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Abstract

Circadian disruption has been linked to carcinogenesis in animal models, but the evidence in 

humans is inconclusive. Genetic variation in circadian rhythm genes provides a tool to investigate 

such associations. We examined associations of genetic variation in nine core circadian rhythm 

genes and six melatonin pathway genes with risk of colorectal, lung, ovarian and prostate cancers 

using data from the Genetic Associations and Mechanisms in Oncology (GAME-ON) network. 

The major results for prostate cancer were replicated in the Prostate, Lung, Colorectal and Ovarian 

(PLCO) cancer screening trial, and for colorectal cancer in the Genetics and Epidemiology of 

Colorectal Cancer Consortium (GECCO). The total number of cancer cases and controls was 

15,838/18,159 for colorectal, 14,818/14,227 for prostate, 12,537/17,285 for lung and 4,369/9,123 

for ovary. For each cancer site, we conducted gene-based and pathway-based analyses by applying 

the summary-based Adaptive Rank Truncated Product method (sARTP) on the summary 

association statistics for each SNP within the candidate gene regions. Aggregate genetic variation 

in circadian rhythm and melatonin pathways were significantly associated with the risk of prostate 
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cancer in data combining GAME-ON and PLCO, after Bonferroni correction (Ppathway<0.00625). 

The two most significant genes were NPAS2 (Pgene=0.0062) and AANAT (Pgene=0.00078); the 

latter being significant after Bonferroni correction. For colorectal cancer, we observed a suggestive 

association with the circadian rhythm pathway in GAME-ON (Ppathway=0.021); this association 

was not confirmed in GECCO (Ppathway=0.76) or the combined data (Ppathway=0.17). No 

association was observed for ovarian and lung cancer. These findings support a potential role for 

circadian rhythm and melatonin pathways in prostate carcinogenesis. Further functional studies are 

needed to better understand the underlying biologic mechanisms.
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INTRODUCTION

Circadian rhythm is driven by an internal biological clock, which enables humans to sustain 

an approximate 24-hour cycle of biological processes1, and regulates diverse cancer-related 

biological functions such as metabolism, immune regulation, DNA repair and cell cycle 

control2. Disruption of circadian rhythm has been linked to carcinogenesis at the system, cell 

and molecular levels2. Based on sufficient evidence in experimental animals for the 

carcinogenicity of light exposure during the biological night, and limited epidemiological 

studies showing increased risk of breast cancer among female nightshift workers and flight 

attendants employed at least ten years, shift work with disrupted circadian rhythm has been 

categorized as a probable carcinogen to humans by the International Agency for Research on 

Cancer 3. However, evidence for cancers other than breast is limited. Increased cancer risks 

in other organs have been observed in mouse models with ablated circadian rhythm genes, 

such as the blood4, liver4, ovary 4, intestine5, colon 5 and skin 6, possibly due to 

constitutively elevated cell proliferation 6, impaired DNA repair 7 and apoptosis 8, and 

inefficient immune response 9, 10. There is growing evidence from epidemiologic studies 

that other types of cancers including prostate 11–14, colon 15 and non-Hodgkin lymphoma16 

also may be associated with rotating and night shift work.

A few candidate gene studies have examined associations between genes involved in 

circadian processes and several cancer sites 17–29, especially breast 21, 24–26, 29. In this study, 

we examined associations of the core genes involved in the circadian rhythm and melatonin 

pathways with the risk of prostate, colorectal, lung and ovarian cancer in population of 

European descent, taking advantage of the large study populations from the Genetic 

Associations and Mechanisms in Oncology (GAME-ON) GWAS consortia. We conducted a 

pathway-level analysis, aggregating association evidence across multiple genes. Potentially 

interesting findings were further replicated in independent populations of European descent.
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METHODS

Study populations

Our initial analyses used data from 20 GWAS studies on four common cancer sites within 

the National Cancer Institute GAME-ON Network (http://epi.grants.cancer.gov/gameon/)30, 

including 12,537 lung cancer cases and 17,285 controls from the Transdisciplinary Research 

for Cancer of Lung (TRICL) consortium; 5,100 colorectal cases and 4,831 controls from the 

ColoRectal Transdisciplinary Study (CORECT); 10,218 prostate cancer cases and 11,286 

controls from the Elucidating Loci in Prostate Cancer Susceptibility (ELLIPSE) consortium; 

as well as 4,369 ovarian cancer cases and 9,123 controls from the Follow-up of Ovarian 

Cancer Genetic Association and Interaction Studies (FOCI) (Table 1). For colorectal and 

prostate cancer, potentially interesting findings were carried forward and replicated in 

additional independent data: 10,738 cases and 13,328 controls from the Genetics and 

Epidemiology of Colorectal Cancer Consortium for colorectal cancer (GECCO) 31; 4,600 

cases and 2,940 controls from the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer 

screening trial for prostate cancer 32. All participants were of European descent, and most of 

the studies were conducted using Illumina genotyping platforms (Table 1). Details of the 

genotyping and quality control steps were published previously 30–32. All participating 

studies obtained approval from the institutional ethics review board, and informed consents 

were obtained from each study participant by the individual study coordinating center.

Candidate genes

For the circadian rhythm pathway, we included nine well-established core circadian rhythm 

genes that generate the mammalian circadian rhythm33 and were selected for a previous 

cancer study to represent the circadian rhythm pathway 24: CLOCK and its paralogue 

NPAS2 (neuronal PAS domain protein 2); ARNTL (aryl hydrocarbon receptor nuclear 

translocator-like; a.k.a. Bmal1); CKIε (casein kinase I ε; a.k.a. CSNKIE); Cryptochrome 1 

(CRY1); CRY2; and three Period homologs (PER1, PER2 and PER3).

Due to a close integration of melatonin to the circadian system, we also included four genes 

involved in melatonin biosynthesis (http://www.kegg.jp/kegg-bin/show_module?M00037) 34 

and two melatonin receptor genes: arylalkylamine N-acetyltransferase (AANAT, a gene 

encoding the rate limiting enzyme in the melatonin biosynthesis), TPH1 (tryptophan 

hydroxylase 1), TPH2, and DDC (aromatic-L-amino-acid decarboxylase); MTNR1α 
(melatonin receptor 1α), and MTNR1β. Another gene involved in the melatonin 

biosynthesis, ASMT (Acetylserotonin O-methyltransferase) was not included because we 

have no access to the data of the x chromosome where this gene is located.

Statistical analyses

The analytical methods of original studies and the cancer-specific results have been 

described previously 31, 32, 35–38 and summarized in Table 1. Briefly each original study 

provided log odds ratios and standard errors on each SNP and each cancer risk, mostly 

adjusting for age, principal components (PCs), and sex (if applicable). For each cancer site, 

fixed-effect meta-analyses were conducted to combine summary association statistics of 

participating studies by the cohort consortium. The genotypes were imputed based on data 
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of European populations from the 1000 Genomes Project (March 2012 reference panel) 39, 

using either MaCH 40 or IMPUTE 41. We extracted both the genotyped and imputed SNPs 

of the genetic regions from 20 kb upstream to 10 kb downstream of each candidate gene.

We conducted gene- and pathway-based meta-analyses using the summary based adaptive 

rank truncated product (sARTP) method, which combines SNP-level association evidence 

across SNPs in a gene or a pathway 42. The sARTP method automatically adjusts for the size 

of the gene (i.e., number of SNPs in a gene) and the size of the pathway (i.e., number of 

genes in a pathway) through a resampling procedure. The final gene- and pathway-level p-

values were estimated from the resampled null distribution through one million resampling 

steps. The sARTP method accounts for the linkage disequilibrium (LD) between SNPs to 

maintain proper type I error. The LDs between SNPs were estimated from the 503 European 

subjects (CEU, TSI, FIN, GBR, IBS) in the 1000 Genome Project (phase 3, v5, 2013/05/02) 
39. We excluded SNPs with MAF < 5% and applied LD filtering to highly correlated SNP 

pairs (r2 > 0.95). We also conducted a sensitivity analysis using a more stringent threshold 

for LD pruning (r2 > 0.8).

For prostate and colorectal cancer that have pathway p-values less than 0.05, we replicated 

our findings in PLCO and GECCO. We also repeated the gene- and pathway-based analyses 

on data combing the initial and replication studies.

To eliminate the impact of potential systematic biases in SNP-level association, we adjusted 

for the genomic control inflation factor (lambda=1.015) for data from the CORECT 37, 42. 

The genomic control inflation factors for GECCO, ELLIPSE, PLCO, TRICL and FOCI 

were close to or smaller than 1.0, thus were not adjusted in our analyses. To take potential 

false-positives from multiple-comparisons into account (two pathways, or 15 genes) for each 

of the four cancer sites, pathways with p-value < 0.00625 (0.05/(2×4)) and genes with p-

value < 0.00083 (0.05/(15×4)) were considered significant.

For prostate cancer, where we found significant associations with genetic variations of 

circadian and melatonin pathways after the Bonferroni correction, secondary analyses for 

aggressive prostate cancer were conducted at the gene and pathway level, using data 

combining six studies of ELLIPSE and PLCO (4,446 cases and 12,724 controls). For the 

SNPs with the smallest p-values in the genes with Pgene≤0.05 on the risk of overall prostate 

cancer, we also checked their SNP associations with aggressive prostate cancer.

RESULTS

We found suggestive associations between genetic variation in both circadian rhythm and 

melatonin pathways and prostate cancer risk based on data of GAME-ON, with 

(Ppathway=0.014 and 0.024, respectively (Table 2). These associations were not statistically 

significant in PLCO alone (Ppathway=0.28 and 0.21), but were enhanced in the combined 

data of GAME-ON and PLCO (Ppathway=0.0016 and 0.0060) (Table 2), both being 

significant after Bonferroni correction. NPAS2 in the circadian rhythm pathway 

(Pgene=0.0062) and AANAT (Pgene=0.00078) in the melatonin pathway contributed the most 

to the association with the risk of prostate cancer, with AANAT survived Bonferroni 
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correction (Table 3). Other genes with the gene-level p-values at borderline significance 

were CLOCK (Pgene=0.021), CRY2 (Pgene=0.043), DDC (Pgene=0.050), PER2 
(Pgene=0.060), and PER1 (Pgene=0.063) (Table 3). A sensitivity analysis with more stringent 

threshold in LD pruning (r2 > 0.8) produced consistent pathway-level and gene-level results 

(data not shown). SNPs with p-value < 0.01 in NPAS2 and AANAT are presented in Table 4.

With a much smaller number of aggressive prostate cancer cases (4,446 cases, 12,724 

controls), we did not observe significant association of aggressive prostate cancer with either 

pathway (Ppathway=0.29 and 0.66), but we observed a suggestive association with PER3 
(Pgene=0.03) (Supplementary Table 2). For SNPs that have the smallest p-values in genes 

CLOCK, CRY2, NPAS2, AANAT, and DDC (Pgene ≤ 0.05 with overall prostate cancer), the 

log odds ratios (β) estimated for overall and aggressive prostate cancer are comparable and 

have the same direction (Supplementary Table 3).

For colorectal cancer (Table 2), we observed a suggestive association with circadian rhythm 

pathway in GAME-ON (Ppathway=0.021), but not in GECCO (Ppathway=0.76) or in the 

combined data (Ppathway=0.17) (Supplementary Table 4). No association was observed for 

ovarian cancer and lung cancer (Table 2, Supplementary Table 5).

DISCUSSION

We found common genetic variations in the circadian rhythm and melatonin pathways were 

associated with prostate cancer risk in the population of European descent. These 

associations were initially identified in the GAME-ON consortium, and further confirmed in 

the data combining the GAME-ON and PLCO studies. Our findings suggest that the 

circadian rhythm and melatonin pathways may be involved in prostate carcinogenesis.

Circadian disruption has been suggested as a prostate cancer risk factor based on 

epidemiological observation of increased prostate cancer risks among shift workers11–14, 

and countries with more light exposure at night43. In support of this hypothesis, three 

genetic epidemiology studies found suggestive associations between SNPs in core circadian 

genes and prostate cancer 19, 23, 27 or aggressive prostate cancer 23 in Caucasian 23, 27 and 

Asian 19 populations, although these studies had limited power (sample sizes < 2600) to 

adjust for multiple comparisons. By taking advantage of the large study population from 

cancer consortia and using a novel analytical tool, our study provided further evidence that 

the circadian rhythm and melatonin pathways may be involved in prostate carcinogenesis in 

humans.

Although multiple genes are likely to contribute to pathway association signals, the most 

significant genes were NPAS2 and AANAT. Previous functional studies suggest that NPAS2 
plays an important role in DNA damage response, cell cycle control and apoptosis by 

activating diverse downstream genes44, 45, consistent with a role as a tumor suppressor. In 

line with our finding, the Thr allele of rs23051560 (P=7.5×10−4), a non-synonymous SNP 

(Ala394Thr) in the NPAS2, has been suggestively associated with lower risks of breast 

cancer28, prostate cancer19, and NHL46, three tumors that have been linked with circadian 

disruption in epidemiologic studies. This SNP has also been suggested to modify the 
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association of night shift work and breast cancer risk, with Thr carriers more vulnerable to 

shift work effect24. AANAT (aka., serotonin N-acetyltransferase) is the rate limiting and 

originating enzyme for melatonin synthesis, through which the suprachiasmatic nucleus via 

a sympathetic multisynaptic pathway regulates rhythmic melatonin synthesis 47. Melatonin 

acts as a chronobiotic molecule, optimizing phase relationships between oscillators in both 

central nervous system and peripheral organs, reinforcing circadian rhythms of body 

functions, and entraining body rhythms to the environmental light phase 48, 49.

A mechanism linking the circadian system, melatonin and prostate cancer may operate 

through the neuroendocrine gonadal axis. The pineal gland and melatonin have a role in the 

inhibition of the neuroendocrine gonadal axis50; while sex hormones, such as androgen, are 

essential on prostate development. Androgen has been a prostate cancer inducer in animals 
51, and associated with increased prostate cancer risk in humans 52, 53. Therefore, it is 

possible that an increase in androgen, subsequent to disrupted circadian rhythm and/or 

suppressed melatonin 54, may contribute to prostate carcinogenesis. Alternatively, melatonin 

may have a direct anti-tumor effect, by controlling the p53 pathway, or its antimitotic, 

antioxidant and immune-modulatory activities1. Both in vitro and in vivo studies provide 

evidence that melatonin inhibits prostate tumor growth55, 56, whereas melatonin suppression 

in rats increases tumor growth in a dose-dependent manner50. In agreement with the 

melatonin hypothesis, lower urinary 6-sulfatoxymelatonin has been associated with an 

increased risk of advanced prostate cancer in a prospective study 57.

Apart from mechanisms related to melatonin, the circadian clock may control cell 

proliferation and apoptosis through regulating the expression of genes involved in these 

processes at the transcription or translation level, such as c-Myc and Mdm2, Trp53 and 

Gadd45, cyclins etc. 2

We did not find any significant association for the risk of aggressive prostate cancer at the 

gene or pathway level. Given a much smaller number of aggressive prostate cancer cases, 

and the fact that genetic effects are generally small on cancer risk, the statistical power of 

gene- and pathway-based analyses was limited. However, we observed a suggestive 

association with PER3 (Pgene=0.03); a SNP (rs1012477) of this gene has been associated 

with prostate cancer aggressiveness in a previous report27. For SNPs with the smallest p-

values associated with overall prostate cancer within CLOCK, CRY2, NPAS2, AANAT, and 

DDC, the estimated effect sizes for the risk of overall and aggressive prostate cancer are 

comparable and have the same direction. Given the poor prognosis and public health impact 

of aggressive prostate cancer, more focused study is needed for the role of circadian rhythm 

genes and prostate cancer aggressiveness.

Our study did not find associations in the circadian rhythm or melatonin pathway genes with 

colorectal, lung or ovarian cancer. Several important factors need to be considered before 

concluding that circadian rhythm has no effect on these cancer sites. First, gene functions 

differ by organs and although we studied the core genes in each pathway, there might be 

other critical circadian-related genes missed in this study. RORα, for example, suggested as 

an important regulator for homeostasis in intestinal epithelium58, as well as newly identified 

circadian genes 59 are worthwhile to be evaluated in the future. Second, the statistical power 
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of gene- and pathway-based analyses for studying ovarian cancer may be limited by small 

sample size compared with other cancer sites considered in this paper. Third, for lung and 

colorectal cancer, where environmental and life style risk factors play a dominant role, the 

contribution of disrupted circadian rhythm might be small and/or may be indirectly 

associated with cancer through modifying the toxicity of environmental carcinogens 60, or 

altering the DNA damage response6, 7. Therefore, incorporating data on environmental 

carcinogens and measures of toxicity into the study of circadian rhythm and cancer may be 

important. Fourth, although genetic variation does not suffer from confounding bias by other 

life style factors, it may have a smaller impact on circadian rhythm disruption than light 

exposure at night and night shift work. Therefore, future studies of both environmental or 

life style inducers of circadian disruption coupled with mechanistic or genetic marker 

studies in circadian rhythm pathways are needed.

In this study, like other candidate pathway-based analyses 61, we assigned SNPs to each of 

the circadian genes based on genomic location. Approaches that assign SNPs to a gene 

based on functionality such as a genetic influence on gene expression or expression 

quantitative risk loci (eQTL) might reveal more signals, but this type of approach relies 

heavily on the known eQTL function of the SNPs in the tissue of interest and, in fact, the 

eQTL effects on gene expression are typically tissue-specific 62. We attempted to evaluate 

the involvement of the top prostate cancer risk SNPs of AANAT and NPAS2 as functional 

eQTLs using RNA-seq and SNP data from ten normal brain tissues (GTEx). We observed 

modest eQTL effects on AANAT and NPAS2 mRNA levels by the top risk SNPs, but no risk 

eQTL survived correction for multiple comparisons (data not shown). Importantly, published 

data suggest that the target tissue for melatonin synthesis is the pineal gland, while for 

circadian rhythm it is the superchiasmatic nucleus (SCN) 1. RNA-seq data for these normal 

brain tissues are not available in GTEx or to our knowledge from any other publically 

available database. Thus, whether the observed prostate cancer risk SNPs of AANAT and 

NPAS2 circadian genes are functional eQTLs, and whether the changes in mRNA levels in 

the pineal gland and SCN are associated with prostate cancer susceptibility remains to be 

determined.

Our study has many strengths. Using genetic markers to examine circadian hypotheses 

minimizes the bias due to potential confounders, and therefore is a valuable complement to 

traditional epidemiologic studies (e.g., in night shift workers). We used an analytical tool 

that combines signals across SNPs within genes and pathways, and therefore found 

significant results that would have been detectable by single SNP analysis. To our 

knowledge, the sample sizes in our study are the largest to date for colorectal, lung, and 

prostate cancer. The data quality of the included GWAS studies is well established. To 

control potential false positive findings, we adjusted for multiple comparisons, and 

replicated our findings in independent data.

In summary, our study suggests that common genetic variation in and around circadian 

rhythm and melatonin pathways may be involved in human prostate carcinogenesis, in 

support of circadian disruption as a potential human carcinogen.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Novelty & Impact

We found a significant association of circadian rhythm and melatonin pathway genes 

with prostate cancer risk, at the gene and pathway level, after taking multiple 

comparisons into account. The sample size is the largest to our knowledge, with a further 

replication in an independent data. This study provides evidence in support of a role for 

circadian rhythm and melatonin pathways in prostate carcinogenesis.
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