired endothelial barrier (Cowan

et al., 2010), and deleterious PAH from increased endothelin-1

and decreased eNOS (Shatat et al., 2014).

KLF4 and angiogenesis. KLF4 inhibits angiogenesis and endo-

thelial proliferation via increasing miR-15a in both ECs and

VSMCs (Zheng et al., 2013). However, sustained expression of

KLF4 promotes ineffective angiogenesis leading to impaired

tumor growth by activating the Notch signaling pathway (Hale

et al., 2014). In retinal microvascular ECs, KLF4 promotes angio-

genesis via activation of VEGF signaling (Wang et al., 2015).

Thus, KLF4 may regulate angiogenesis in a cell type- and expres-

sion level-dependent manner.

KLF4 and thrombosis. KLF4 has protective effects on thrombosis

through transcriptional regulation of pro- and anti-thrombotic

genes. Overexpression of KLF4 increases TM and eNOS expression

but suppresses PAI-1 and TF expression under inflammatory condi-

tions (Zhou et al., 2012; Stavrou et al., 2015). Mechanistically,

KLF4 works synergistically with p300 to activate the TM promoter

and, thereby, increasing transcription (Zhou et al., 2012). In add-

ition to KLF2 and KLF4, whether other KLFs are involved in throm-

bosis remains to be investigated.

KLF6 and ECs

KLF6 transactivates the expression of a considerable number of

genes involved in the TGFβ pathway, e.g. endoglin, collagen 1,

urokinase-type plasminogen activator, TGFβ receptor type 1, and

MMP14 (Botella et al., 2002; Gallardo-Vara et al., 2016), and colo-

calizes with endoglin in the vascular endothelium following carotid

balloon injury in rats (Botella et al., 2002). Interestingly, KLF6

interacts with specificity protein 1 (Sp1) to cooperatively transacti-

vate common target genes. Vascular injury triggers KLF6 nuclear

translocation and cooperation with Sp1 to upregulate activin

receptor-like kinase 1 (ALK1) and consequently induce endothelial

activation (Garrido-Martı́n et al., 2013). TGFβ, in turn, enhances

the interaction between KLF6 and Sp1 by inhibiting KLF6 RNA

alternative splicing that functionally antagonizes full-length KLF6

(Botella et al., 2009), leading to an increase in growth-inhibitory

KLF6 activity. In addition, disruption of Sp2/KLF6 repression com-

plex is required for farnesoid X receptor to increase EC migration

(Das et al., 2006).

KLF11 and ECs

KLF11 was cloned as a Sp1-like transcription factor and is

involved in cell growth and differentiation (Cook et al., 1998). In

population studies, KLF11 mutation causes maturity-onset dia-

betes of the young type 7 (MODY7) (Neve et al., 2005). Indeed,

recent studies by others and us provide evidence on the critical

role of KLF11 in EC homeostasis. Proinflammatory stimuli, like

TNFα and LPS, increase KLF11 expression in vascular ECs (Fan

et al., 2012). KLF11 potently inhibits inflammation by suppressing

the NF-κB pathway (Fan et al., 2012) and downregulating

endothelin-1 in ECs (Glineur et al., 2013). Klf11–/– mice display exa-

cerbated endothelial inflammation represented by increased leuko-

cyte–endothelial recruitment and upregulated proinflammatory

adhesion molecules (Fan et al., 2012). We also found that KLF11

deficiency aggravates ischemic stroke in a mouse middle cerebral

artery occlusion model. KLF11 facilitates PPARγ-mediated inhib-

ition of pro-apoptotic miR-15a in cerebral vascular ECs (Yin et al.,

2013). In addition, KLF11 antagonizes caveolin-1 transcription

induced by Sp1/sterol-responsive element-binding protein

(SREBP) during cholesterol depletion in ECs, suggesting a role of

KLF11 in cholesterol metabolism in ECs (Cao et al., 2005).

Roles of KLFs in VSMCs

VSMC is the major cell type in the vascular wall, controlling

vascular tone and maintaining vascular wall homeostasis. It dis-

plays plasticity, switching from a quiescent, contractile

Roles of Krüppel-like factors in vascular diseases j 355



phenotype to a secretory, proliferative phenotype, during vascu-

lar inflammation or injury. KLFs appear to regulate phenotypic

switch, proliferation, migration, apoptosis, and inflammation in

VSMCs. Accordingly, studies indicate that KLFs in VSMCs are

involved in vascular diseases such as restenosis, atheroscler-

osis, and aneurysm (Figure 2).

KLF4 and VSMCs

KLF4 and VSMC phenotypic switch. KLF4 deficiency in smooth

and cardiac muscles in mice results in postnatal death and

growth restriction, underscoring its importance in cardiovascular

development (Yoshida et al., 2010). KLF4 is upregulated by

platelet-derived growth factor BB (PDGF-BB) via transcription

factor Sp1, a potent inhibitor of VSMC differentiation (Deaton

et al., 2009). In turn, KLF4 overexpression inhibits the expres-

sion of VSMC contractile markers, including myocardin (Turner

et al., 2013), and mediates the elongation of long-chain fatty

acid family member 6 (Elovl6)-induced VSMC phenotypic switch

(Sunaga et al., 2016). Therefore, KLF4 is a critical driver of VSMC

phenotypic switch from a contractile to a secretory phenotype. In

contrast, TGF-β, a positive regulator of VSMC differentiation from

secretory to contractile phenotype, reduces KLF4 expression

through miR-143/145 in VSMCs (Davis-Dusenbery et al., 2011).

Furthermore, bone morphogenetic proteins (BMP) 2, 4, 6 and

TGF-β share KLF4 as a common downstream molecule in main-

taining the VSMC contractile phenotype (King et al., 2003). All-

trans retinoic acid (ATRA) induces VSMC differentiation and

inhibits proliferation via downregulation of KLF4 (Wang et al.,

2008; Yu et al., 2011). Mechanistically, KLF4 inhibits myocar-

din, a co-activator of serum response factor (SRF) essential

to maintain VSMC differentiation and contractile phenotype

(Owens et al., 2004; Turner et al., 2013).

Additional mechanisms could mediate KLF4 regulation of

VSMC phenotypic switch. KLF4 cooperates with ELK-1 (a co-

repressor of SRF) and HDAC2 to suppress VSMC differentiation

markers in vitro and in vivo (Salmon et al., 2012). Some evi-

dence indicates that KLF4 promotes VSMC differentiation by

Smad and p38 MAPK pathway (Li et al., 2010). Additionally,

high phosphate induces VSMC switch to an osteogenic pheno-

type via upregulation of KLF4 (Yoshida et al., 2012), suggesting

a positive and complex effect of KLF4 on VSMC dedifferentiation

and osteogenic differentiation.

KLF4 and vascular injury. KLF4 is barely expressed in normal,

contractile VSMCs in vivo, but is induced upon vascular injury

(Liu et al., 2005). KLF4 inhibits VSMC proliferation and neointi-

mal formation (Zheng et al., 2009; Wang et al., 2012b).

Conditional knockout of Klf4 delays VSMC dedifferentiation, but

increases VSMC proliferation by removing KLF4-dependent upre-

gulation of p21, resulting in exacerbated neointimal formation

after vascular injury in mice (Yoshida et al., 2008). A recent

study demonstrated that SMC-specific KLF4 deficiency reduces

the numbers of SMC-derived adventitial progenitors, which have

the potential to differentiate into multiple lineages, including

mature SMCs, resident macrophages, and endothelial-like cells,

potentially contributing to intimal lesions in vivo (Majesky et al.,

2017).

KLF4 and atherosclerosis. Many studies have shown that VSMC

plasticity contributes to the development of atherosclerosis

(Gomez and Owens, 2012). SMC-specific knockout of Klf4

results in reduced numbers of SMC-derived macrophage and

mesenchymal stem cell-like cells, a marked reduction in athero-

sclerosis and an increase in plaque stability, compared to wild-type

controls, reinforcing the contribution of SMCs to atherosclerotic

plaques (Shankman et al., 2015).

KLF4 and aneurysm. At the histological level, inflammation,

VSMC apoptosis, extracellular matrix degradation, and oxidative

stress have been recognized as visible hallmarks of aortic

aneurysm pathogenesis (Kuivaniemi et al., 2015). KLF4 expres-

sion is progressively increased in the vessel wall after aortic

elastase perfusion in a mouse model of aneurysm. Conditional

KLF4 deletion attenuates abdominal aortic aneurysm in both

elastase perfusion and angiotensin II infusion-induced mouse

models of aneurysm (Salmon et al., 2013). KLF4 knockdown

also attenuates the TNFα-induced phenotypic switch from con-

tractile phenotype to secretory phenotype in cerebral SMCs (Ali

et al., 2013). These findings underscore the importance of KLF4

in the mechanisms behind intracranial and aortic aneurysms.

KLF5 and VSMCs

Like KLF4, KLF5 is also induced in VSMCs after vascular injury

(Watanabe et al., 1999). However, unlike KLF4, KLF5 promotes

VSMC proliferation and aggravates neointimal formation after

carotid balloon injury in rat (Suzuki et al., 2009; Shi et al., 2012).

KLF5 heterozygous deficient mice (KLF5+/−) exhibited reduced vas-

cular injury response, vascular remodeling, angiogenesis, and car-

diac hypertrophy and fibrosis (Shindo et al., 2002). Angiotensin II

increases KLF5 in a PKC, p38 MAPK, and NADH/NADPH oxidase-

dependent pathway (Gao et al., 2006). In turn, KLF5 mediates the

pro-proliferative effect of angiotensin II (AngII) via interaction with

c-Jun in VSMCs (Liu et al., 2010), thus creating a positive feedback

loop to regulate VSMC response to AngII. KLF5 increases prolifer-

ation and decreases apoptosis in pulmonary artery SMCs, of rele-

vance to development of PAH (Courboulin et al., 2011). Indeed,

periostin-positive cells (both VSMC and fibroblast)-specific KLF5

deficiency attenuates vascular remodeling in deoxycorticostero-

neacetate (DOCA) salt-induced mouse hypertension model (Zempo

et al., 2016). Short-hairpin RNA (shRNA)-mediated KLF5 knock-

down attenuates pulmonary artery remodeling in a rat PAH model

(Li et al., 2016b). Beyond those roles, clinical evidence demon-

strates that KLF5 is highly expressed in large and giant unruptured

cerebral aneurysms in human samples, although the specific role

of KLF5 and the mechanism underlying its potential role in cerebral

aneurysms remain unclear (Nakajima et al., 2012).

KLF15 and VSMCs

KLF15 is expressed in quiescent VSMCs and decreased upon

PDGF-BB in vitro or after vascular injury in vivo. Klf15–/– mice

exhibited increased neointimal formation after vascular injury
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and Klf15 deficiency enhanced VSMC proliferation and migration

(Lu et al., 2010). Furthermore, KLF15 is downregulated in human

atherosclerotic lesion and SMC-specific KLF15 deficiency aggra-

vates atherosclerosis development in ApoE–/– mice through

increased proinflammatory activation of VSMCs (Lu et al., 2013),

suggesting that KLF15 has a protective effect on vascular inflam-

matory diseases.

The regulation of KLFs in the vascular system

The transcriptional and posttranscriptional regulation of KLFs

is a critical way for cells to adapt to changes under both physio-

logical and pathophysiological conditions (McConnell and Yang,

2010). Further understanding of KLFs regulation will provide

new avenues to modulate their activity according to their roles

in the context of cellular process. Here, we briefly discuss key

emerging aspects of the regulation of KLFs at both transcrip-

tional and posttranscriptional levels in the vascular system.

DNA methylation is the most stable epigenetic hallmark that

confers persistent changes in gene expression and plays a key

role in maintaining endothelial cell homeostasis and participates

in vascular disease development. Methylation in the KLFs promo-

ters changes the transcription level of KLFs. Disturbed oscillatory

blood flow upregulates expression of DNA methyltransferases

(DNMTs) both in vitro and in vivo, which alters genome-wide DNA

methylation and global gene expression (Dunn et al., 2015). Upon

disturbed hemodynamics, CpG islands within the KLF4 promoter

are hypermethylated in a DNMT-dependent fashion in ECs (Dunn

et al., 2015), which significantly represses KLF4 transcription,

while DNMT inhibitors and knockdown of DNMT3A rescue such

epigenetic silencing (Jiang et al., 2014). Low-density lipoprotein

(LDL) cholesterol induces endothelial dysfunction and is a major

risk factor for coronary heart disease. Pharmacological inhibition

or genetic inactivation of DNMTs prevents LDL-induced downregu-

lation of KLF2 in ECs (Kumar et al., 2013). Altogether, these data

suggest that DNA methylation may directly affect KLF expression

in ECs in a context-dependent manner.

Acetylation is important for KLF4-mediated transactivation.

ATRA increases KLF4 acetylation by inducing HDAC2 phosphoryl-

ation and further promotes VSMC secretory phenotype (Meng

et al., 2009). Endogenous KLF4 is acetylated by p300/CBP and

mutagenesis of the acetylated lysines in KLF4 protein results in a

decreased ability of KLF4 to activate target genes (Evans et al.,

2007). The deacetylase HDAC1 can negatively regulate KLF5 activ-

ity through direct interaction with the first zinc finger of KLF5,

inhibiting the binding of p300 to the same region of KLF5

(Matsumura et al., 2005). Additionally, SUMOylation can alter

protein activity and stability. In the presence of PDGF-BB, KLF4

SUMOylation leads to release of the p300 co-activator required

for p21 expression, recruitment of co-suppressors, and downregu-

lation of p21 expression with the ensuing increase of VSMC prolif-

eration (Nie et al., 2016).

Interaction with an extensive network of co-regulators modulates

the transcriptional activities of KLFs, which cannot be covered in

depth here. Briefly, besides CBP and p300, some KLFs (e.g. KLF3,

8, and 12) bind to transcriptional regulator C-terminal-binding

protein 1 (CtBP) through a consensus-binding element in their

N-terminal regions to recruit histone deacetylases and histone

methyltransferases to transcriptional complexes, thus affecting

chromatin remodeling of the target genes (Turner and Crossley,

1998). Furthermore, KLF9, 10, 11, 13, 14, and 16 recruit the tran-

scriptional repressor Sin3A, which binds to HDAC1 and HDAC2

to modify chromatin conformation (McConnell and Yang, 2010).

Heterochromatin protein 1 (HP1) interacts with KLF11 to compact

chromatin and silence gene expression (Lomberk et al., 2012).

Additionally, KLFs can interact with nuclear receptors to further

modulate their functions. Upon agonist stimulation of PPARδ, KLF5
is deSUMOylated and binds to transcriptional activation complexes

containing both ligand-bound PPARδ and CBP to cooperatively

regulate transcriptional pathways of lipid metabolism in C2C12

cells, an immortalized mouse myoblast cell line (Oishi et al., 2008).

Through a genome-wide and high-throughput co-activation screen-

ing, KLF11 was demonstrated to interact with PPARγ to attenuate

mouse cerebral vascular EC dysfunction (Yin et al., 2013).

Hemodynamic flow and KLFs

Hemodynamic flow-induced mechanotransduction regulates

vascular cell homeostasis, including inflammation, proliferation,

survival, metabolism, and cytoskeletal reorganization. Steady

laminar flow (atheroprotective) maintains EC homeostasis, while

disturbed flow (athero-prone) induces an activated and proin-

flammatory phenotype in ECs (Chiu and Chien, 2011). KLF2 is

well-recognized as upregulated by laminar shear stress (LSS),

exhibiting anti-inflammatory, anti-proliferative, and anti-thrombotic

effects in vascular ECs (Dekker et al., 2002). Transcriptome ana-

lysis reveals that KLF2 and Nrf2 upregulation accounts for most of

the LSS-induced gene expression (Fledderus et al., 2007, 2008).

Besides driving epigenetic control of KLF2 transcription, LSS fur-

ther increases KLF2 mRNA abundance though multiple signaling

pathways, including enhanced MEK5/ERK5/myocyte enhancing

factor-2A (MEF2) activity (Parmar et al., 2006). Additionally, LSS

stimulates HDAC5 phosphorylation and nuclear translocation, fur-

ther enhancing MEF2 transcriptional activity, and hence inducing

the expression of KLF2 (Wang et al., 2010; Kwon et al., 2014).

Under LSS, several transcription factors, including heterogeneous

nuclear ribonucleoprotein D (hnRNP-D) and nucleolin, have been

identified to induce histone H3 and H4 acetylation-related chroma-

tin remodeling in the KLF2 promoter in a PI3K-dependent manner

(Huddleson et al., 2005, 2006). TGFβ/activin receptor-like kinase 5

(Alk5) signaling (Walshe et al., 2013) and AMP-activated protein

kinase (Young et al., 2009) are required for the LSS induction of

KLF2 in ECs. Beside this complex transcriptional regulation, pro-

longed LSS stabilizes KLF2 mRNA, also in a PI3K-dependent fash-

ion (van Thienen et al., 2006). Conversely, disturbed oscillatory

shear stress (OSS) decreases KLF2 expression through multiple

pathways. OSS inhibits KLF2 transcription through MEF2 deacety-

lation mediated by class I HDAC (HDAC3/5/7) (Lee et al., 2012).

Non-receptor tyrosine kinase Src (Wang et al., 2006) and

thioredoxin-interacting protein (TXNIP) (Wang et al., 2012a) also

mediate the inhibitory effect of OSS on KLF2 expression. Further-

more, KLF2 mRNA is directly downregulated by miR-92a, which, in
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turn, is decreased by atheroprotective laminar flow in ECs (Wu

et al., 2011; Fang and Davies, 2012). The pathways that modulate

KLF2, KLF4, and KLF11 activity and expression levels in ECs are

summarized in Figure 3. Unlike KLF2, which is suppressed by

proinflammatory cytokines such as TNFα and IL1β in ECs (Cunning-

ham and Gotlieb, 2004; SenBanerjee et al., 2004), basal expres-

sion of KLF4 is low, but KLF4 can be induced by TNFα, IL-1β, and
interferon γ (Hamik et al., 2007). Therefore, KLF2 may be constitu-

tive in basal conditions, while KLF4 is adaptive in ECs under differ-

ent stimuli. KLF4 is upregulated by LSS in human ECs (McCormick

et al., 2001; Methe et al., 2007), whereas OSS induces DNA

methylation of the KLF4 promoter, resulting in decreased KLF4

transcription (Jiang et al., 2014). Like KLF2, KLF4 is also downregu-

lated by miR-92a (Fang and Davies, 2012). In addition, KLF4 pro-

tein stability is increased by PPARγ via activation of Akt signaling

and reduction of KLF4 ubiquitination (Sun et al., 2014). The basal

expression level of KLF11 in human coronary artery ECs (HCAECs)

is as low as that of KLF4, but RNA-sequencing analysis shows that

KLF11 is upregulated by LSS (Qiao et al., 2016) and increased by

TNFα in a dose-dependent manner in ECs (Fan et al., 2012). As a

whole, these findings indicate that KLFs are key downstream effec-

tors of mechanotransduction in vascular cells. Further understand-

ing of the specific roles of individual KLFs and their complex

network of interactions will likely accelerate finding interventions

to address the multifaceted and deleterious effects of hemo-

dynamic flow changes leading to CVDs.

Clinical perspective: modulation of KLFs activity in CVDs?

Recent advances in the understanding of KLFs biology and the

increasingly recognized importance of KLFs to CVD, cancer, and

digestive disease have stimulated researchers’ fervor towards

development of drugs targeting KLFs, in an increased effort to

modulate KLF activity (upregulation or downregulation) on the

basis of their roles in the context of specific diseases (Bialkowska

et al., 2009; Guo et al., 2015; Khedkar et al., 2015; Ruiz de

Sabando et al., 2016). KLFs regulate various cellular functions

such as growth and differentiation, activation, and development,

and may control a whole cluster of functionally related genes in

response to physiological and pathological conditions. Therefore,

therapeutic targeting of a selective KLF might achieve desirable

biological effects in specific diseases. Unfortunately, there is high

sequence and structural conservation in the KLF family and pos-

sible functional redundancy among some KLFs. Furthermore,

unlike nuclear receptors, KLFs lack clear molecule ‘pockets’, thus

thwarting efforts to find small therapeutic molecules. However,

alternative strategies have been employed to achieve this goal.

Drugs that regulate KLF expression

Some drugs or chemical compounds have been identified to

regulate KLF expression. Statins, the most widely used drugs for

lipid-lowering and prevention of CVDs, effectively reduce clinical car-

diovascular events in a variety of patients, not only in those with

established CVD but also those who are at risk for CVD (Heart

Protection Study Collaborative, 2002). Several studies demonstrated

that statins increase KLF2 transcription in ECs (Parmar et al., 2005;

Sen-Banerjee et al., 2005), while siRNA-mediated KLF2 knockdown

abolishes the regulatory effect of statins on eNOS, TM, and pros-

taglandin D2 synthase (Parmar et al., 2005; Sen-Banerjee et al.,

2005), indicating a critical role of KLF2 in mediating the athero-

protective role of statins in ECs. Resveratrol, an NAD-dependent

deacetylase sirtuin-1 (SIRT1) activator, induces the expression of

KLF2 and KLF2-dependent atheroprotective genes in ECs (Gracia-

Sancho et al., 2010). Furthermore, KLF4 is upregulated by simvas-

tatin and resveratrol in ECs (Villarreal et al., 2010), and increased

by rapamycin in VSMCs (Wang et al., 2012b).

A third-generation small molecule compound, ML264, derived

from ultrahigh-throughput screenings, potently inhibited KLF5

expression in colorectal cancer models (Ruiz de Sabando et al.,

2016) but remains to be tested in the context of CVD. Recently,

through a high-throughput compound screening based on KLF14

promoter-reporter assays, our lab demonstrated that perhexiline,

an FDA-approved drug for chronic heart failure and refractory

angina, transcriptionally upregulated KLF14 expression and fur-

ther increased ApoA1 level. Perhexiline treatment, consequently

and significantly, inhibits atherosclerosis in ApoE–/– mice (Guo

et al., 2015).

Small molecule compounds that disrupt DNA-binding activity

of KLFs

A large, ‘shallow’ pocket was identified within the middle zinc

finger region of KLF10 leading to identification of small molecule

compounds that bind in this pocket and inhibit the KLF10–DNA
interaction interface, using computer-aided drug design screening

of chemical libraries (Khedkar et al., 2015). This study provides

optimism regarding the feasibility to identify small molecules that

directly target KLFs. However, due to the conserved protein

Figure 3 The regulation of KLFs in ECs. In ECs, laminar shear stress

(LSS) upregulates, while oscillatory shear stress (OSS) downregu-

lates KLF2 and KLF4. Epigenetic regulation (DNA methylation or his-

tone acetylation) and MEK5–ERK5 signaling mediate the shear

stress-dependent regulation of KLF2 and KLF4. KLF2, KLF4, and

KLF11 potently inhibit inflammation through suppression of the NF-

κB pathway. KLF11 facilitates PPARγ protective effect on ECs, while

KLF2 dynamically interacts with co-activators or co-repressors to

modulate cell function. Statins upregulate KLF2 in ECs.
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structure of the zinc finger region among KLF members, the select-

ivity of these compounds remains unclear.

Nucleic acid-based gene regulation of KLFs

Because of its specificity and efficacy, RNA interference

(RNAi)-mediated gene silencing using siRNA or short hairpin

RNA (shRNA) is a particularly promising approach to decrease

expression of target genes, especially genes whose products

are not considered to be practical drug targets (e.g. transcrip-

tion factors). Liposome–siRNA complexes or polymer-based RNA

complexes have been often used in preclinical studies for car-

diovascular disorders. MicroRNAs (miRNAs) are critical to the

regulation of vascular function through posttranscriptional

modification or translational repression of target genes. It has

been demonstrated that miR-143/145 targets KLF4, leading to

decreased expression of KLF4 in vascular smooth muscle cells

(Cordes et al., 2009; Davis-Dusenbery et al., 2011), while miR-

92a decreases the expression of KLF2 and KLF4 in ECs (Wu

et al., 2011; Fang and Davies, 2012). miRNA mimics and antago-

nists such as antisense oligonucleotides, anti-miRNA oligonu-

cleotides, and aptamers targeting specific KLFs may provide

specific tools for treatment of CVD (Deshpande et al., 2016).

The rapidly developing gene editing technologies, such as tran-

scription activator-like effector nucleases (TALEN), Zinc Finger

Nuclease (ZNF), and CRISPR/Cas9, make it possible to regulate

gene expression and could be eventually applied to treat human

diseases (Hsu et al., 2014).

Conclusions and future perspectives

Although the KLF family shares a similar protein structure with

conserved zinc finger domain, members have distinct tissue distri-

bution patterns and depict different biological functions in various

CVDs. The differential expression of KLF members is dynamically

changed in response to specific pathophysiological processes

through transcriptional regulation and posttranscriptional modifi-

cations and dynamic interactions with co-regulators.

Essential roles of KLFs in vascular biology have been extensively

demonstrated, especially in the vascular wall cells: ECs and VSMCs.

Nonetheless, key aspects of their involvement and mechanisms of

action still remain obscure. The plethora of findings on relative

alterations in KLF gene expression in CVDs opens the question on

whether there will be a compensatory effects among KLFs when

enhancing or decreasing a given KLF member by specific target-

ing. It also remains to be investigated whether there is a coopera-

tive or independent effect among KLFs in the same cell/tissue

and disease manifestation. For instance, vascular integrity is bro-

ken and gene expression of VEGF receptor 2, eNOS, and occludin

is reduced in E9.5 Klf2–/–/Klf4–/– double knockout (EC-DKO) com-

pared to Klf2–/– embryos (Chiplunkar et al., 2013). Moreover, a

recent study, using inducible endothelial-specific deletion of Klf2

and/or Klf4 mouse models, revealed that Klf2 and Klf4 EC-DKO

leads to acute death from myocardial infarction, heart failure, and

stroke. EC-DKO mice also exhibit impaired vascular integrity and

coagulation (Sangwung et al., 2017). Collectively, these studies

establish a requirement for both KLF2 and KLF4 for maintenance

of vascular integrity in both embryo development and the adult

animal. However, whether KLF2 and KLF4 regulate EC functions

synergistically through common mechanisms or individually

through distinct mechanisms, with the ensuing implications for

therapeutic targeting, is a question for future studies.

The newly found genetic associations of KLFs with CVD are a

new and promising area of research. Recent genetic studies have

revealed the associations of KLFs with human CVDs. Missense

mutations in the KLF10 gene were identified to be positively asso-

ciated with hypertrophic cardiomyopathy (Bos et al., 2012). In

addition, a single nucleotide polymorphism located at −1282 bp

within the KLF5 locus is associated with an increased risk of hyper-

tension (Oishi et al., 2010). Recently, a novel missense mutation

(p.H288Y) located in the zinc finger domain of KLF2, which is a

recurrent somatic mutation in B-cell lymphoma, was found to

likely disrupt gene function and lead to heritable pulmonary arter-

ial hypertension (HPAH) (Eichstaedt et al., 2017). Considering the

multiple homeostatic roles of this extensive family, it is likely that,

as further targeted genetic studies are conducted, novel variants

in KLF genes or their regulatory regions that affect KLF expres-

sion/activity in the cardiovascular system may be linked to CVD

development. In spite of its essential involvement in CVD, a gen-

etic association between KLF4 with human CVDs is yet to be

found. Conversely, human genetic studies revealed an association

between KLF11 and diabetes (Neve et al., 2005), but it is still

unknown whether KLF11 plays an important role in diabetes-

associated CVD. The answers to these important questions will

facilitate our understanding of the roles of KLFs in human CVDs

and inform new therapeutic strategies.

Strategies to utilize chemical compounds and nucleotides as

therapeutic agents require efficient delivery systems. Since the

KLFs have distinct and complicated functions in different tissues

and are involved in various diseases, cell or tissue-specific deliv-

ery of therapeutic agents and optimized dosage are a pre-

requisite to avoid side effects. Drug delivery systems (DDS) are

always critical to enhance the efficacy and safety of therapeutic

agents and overcome their limitations, such as poor organ

specificity, toxicity, low water solubility, and low bioavailabil-

ity. Nanoparticle-mediated DDS (nano-DDS) modify the in vivo

kinetics of therapeutic agents and are superior in that drug tar-

geting can leverage physiologic and pathophysiological proper-

ties specific to certain disease conditions. Two polymers,

polylactide (PLA) and poly (lactide-co-glycolide) (PLGA), are

been extensively used for the synthesis of polymeric biodegrad-

able nano-DDS (Matoba and Egashira, 2014). For ECs, specific

cell surface molecular determinants, such as membrane recep-

tors and adhesion molecules, can be targets for the delivery of

a variety of agents-loaded pharmaceutical carriers (Koren and

Torchilin, 2011). Therapeutic agents targeting specific KLF com-

bined with optimal advanced nano-DDS may represent a promis-

ing approach to treat or prevent vascular diseases.

Although the high similarity of protein structure among the

large number of KLF members, along with the scarcity of drug

targetable pockets largely hindering the development of KLFs as

therapeutic agents, the critical functions of KLFs have provided

Roles of Krüppel-like factors in vascular diseases j 359



new insights for novel pharmacological perspectives. Further

elucidation of the association of KLFs with human diseases, the

KLF biological functions, molecular mechanisms and structure

analysis, and drug development will be essential for the ascen-

sion of KLFs to the clinical arena in cardiovascular medicine.
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like Zinc finger protein, is expressed in vascular endothelial cells and con-

tains transcriptional activation and repression domains. J. Biol. Chem. 273,

1026–1031.
Yin, K.J., Fan, Y., Hamblin, M., et al. (2013). KLF11 mediates PPARγ cerebro-

vascular protection in ischaemic stroke. Brain 136, 1274–1287.
Yoshida, T., Gan, Q., Franke, A.S., et al. (2010). Smooth and cardiac muscle-
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eration by platelet-derived growth factor receptor β-mediated, not by retinoic

acid receptor α-mediated, phosphatidylinositol 3-kinase and ERK signaling in

vascular smooth muscle cells. J. Biol. Chem. 284, 22773–22785.
Zheng, X., Li, A., Zhao, L., et al. (2013). Key role of microRNA-15a in the KLF4

suppressions of proliferation and angiogenesis in endothelial and vascular

smooth muscle cells. Biochem. Biophys. Res. Commun. 437, 625–631.
Zhou, G., Hamik, A., Nayak, L., et al. (2012). Endothelial Kruppel-like factor 4

protects against atherothrombosis in mice. J. Clin. Invest. 122, 4727–4731.
Zhou, Z., Tang, A.T., Wong, W.Y., et al. (2016). Cerebral cavernous malforma-

tions arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature 532,

122–126.
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