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Orsay, France, 4 Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium, 5 Institut

Universitaire de France, Paris, France

☯ These authors contributed equally to this work.

‡ MP and AHMB also contributed equally to this work and are joint senior authors on this work.

* muriel.perron@u-psud.fr (MP); anne-helene.monsoro-burq@curie.u-psud.fr (AHMB)

Abstract

Wnt proteins form a family of highly conserved secreted molecules that are critical mediators

of cell-cell signaling during embryogenesis. Partial data on Wnt activity in different tissues

and at different stages have been reported in frog embryos. Our objective here is to provide

a coherent and detailed description of Wnt activity throughout embryo development. Using a

transgenic Xenopus tropicalis line carrying a Wnt-responsive reporter sequence, we depict

the spatial and temporal dynamics of canonical Wnt activity during embryogenesis. We pro-

vide a comprehensive series of in situ hybridization in whole-mount embryos and in cross-

sections, from gastrula to tadpole stages, with special focus on neural tube, retina and neu-

ral crest cell development. This collection of patterns will thus constitute a valuable resource

for developmental biologists to picture the dynamics of Wnt activity during development.

Introduction

The Wnt/β-catenin pathway plays a crucial role in cell proliferation, cell polarity and cell

fate determination during vertebrate development [1]. Its early deregulation in the mouse is

embryonic lethal. At later development stages, abnormal Wnt/β-catenin signaling results in

birth defects. In adults, Wnt/β-catenin signaling deregulation leads to cancer and other dis-

eases [2]. Intense research seeks to better understand Wnt signaling and to develop therapies

for the treatment of tumors.

Wnt proteins are secreted by the signaling cells, diffuse over short or long range [3] and act

on target cells through either β-catenin-dependent or -independent Wnt pathways (reviewed

in [4]). In the former case, when a given Wnt ligand binds to its cognate Frizzled receptor(s)

and LRP5/6 co-receptors, this results in a complex intracellular cascade, leading to β-catenin

stabilization. β-catenin then translocates into the nucleus, associates with LEF/TCF family

transcription factors and induces the transcriptional activation of Wnt target genes such as

CyclinD1 and Axin2 [5,6].
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The developmental expression of Wnt/β-catenin pathway components has been extensively

described in vertebrate animal models, including expression of various Wnt ligands and Wnt

receptors (reviewed in [4]). However, multiple extracellular, cytoplasmic, and nuclear inputs

are integrated and modulate Wnt signaling. For example, receptor-ligand specificity and mul-

tiple feedback loops control Wnt signaling efficiency (reviewed in [4]). Additionally, it was

recently described in zebrafish that Wnt8a can be transported over long distances within the

signaling cell through filopodia, increasing Wnt signaling range [7]. This makes it difficult

to infer the Wnt responsive tissue from the site of ligand synthesis. Another way to describe

Wnt activity is to study the expression of known direct target genes. However, CyclinD1, for

instance, is transcriptionally regulated by many other inducers and repressors (reviewed in

[8,9]) and thus is not a strict readout for Wnt activity. Axin2, also widely used as reporter, is

not fully reliable either: for example it is found not to be expressed in mouse lung cells while

Wnt/β-catenin pathway is active in these cells [10].

Finally, it is possible to follow Wnt/β-catenin activity by using transgenic lines allowing

monitoring the spatial and temporal activity through the expression of a reporter gene (gfp
or lacZ). The majority of these lines are generated in mice (Table 1). These lines often rely on

the expression of a reporter gene driven by a Wnt target gene promoter. However, these lines

may be questionable since the reporter gene expression differs significantly between different

reporter mice [10] probably due to specific regulation of each promoter.

To obtain a more direct and reliable readout for Wnt/β-catenin signaling, we here use a

synthetic promoter harboring seven optimal binding sequences for LEF-1/TCF [24]. A trans-

genic reporter line, in which gfpgene expression is driven by this synthetic promoter, was gen-

erated in the frog Xenopus tropicalis, allowing visualization of Wnt/β-catenin activity in vivo.

The line was validated previously as a reliable tool to monitor Wnt activity in tadpoles treated

with compounds known to modulate Wnt activity: activation with 6-bromoindirubin-3-oxime

(BIO), a selective GSK-3 inhibitor [25], or inhibition with IWR-1, a small molecule that pre-

vents Axin protein degradation [26], [27]. This transgenic line, was previously used to study

Wnt activity during eye or brain development [27–29], allows generating many transgenic

embryos with reproducible in vivo expression patterns [20].

Here, we provide a detailed atlas illustrating Wnt/β-catenin spatio-temporal activity during

Xenopus tropicalis embryogenesis, using whole-mount in situ hybridization and serial trans-

verse sections at various developmental stages, from gastrula (stage 11) to tadpole (stage 40)

Table 1. Wnt reporter transgenic lines in vertebrates.

Transgenic line names Species References

TOP-GALC mouse [11]

ins-TOPEGFP and ins-TOPGAL mouse [12]

Lgr5-EGFP-IRES-creERT2 mouse [13]

LEF-EGFP mouse [14]

TCF/Lef:H2B-GFP reporter TCF/Lef-LacZ mouse [15]

Axin2-CreERT2 mouse [16]

Tcf3-CreER mouse [17]

p-LEF7-fos-GFP Xenopus [18]

TOP/FOPTK-iGFP Xenopus [19]

pbin7Lef-dGFP Xenopus [20]

TOPdGFP zebrafish [21]

Tcf/Lef-miniP:dGFP zebrafish [22]

Tg(7xTCF-Xla.Siam:GFP)ia4 and Tg(7xTCF-Xla.Siam:nlsmCherry)ia5 zebrafish [23]

https://doi.org/10.1371/journal.pone.0193606.t001
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stages. We provide a complete collection of pictures in supplementary data (Figs A-Q in S1

File). Moreover, we provide in-depth analysis of Wnt activity during three selected develop-

mental processes: neural tube patterning, neural crest specification and migration and retinal

development. We take advantage of this study to compare our observations with the data scat-

tered in various previous articles.

Materials and methods

Ethics statement

Animal care and experimentation were conducted in accordance with institutional and

national guidelines, under the institutional licenses (number B 91-471-102 up to 2012 and C

91-471-102 since 2013). Protocols were approved by the “Comité d’éthique en experimenta-

tion animale n˚118” and received an authorization by the “Ministère de l’Education Nationale,

de l’Enseignement Supérieur et de la Recherche” under the reference APFIS#7043.

Embryos

Xenopus tropicalis transgenic embryos were obtained by conventional methods of hormone-

induced egg laying and in vitro fertilization [30] between a wild type female and a transgenic

male Tg(pbin7Lef-dGFP), carrying the Wnt reporter previously described (Image A in S1 Fig;

[20,24]). Beforehand, the male was selected as having a single insertion site of the transgene

(as inferred by mendelian ratios in its progeny) in order to insure homogeneous levels of gfp
expression in the offspring [27]. Embryos were grown, collected and fixed in 4% paraformalde-

hyde (PFA) from embryonic stage 11 to stage 40 according to Nieuwkoop and Faber’s staging

table of development [31]. The embryos were then washed in 1x PBS, dehydrated in 100%

methanol, and stored at –20 ˚C.

In situ hybridization and sectioning

Digoxigenin-labeled antisense RNA probes were generated according to the manufacturer’s

instructions (DIG RNA Labeling Mix, Roche) from the following plasmids: enr2 [32], fezf2
[33], krox20 [34], pax3 [35], otx2 [36], snai2 [37], sox2 [38], twist [39] and wnt1 [37]. A digoxi-

genin-labeled antisense RNA probe and a fluorescein-labeled antisense RNA probe (fluores-

cein-12-UTP, Roche) were generated from the plasmid pCS2-MT-eGFP (a gift from David

Turner, University of Michigan, Ann Arbor, USA). For embryos under NF stage 20, single

whole-mount in situ hybridization (WISH) was carried out as previously described [40]. For

later stages, WISH was carried out following a protocol described by Parain et al. [41], except

for the bleaching treatment that we performed after embryo staining. Briefly, following over-

night incubation with the probe and then with alkaline phosphatase-conjugated anti-DIG

antibody, enzymatic activity was revealed using NBT/BCIP substrate. Of note, the described

patterns were observed in all the examined embryos (n�8 for each probe). For double in situ
hybridization, DIG-labeled probes were revealed with NBT/BCIP substrates and the fluores-

cein-labeled gfpprobe was revealed with Fast Red substrate (Roche). After the first revelation,

the embryos were treated by 10mM EDTA in PBS for 30 minutes at 60˚C, then in 0.1M Gly-

cine-HCl, at pH 2.2 for 10 minutes at RT, then processed for the second revelation. Sections

(40μm thick) were cut using a Leica VT1000 vibratome after gelatin-albumin embedding. Sec-

tions were mounted in glycerol. The same embryo has been used to generate all of the pictures

provided at a given stage (whole mount and sections).

Wnt activity during Xenopus development
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Microscopy

Whole-mount images were captured using a stereomicroscope Lumar V12 equipped with

bright field and color camera (Zeiss). Pictures of sections were captured using a digital Axio-

cam MRc camera on a Leica microscope and processed with AxioVision REL 7.8 and Adobe

Photoshop CS4 softwares.

Results and discussion

An atlas of Wnt activity during development

To provide an atlas depicting canonical Wnt/β-catenin activity during embryogenesis, we

took advantage of the transgenic Xenopus tropicalis Wnt reporter line, Tg(pbin7Lef-dGFP),
described in [20] (Image A in S1 Fig). Briefly, the transgene, flanked by chromosomal insulator

sequences derived from the chicken ß-globin locus, contains a synthetic promoter harboring

seven copies of an optimal binding sequence for LEF-1/TCF upstream of eGFP coding

sequence. Because a weak GFP fluorescence signal can be difficult to distinguish from the nat-

ural auto-fluorescence of the embryos, and to obtain a clear staining in tissue with low levels of

expression, we used whole-mount in situ hybridization with a gfp antisense probe to detect the

Wnt/β-catenin activity. From gastrula (stage 11) to tadpole (stage 40) stages, whole-mount-

stained embryos were pictured from different views (anterior, dorsal, posterior and lateral)

and serial transverse vibratome sections were then cut (Figs 1–4, Figs A-Q in S1 File).

During gastrulation (stage 11 to 12.5), gfp transcripts are detected around the whole embryo

except in the anterior and dorsal region (Fig 1). Transverse sections at stage 12.5 show a stain-

ing restricted to the inner ectodermal cell layer called “sensory" (or basal) layer of the non-neu-

ral ectoderm (Image B in S1 Fig). This is consistent with Xenopus experiments illustrating that

Wnt/β-catenin signaling regulates specification and differentiation of cells in Xenopus muco-

ciliary epidermis ([42], reviewed in [43]).

From the end of gastrulation (stage 13) onwards, Wnt activity is detected in the developing

central nervous system, except in its anterior-most region (Fig 1, dotted lines). From late neu-

rula stage (stage 18) onwards, gfp transcripts become particularly abundant in the migrating

neural crest cells. The canonical Wnt/β-catenin pathway is also strongly active in the posterior

presomitic mesoderm (Fig 1). This is consistent with data showing nuclear β-catenin translo-

cation during maturation of this structure in mouse [44]. On sections, we observe a faint stain-

ing in the somites at stage 14 (Fig 2, white dotted lines). The somite staining increases to reach

a strong level at stage 20. Previous studies in chick and mouse have shown that Wnt signaling

promotes the dermomyotome fate and not the sclerotome fate during somite patterning

[45,46]. In Xenopus, the majority of somite cells expressmyoD indicating that they are almost

all myotome cells [47]. Consistently, we show here that somites are entirely Wnt-responsive

(Fig 2 and Image C in S1 Fig). From stage 21, gfpmRNAs are detected in the central nervous

system, in the neural crest cells migrating towards the branchial arches, and in the periphery of

the optic vesicle (Fig 3). These patterns will be described in the following paragraphs. Until the

tadpole stage, we observe that the canonical Wnt/β-catenin pathway is still strongly active in

the posterior presomitic mesoderm (Figs 3, 4Am and 4An). From stage 31–32, a weak Wnt

activity is detected in myotome cells that have emigrated from the somite to form hypaxial

muscles (Fig 3). From stage 29–30, expression in the otic vesicles is also apparent, and persists

until tadpole stage (Fig 3). The staining is restricted to the dorsal part of the otic vesicle, as con-

firmed on sections (Fig 4Bi). We can also note that, whereas ventral and dorsal Xenopus fins

have independent induction and formation processes [48], they are both Wnt-responsive from

stage 26 to stage 31–32 (Fig 3 and Image D in S1 Fig). Finally, Wnt/β-catenin activity is also

Wnt activity during Xenopus development
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Fig 1. Wnt activity during gastrulation and neurulation in whole embryos. Whole-mount gfp in situ hybridization

on Tg(pbin7Lef-dGFP) embryos from stage 11 to stage 20. For each stage, anterior, dorsal, posterior and lateral views

are shown. White dotted lines on anterior views delineate the prospective central nervous system during neurulation.

NC: migrating neural crest cells, PSM: posterior presomitic mesoderm.

https://doi.org/10.1371/journal.pone.0193606.g001
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detected in the ventral blood islands from stage 26 (Figs 3 and 4Bo), where its role on specifica-

tion and maintenance of the primitive blood cells has been demonstrated [24].

Wnt activation during neural tube development

In situ hybridization at stage 12.5 and 13 shows an exclusion of gfp transcripts from most of the

anterior neural plate (Fig 2), as confirmed by double in situ hybridization with the neural plate

marker sox2 (Fig 1 and Image E in S1 Fig). This is consistent with the well-known role of Wnt

signaling on posteriorization of the neuroectoderm [49]. On sections at stage 14, we observe the

absence of Wnt activity in the medial region of the neural plate (Fig 2). From the end of neuru-

lation (stage 18), Wnt activity is detected in the dorsal and dorsal-lateral part of the neural tube

and is excluded from its ventral-lateral part and from the floorplate (Image F in S1 Fig). During

neurulation, we observe a shift of Wnt activity towards the anterior region. At stage 17, the

anterior boundary of the staining co-localizes with krox20 at the level of the rhombomere 3 and

is posterior to the expression pattern of wnt1, a marker of the midbrain/hindbrain boundary

Fig 2. Wnt activity during gastrulation and neurulation in cross-sections. Embryo transverse (or cross-)sections following whole-mount gfp in situ
hybridization on Tg(pbin7Lef-dGFP) embryos, from stage 12.5 to stage 20. For each stage, 7 serial sections are shown. White dotted lines delineate the

somites. e: nonneural ectoderm; np: neural plate: brackets indicate the approximate width of the neural plate.

https://doi.org/10.1371/journal.pone.0193606.g002
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Fig 3. Wnt activity during organogenesis in whole embryos. Whole-mount gfp in situ hybridization on Tg(pbin7Lef-

dGFP) embryos from stage 21 to stage 40. For each stage, lateral (side) and dorsal views are shown afb: anterior part of

the forebrain; bi: blood islands; cns: central nervous system; ey: eye; f: fins; h-myo: hypaxial myoblast; NC: migrating

neural crest cells; ot: otic vesicle; ov: optic vesicle; PSM: posterior presomitic mesoderm.

https://doi.org/10.1371/journal.pone.0193606.g003

Wnt activity during Xenopus development
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Fig 4. Wnt activity at stages 24–25 and 40. Whole-mount gfp in situ hybridization (Aa, and Ba, lateral views) of Tg(pbin7Lef-dGFP)

embryos at stage 24–25 (A) and stage 40 (B). For each stage, transverse sections are shown (Ab-n and Bb-p). The different levels of sections

are indicated in panels a. bi: blood islands; ot: otic vesicle. PSM: posterior presomitic mesoderm.

https://doi.org/10.1371/journal.pone.0193606.g004
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(MHB) (Fig 5A). At stage 18, the anterior limit of Wnt activity corresponds to the wnt1 domain

(Fig 5B).

At stage 21–24, Wnt signaling is active all along the developing central nervous system,

except in the more anterior region, i.e. located anterior to the optic vesicles and corresponding

to the anterior part of the forebrain (Fig 3). From stage 25, discontinuities in the staining

appear in the central nervous system, some areas being less labeled than others (Fig 5C). We

observe a very high gfp expression in the midbrain and at least a part of the forebrain. In the

hindbrain, domains with high or low gfp expression alternate, consistent with the role of the

Wnt signaling in the zebrafish hindbrain metamerization [50]. Later, from stage 30, the stain-

ing in the brain is more restricted. We observe Wnt activity in the posterior region of the mid-

brain, which seems to be just anterior to the MHB as suggested by the comparison with the

engrailed (enr2) mRNA hybridization, a MHB marker (Fig 5D). Moreover, gfp transcripts

become detectable in a brain region derived from the forebrain. This gfppositive region seems

to partially co-localize with fezf2 expression pattern, a marker of the anterior part of the dien-

cephalon (prosomere p3) and of the telencephalon [51] (Fig 5D). This region is probably the

cortical hem, an organizing center in the telencephalon known to present enriched expression

of multiple members of the Wnt morphogens [52–54]. The cortical hem gives rise to the sub-

ependymal zone where reside adult neural stem cells in rodents and human. At the level of the

hindbrain, Wnt activity is detected dorsally, in the lower rhombic lip (Fig 5C). Rhombic lip

produces the granular neuron progenitors of the cerebellum. By using Wnt reporter mice, it

has been shown that Wnt/β-catenin activity is present transiently at the embryonic rhombic lip

during development of the mouse cerebellum [55]. Both the rhombic lip and cortical hem are

germinal zones where neurogenesis takes place and neurons are distributed tangentially.

Wnt activity during neural crest specification/migration

Neural crest is a migratory cell population, which gives rise to many cell types such as neurons

and glia of the peripheral nervous system, pigment cells, and progenitors of craniofacial mes-

enchyme and skeleton. These cells are specified at the border between the neural and nonneu-

ral ectoderm, an area named the neural (plate) border.

At stage 12, by using pax3 expression pattern (dotted lines on Fig 6A) to define the neural

border, we observe that Wnt activity is present in the neural border except in its most anterior

part [56]. This observation is confirmed by double in situ hybridization (Image G in S1 Fig).

These data are consistent with the described involvement of Wnt signaling in posterior neural

border specification [57–59]. In parallel, Wnt activity is excluded from the otx2-expressing

domain, which labels the anterior part of the brain (Fig 6A and Image G in S1 Fig).

In the early neurula (stage 14), Wnt activity is detected in the entire neural border and lat-

eral part of the neural plate (expressing sox2), excluding only the ventral neural plate, as con-

firmed on sections (Fig 6B). This is consistent with the Wnt role in neural crest specification

[60–63].

From late neurula stage (stage 18), gfp transcripts are abundant in the migrating neural

crest cells, as observed by comparing gfp expression pattern with that of snai2, a neural crest

marker (Fig 6C). This location of the Wnt/β-catenin activity was recently described also in the

chick [64]. Interestingly, the anterior boundary of the gfp staining corresponds to the more

anterior migrating neural crests cells. At stage 24–25, Wnt activity is clearly detected in neural

crest cells surrounding the eye, in the mandibular arch, and in the 3 following branchial arches

(Fig 6D). This staining in the branchial arches disappears at stage 31–32, as neural crest cells

reach their destination. A number of reports from different laboratories, using frog, zebrafish

and chick embryos, have demonstrated that distinct elements of a non-canonical Wnt

Wnt activity during Xenopus development
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Fig 5. Wnt activity during neural tube development. (A) Anterior views of Tg(pbin7Lef-dGFP) embryos at stage 17

hybridized with probes against gfp alone (a) or gfp and krox20 or gfp (b) or gfp and wnt1(c). Dotted lines delineated the

gfp staining. (B) Anterior views of Tg(pbin7Lef-dGFP) embryos at stage 18 hybridized with probes against gfp alone

revealed with NBT/BCIP (a) or Fast Red (b) substrates or gfp and wnt1 (c). The same embryo is shown in b and c.

Dotted lines delineate the gfp staining. (C) Dorsal views of embryos hybridized with probe against gfp at stage 25, 30

and 35. (D) Lateral views of the anterior part of embryos hybridized with probes against gfp, fezf2 or enr2 at stage 35.

afb: anterior forebrain; ch: cortical hem; fb: forebrain; hb: hindbrain; mb: midbrain; MHB: Midbrain Hindbrain

Boundary; pmb: posterior midbrain; r3 and r5: rhombomeres 3 and 5; rl: rhombic lip.

https://doi.org/10.1371/journal.pone.0193606.g005
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signaling, the PCP signaling, are essential for neural crest migration (reviewed in [65]). The

activation of PCP signaling occurs at the cell–cell contact where it leads to the localized regula-

tion of Rho and Rac proteins mediating directional migration of neural crest cells by control-

ling the formation of protrusions. Our observations suggest that Wnt signaling plays a role

during neural crest cell migration not only through its PCP pathway but also through its β-

catenin pathway. This is consistent with a recent paper demonstrating, through a combination

of in vitro and in vivo approaches, that canonical Wnt activity is involved in neural crest migra-

tion and needs to be tightly controlled to enable it [66]. In the mouse head and branchial arch

region, canonical Wnt activity is detected thanks to reporter transgenic lines in cranial neural

crest cells at the neural folds, as well as in cells migrating into the face and branchial arches

[14,15]. In zebrafish, interfering with LRP5 function, a co-receptor in canonical Wnt signaling,

leads to a migration defects of neural crest cells [67]. Interestingly, it has been recently demon-

strated in chick that the neural crest delamination requires cell-autonomously transient inhibi-

tion of Wnt signaling which needs to be reversible [64].

Wnt signaling and retinogenesis

Wnt signaling pathway is known to regulate many aspects of retinogenesis, including pattern-

ing, specification, proliferation, regeneration, but some of these functions appear to be species

specific (reviewed in [68] and [69]). We previously examined Wnt activity in the Xenopus ret-

ina using both X. laevis and X. tropicalis transgenic reporter lines, in different contexts such as

the determination of optimal concentrations and exposure conditions of pharmacological

compounds or gene expression comparison [27,29,70]. Scattered data reporting retinal Wnt

activity in Xenopus can thus be found in these studies at different stages of eye development.

In order to provide a global view of Wnt activity during retinal development in a single set of

data easily explorable by the community, we decided to describe in this atlas Wnt activity at all

key stages of retinogenesis in both whole-mount embryos and in retinal sections.

We do not detect any Wnt activity during gastrulation in the eye field (doted lines in the

Fig 7A). This is consistent with data demonstrating that the eye field specification requires

Wnt/ β-catenin signaling inhibition [71]. Nevertheless, several evidences indicate involvement

of the non-canonical Wnt signaling, resulting in the expression of different Wnt pathway com-

ponents in the eye field (Wnt11, fzd5) [72]. During neurulation, the eye field splits and evagi-

nates laterally to form the optic vesicles. Again, Wnt reporter activity is not detectable in the

forming optic vesicles (Fig 7B, stage 21). However, a signal can be detected in these optic vesi-

cles from stage 24 onwards. It is located in the presumptive retinal pigmented epithelium

(pRPE) and in the most dorsal part of the optic vesicle. Active Wnt/β-catenin signaling is

detected in the pRPE not only in frogs but also in chickens, fishes, and mice [21,73–75]. The

spatial and temporal regulation of Wnt/ β-catenin signaling has been shown to be essential for

development of the RPE in mice [76–78] and chick [79]. The restricted activation of canonical

Wnt signaling in the dorsal part of the optic vesicle has also been reported in other species

[73–75,79]. Our observation is consistent with the hypothesis that Wnt/β-catenin activity plays

a crucial role in the maintenance of dorsal retinal identity [75,78]. It was further suggested in

mouse that this dorsal Wnt activity is involved in the establishment of the proper boundary

between neural versus non-neural territories in the retina [80]. This region in Xenopus has

been proposed to give rise to adult retinal stem cells [29].

At stages 31 and 35, Wnt activity labeling remains visible in the developing RPE. Signal is

also detected in the most peripheral part of the neural retina, the forming ciliary marginal zone

(CMZ) (Fig 7B and 7C). This region contains retinal stem and progenitor cells allowing for ret-

inal growth throughout the animal life [81]. In the mature retina (stage 40), Wnt activity is
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Fig 6. Wnt activity during neural crest formation. (A) Dorsal view of a stage 12 Tg(pbin7Lef-dGFP) embryo hybridized with pax3 or gfpprobes

(posterior side is up). Dotted shapes delineate the presumptive neural border on both sides. Anterior view of a stage 12 Tg(pbin7Lef-dGFP) embryo

hybridized with otx2 probe alone or otx2 and gfpprobes together (dorsal side is up). (B) Dorsal view of a stage 14 Tg(pbin7Lef-dGFP) embryo hybridized

with sox2 or gfpor both probes. Dotted shapes delineate the neural plate. The a and b dotted lines indicate the level of shown transverses sections. (C)

Anterior views of a stage 18 Tg(pbin7Lef-dGFP) embryo first hybridized with probe against gfp and secondarily with probe against snai2. Dotted lines

delineate gfp staining. (D) In situ hybridization against gfpon stage 21–22, 24–25, 26 and 29–30 Tg(pbin7Lef-dGFP) embryos (lateral views). For each

stage, the dotted line indicates the level of the shown transverse section (a’-d’). ma: mandibular arch; nb: neural border; NC: migrating neural crest cells;

np: neural plate; PSM: posterior presomitic mesoderm.

https://doi.org/10.1371/journal.pone.0193606.g006
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Fig 7. Wnt activity during retinogenesis. (A) Whole-mount gfp in situ hybridization on Tg(pbin7Lef-dGFP) embryos from stage 14

to stage 20. Anterior views with the eye fields (dotted lines) are shown. (B) In situ hybridization against gfpon stage 21 to stage 40 Tg
(pbin7Lef-dGFP) embryos. Whole-mount (lateral views of the head, anterior to the left) and transverse retinal sections are shown.

Arrowhead points to surface ectoderm, black arrows to the Retinal Pigmented Epithelium (RPE) and presumptive RPE (pRPE),

white arrows to the Ciliary Marginal Zone (CMZ). Black dotted lines delineate the optic vesicle. White dotted lines delineate the

boundary between neural versus non-neural territories in the retina. (C) Schematic of a CMZ showing its spatial organisation with

stem cells closest to the periphery (region 1), proliferative retinoblasts in the middle (region 2) and postmitotic cells at the central

edge (region 3). On the bottom, an enlargement of the region delineated with black dotted lines in the stage 40 retinal section image

shows the gfp signal in the peripheral half of the CMZ. White dotted lines delineate the 3 zones depicted in the schema. A strong

staining is observed in zone 1, a fainter staining is detected in zone 2 and barely no staining is observed in zone 3. CMZ: Ciliary

Marginal Zone; L: lens; NC: migrating neural crest cells; ov: optic vesicle; pNR: presumptive Neural Retina, pRPE: presumptive

Retinal Pigmented Epithelium.

https://doi.org/10.1371/journal.pone.0193606.g007
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confined to the peripheral half of the CMZ where stem cells and young progenitors reside. Of

note, the staining is often stronger in the dorsal side of the CMZ, consistent with the dorso-

ventral gradient observed in whole-mount embryos, with no or very low staining in the most

ventral side at the position of the optic fissure. We previously showed that Wnt activity in the

post-embryonic CMZ is essential for retinal stem cell proliferative maintenance [27,70]. Other

LEF/TCF reporters revealed activation of the Wnt/β-catenin pathway in the ciliary margin of

other species [73,74]. Moreover, in mouse and chick, Wnt signaling has been described to be

involved in development of this region [82,83].

To summarize, here we present a detailed atlas illustrating Wnt/β-catenin activity in Xeno-
pus tropicalis from gastrula to tadpole stages. This library of serial pictures allows to analyse

spatial and temporal activity of Wnt pathway and thereby to predict new roles of this signaling

pathway. We observe that Wnt/β-catenin pathway is active in many structures during develop-

ment and especially in proliferative zones of the central nervous system such as the rhombic

lip, the cortical hem and the retinal ciliary marginal zone. It is also active in non-neural tissues

and interestingly in the sensory layer of the epidermis, which will give rise to the stratum ger-

minativum where stem cells will reside.

Supporting information

S1 File. Serial transversal sections from Tg(pbin7Lef-dGFP) embryos at different stages fol-

lowing whole-mount gfp in situ hybridization. (Fig A) stage 12.5, (Fig B) stage 14, (Fig C)

stage 16, (Fig D) stage 18, (Fig E) stage 19, (Fig F) stage 20, (Fig G) stage 21–22, (Fig H) stage

23–24, (Fig I) stage 24–25, (Fig J) stage 26, (Fig K) stage 28, (Fig L) stage 29–30, (Fig M) stage

31–32, (Fig N) stage 33–34, (Fig O) stage 35–36, (Fig P) stage 38–39, (Fig Q) stage 40. The

same embryo has been used to generate all of the images provided at a given stage.

(ZIP)

S1 Fig. Focus on selected structures. (A) Schematic of the Wnt reporter construct containing

chicken β-globin insulators [20]. (B, C) Embryo transverse sections following whole-mount

gfp in situ hybridization on Tg(pbin7Lef-dGFP) embryos, at stage 12.5 (B) and 22 (C). Right

panels are enlargement of blue squares. Black dotted lines delineate the somites. (D) Whole-

mount gfp in situ hybridization of Tg(pbin7Lef-dGFP) embryos at stages 29–30 and transversal

sections at indicated level showing gfp staining in the dorsal and ventral fins. (E) Dorsal views

of a stage 13 Tg(pbin7Lef-dGFP) embryo first hybridized with probe against gfp and secondar-

ily with probe against sox2. Black dotted lines delineate the gfp-expressing domain. (F) Embryo

transverse sections following whole-mount gfp in situ hybridization on Tg(pbin7Lef-dGFP)
embryos, at stage 18 and 24–25. The squared regions delineated with the dotted line were

enlarged. White dotted lines delineate the neural tube. (G) Dorsal view of a stage 12 Tg(pbin7-
Lef-dGFP) embryo hybridized with gfp and pax3 probes or gfp and otx2 probes (posterior side

is up). Dotted lines delineate gfp staining. d-f: dorsal fins; ectod.: ectoderm; ins: fp: floorplate;

insulator; mesod.: mesoderm; n: notochord; np: neural plate; NT: neural tube; v-f: ventral fins.
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