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Abstract

Single-cell genome sequencing has proven valuable for the detection of somatic variation, 

particularly in the context of tumor evolution. Current technologies suffer from high library 

construction costs which restrict the number of cells that can be assessed and thus impose 

limitations on the ability to measure heterogeneity within a tissue. Here, we present Single cell 

Combinatorial Indexed Sequencing (SCI-seq) as a means of simultaneously generating thousands 

of low-pass single cell libraries for somatic copy number variant detection. We constructed 

libraries for 16,698 single cells from a combination of cultured cell lines, primate frontal cortex 

tissue, and two human adenocarcinomas, including a detailed assessment of subclonal variation 

within a pancreatic tumor.

Introduction

Single cell sequencing has uncovered the breadth of genomic heterogeneity between cells in 

a variety of contexts, including somatic aneuploidy in the mammalian brain1–4 and intra-

tumor heterogeneity5–8. Studies have taken one of two approaches: high depth of sequencing 

per cell for single nucleotide variant detection2,9, or low-pass sequencing to identify copy 

number variants (CNVs) and aneuploidy1,10,11. In the latter approach, the lack of an 

efficient, cost-effective method to produce large numbers of single cell libraries has made it 

difficult to quantify the frequency of CNV-harboring cells at population scale, or to provide 

a robust analysis of heterogeneity in the context of cancer12.

Recently, we established CPT-seq, a method to produce thousands of individually barcoded 

libraries of linked sequence reads using a transposase-based combinatorial indexing 

strategy13–15. We applied CPT-seq to the problem of genomic haplotype resolution14 and de 
novo genome assembly15. This concept was then integrated into the chromatin accessibility 

assay, ATAC-seq16, to produce profiles of active regulatory elements in thousands of single 

cells17 (sciATAC-seq, Fig. 1a). In combinatorial indexing, nuclei are first barcoded by the 

incorporation of one of 96 indexed sequencing adaptors via transposase. The 96 reactions 

are then combined and 15–25 of these randomly indexed nuclei are deposited into each well 

of a PCR plate by Fluorescence Activated Nuclei Sorting (FANS, Supplementary Fig. 1). 

The probability of any two nuclei having the same transposase barcode is therefore low (6–

11%)17. Each PCR well is then uniquely barcoded using indexed primers. At the end of this 

process, each sequence read contains two indexes: Index 1 from the transposase plate, and 

Index 2 from the PCR plate, which facilitate single cell discrimination. As proof of 

principle, Cusanovich and colleagues produced over 15,000 sciATAC-seq profiles and used 

them to separate a mix of two cell types by their accessible chromatin landscapes17. We 

reasoned that a similar combinatorial indexing strategy could be extended to single cell 

whole genome sequencing.
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Results

Nucleosome depletion for uniform genome coverage

The key hurdle to adapt combinatorial indexing to produce uniformly distributed sequence 

reads is the removal of nucleosomes bound to genomic DNA without compromising nuclear 

integrity. The sciATAC-seq method is carried out on native chromatin, which permits the 

conversion of DNA into library molecules only within regions of open chromatin (1–4% of 

the genome)18. This restriction is desirable for epigenetic characterization; however, for 

CNV detection, it results in biological bias and severely limited read counts (~3,000 per 

cell)17. We therefore developed two strategies to unbind nucleosomes from genomic DNA 

while retaining nuclear integrity for SCI-seq library construction. The first, Lithium Assisted 

Nucleosome Depletion (LAND), utilizes the chaotropic agent, Lithium diiodosalycylate, to 

disrupt DNA-protein interactions in the cell, therefore releasing DNA from histones. The 

second, crosslinking with SDS (xSDS), uses the detergent SDS to denature histone proteins 

and render them unable to bind DNA. However, SDS has a disruptive effect on nuclear 

integrity, thus necessitating a crosslinking step prior to denaturation in order to maintain 

intact nuclei.

To test the viability of these strategies, we performed bulk (30,000 nuclei) preparations on 

the HeLa S3 cell line, for which chromatin accessibility and genome structure has been 

extensively profiled19,20, and carried out LAND or xSDS treatments along with a standard 

control. In all three cases, nuclei remained intact – a key requirement for the SCI-seq 

workflow (Fig. 1b). Prepared nuclei were then carried through standard ATAC-seq library 

construction16. The library prepared from untreated nuclei produced the expected ATAC-seq 

signal with a 10.8 fold enrichment of sequence reads aligning to annotated HeLa S3 

accessibility sites. Both the LAND and xSDS preparations had substantially lower 

enrichments of 2.8 and 2.2 fold respectively, close to the 1.4 fold observed for shotgun 

sequencing (Fig. 1c, Supplementary Table 1). Furthermore, the projected number of unique 

sequence reads present in the LAND and xSDS preparations were 1.7 billion and 798 

million respectively, much greater than for the standard library at 170 million, suggesting a 

larger proportion of the genome was converted into viable sequencing molecules.

SCI-seq with nucleosome depletion

To assess the performance of nucleosome depletion with our single cell combinatorial 

indexing workflow, we first focused on the deeply profiled, euploid lymphoblastoid cell line 

GM1287814,15,19. We produced a total of six SCI-seq libraries with a variety of LAND 

conditions, each using a single 96-well plate at the PCR indexing stage, and a single xSDS 

library with 3×96-well PCR plates. To serve as a comparison to existing methods, we 

prepared 42 single cell libraries using quasi-random priming (QRP, 40 passing QC) and 51 

using degenerate oligonucleotide primed PCR (DOP, 45 passing QC). Finally, we 

karyotyped 50 cells to serve as a non-sequencing means of aneuploidy measurement 

(Supplementary Table 2).

For each SCI-seq preparation, the number of potential index combinations is 96 (transposase 

indexing) × N (PCR indexing, 96 per plate); however, not all index combinations represent a 
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single cell library, as each PCR well contains only 15–25 transposase-indexed nuclei. To 

identify non-empty index combinations, we generated a log10 transformed histogram of 

unique (i.e. non-PCR duplicate), high-quality (MQ ≥ 10) aligned reads for each potential 

index combination. This resulted in a bimodal distribution comprised of a low-read-count, 

noise component centered between 50 and 200 reads, and a high-read-count, single cell 

component centered between 10,000 and 100,000 reads (Fig 2a,b, Supplementary Fig. 2, 

Supplementary Software). We then used a mixed model to identify indexes that fall in this 

high-read-count component (Supplementary Fig. 3), which resulted in 4,643 single cell 

libraries across the six SCI-seq preparations that used LAND for nucleosome depletion and 

3,123 for the xSDS preparation.

To confirm that the majority of putative single cell libraries contain true single cells, we 

carried out four SCI-seq library preparations on a mix of human and mouse cells using 

LAND (2,369 total cells) with either 22 or 25 nuclei per PCR well, and one preparation 

using xSDS split between two FANS conditions (1,367 total cells; Supplementary Figure 4). 

For each experiment we analyzed the proportion of putative single cells with ≥ 90% of their 

reads that aligned exclusively to the human or mouse genome. The remaining cells represent 

human-mouse collisions (i.e. doublets) and make up approximately half of the total collision 

rate (the remaining half being human-human or mouse-mouse). The total collision rates 

varied between 0–23.6%, and were used to decide upon 22 nuclei per well with restrictive 

sorting conditions for a target doublet frequency of <10%, comparable to sciATAC-seq17 or 

high throughout single cell RNA-seq technologies21.

The unique read count produced for each library in a SCI-seq preparation is a function of 

library complexity and sequencing depth. Due to the inhibitive cost of deeply sequencing 

every preparation during development, we implemented a model to project the anticipated 

read count and PCR duplicate percentage that would be achieved with increased sequencing 

depth (Fig. 2c, Methods). As a means of quality assessment, we identified the depth at which 

a median of 50% of reads across cells are PCR duplicates (M50), representing the point at 

which additional sequencing becomes excessive (i.e. greater than 50% of additional reads 

provide no new information), along with several other metrics (Supplementary Table 3). 

Model projections from a subset of the sequenced reads accurately predicted the actual 

median unique read count within a median of 0.02% (maximum 2.25%, mean 0.41%) across 

all libraries. As further confirmation, additional sequencing of a subset of PCR wells from 

several preparations produced unique reads counts for each cell that were within a median of 

0.13% (maximum 3.56%, mean 0.72%) of what was predicted by our model (Supplementary 

Fig. 5).

Coverage uniformity was assessed using mean absolute deviation (MAD)22 and mean 

absolute pairwise deviation (MAPD)2, which indicated substantially better uniformity using 

xSDS over LAND (MAD: mean 1.57-fold improvement, p = <1×10−15; MAPD: 1.70-fold 

improvement, p = <1×10−15, Welch’s t-test). The deviation using xSDS is similar to multiple 

displacement amplification methods, though still greater than for QRP and DOP (Fig. 2d)22. 

While LAND preparations had higher coverage bias, they also produced higher unique read 

counts per cell (e.g. M50 of 763,813 for one of three HeLa LAND preparations) when 

compared to xSDS (e.g. M50 of 63,223 for the GM12878 preparation). For all libraries, we 
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observed the characteristic 9 basepair overlap of adjacent read pairs due to the mechanism of 

transposition13,23, indicating we are able to sequence molecules on either side of a 

transposase insertion event (Supplementary Fig. 6).

Copy number variant calling using SCI-seq

For any single cell genome sequencing study, determining how to filter out failed libraries 

without removing true aneuploid cells is a significant challenge. We initially proceeded with 

CNV calling on our SCI-seq preparations without any filtering in order to directly compare 

with other methods. For all preparations, we used cells with a minimum of 50,000 unique, 

high quality aligned reads (868 across all LAND libraries, 1,056 for the xSDS library), 

applied Ginkgo22, Circular Binary Segmentation (CBS)24, and a Hidden Markov Model 

(HMM)25, with variable-sized genomic windows (target median of 2.5 million bp) for CNV 

calling (Supplementary Fig. 7) and conservatively retained the intersection of all three 

methods. To compare our sequencing-based calls with karyotyped cells, we focused on 

chromosome-arm level events (Fig. 2e,f). Consistent with the coverage uniformity 

differences, our LAND SCI-seq preparations produced a high aneuploidy rate (61.9%), 

suggesting an abundance of false positives due to lack of coverage uniformity (Fig. 2e,g). 

However, the xSDS nucleosome depletion strategy with SCI-seq resulted in an aneuploidy 

frequency of 22.6%, much closer to the karyotyping results (Fig. 2e,h) as well as DOP and 

QRP (15.0% and 13.5%, respectively) (Supplementary Fig. 8).

We next determined filtering criteria based on MAD and MAPD scores across a variety of 

resolutions and read count thresholds (Supplementary Fig. 9). This analysis revealed a 

greater range of variability in the resolution of our SCI-seq preparations, which is largely 

driven by the wider range of unique reads per cell when compared to standard methods. By 

applying a MAD variance filter of 0.2 across all methods, aneuploidy rates for xSDS, DOP 

and QRP dropped to 12.2%, 9.7% and 10.5% respectively, all below the rate determined by 

karyotyping, yet closer to one another than prior to filtering (Supplementary Fig. 10).

Copy number variation in the Rhesus brain

Estimates of aneuploidy and large-scale CNV frequencies in the mammalian brain vary 

widely, from <5% to 33%1–4. This uncertainty largely stems from the inability to profile 

sufficient numbers of single cells to produce quantitative measurements. The Rhesus 

macaque is an ideal model for quantifying the abundance of aneuploidy in the brain, as 

human samples are challenging to acquire and are confounded by high variability in lifetime 

environmental exposures. Furthermore, the Rhesus brain is phylogenetically, structurally and 

physiologically more similar to humans than rodents26.

To demonstrate the versatility of our platform, we applied LAND and xSDS SCI-seq to 

archived frontal cortex tissue (Individual 1), along with 38 cells using QRP (35 passing QC), 

and 35 cells using DOP (30 passing QC). Our low-capacity LAND preparation (16 PCR 

indexes) produced 340 single cell libraries with a median unique read count of 141,449 (248 

cells ≥ 50,000 unique reads), and our xSDS preparation generated 171 single cell libraries 

with a median unique read count of 55,142 (92 cells ≥ 50,000 unique reads). The number of 
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cells produced in our xSDS preparation was lower than expected, largely due to nuclei 

aggregates during sorting that may be remedied by additional cell dis-aggregation steps.

Across all methods of library construction we observed greater discrepancies between the 

three CNV calling approaches than in the human analyses (Supplementary Fig. 11–14), 

likely due to the lower quality of the Rhesus reference genome (284,705 contigs < 1 Mbp), 

emphasizing the need for “platinum” quality reference genomes27. We therefore focused on 

the HMM results for sub-chromosomal calls (Fig. 3a) and performed aneuploidy analysis 

using the intersection of CBS and HMM calls. Consistent with our cell line results, the 

LAND preparation produced a much higher aneuploidy rate (95.1%), suggestive of false 

positives stemming from coverage nonuniformity (Supplementary Fig. 15,16). The xSDS 

SCI-seq unfiltered aneuploidy rate (25.0%) was close to the DOP preparation (18.5%), with 

QRP producing a much lower rate (3.1%; Fig. 3b). After imposing a variance filter for cells 

with a MAD score of 0.2 or lower, the aneuploidy rates dropped to 12.0% for the xSDS 

preparation, 8.7% for the DOP, and stayed the same for the QRP preparation at 3.1%. These 

rates were similar to those produced by xSDS SCI-seq on a 200 mm3 section of frontal 

cortex from a second individual (381 single cells, median read count of 62,731, 213 cells ≥ 

50,000 unique reads) which produced unfiltered and filtered aneuploidy rates of 12.1% and 

10.3% respectively (Supplementary Fig. 17).

SCI-seq on primary tumor samples reveals clonal populations

One of the primary applications of single cell genome sequencing is in the profiling of tumor 

heterogeneity and understanding clonal evolution in cancer as it relates to treatment 

resistance5–8. We carried out a single xSDS SCI-seq preparation on a freshly acquired stage 

III pancreatic ductal adenocarcinoma (PDAC) sample measuring approximately 250 mm3 

which resulted in 1,715 single cell libraries sequenced to a median unique read count of 

49,272 per cell (M50 of 71,378; 846 cells ≥ 50,000 unique reads at the depth the library was 

sequenced; Fig. 4a). We first performed CNV calling using our GM12878 library as a 

euploid baseline for comparison to identify a set of high-confidence euploid cells (298, 

35.2%) which were then used as a new baseline specific to the individual and preparation 

(Supplementary Fig. 17–19). Assuming that subchromosomal copy number alterations 

(caused by genome instability) are more informative for identifying subclonal populations 

than whole chromosome aneuploidy (due to errors during cell division), we developed a 

strategy to identify putative copy number breakpoints at low resolution to be used as new 

window boundaries (Methods, Supplementary Fig. 20) followed by stratification via 

principle components analysis (PCA) and k-means clustering. We initially applied this 

method to our HeLa libraries (2,361 single cells in total), revealing no distinct heterogeneity 

and further supporting the stability of the HeLa cell line20 (Supplementary Fig. 21–24), and 

then on our primary PDAC sample, which revealed an optimum cluster count of 4 by 

silhouette analysis (Fig. 4b,c).

The first of these clusters (k3) is a population of euploid cells that were not considered high 

confidence euploid in the initial analysis, and thus not removed. When including these, the 

euploid population rises to 389 for a final tumor cell purity of 46.0%, within the expected 

range for PDAC28. For the remaining clusters k1 (199 cells), k2 (115 cells) and k4 (91 cells), 
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we aggregated all reads from cells proximal to each centroid (Methods) and carried out CNV 

calling using 100 kbp windows, a 25-fold greater resolution than the initial analysis, and 

then determined absolute copy number states20 (Fig. 4d).

Across the three tumor clusters, a substantial portion of copy number segments were shared 

(44.8%), suggesting that they arose from a common progenitor population. This includes a 

highly rearranged chromosome 19 which harbors a focal amplification of CEBPA, which 

encodes an enhancer binding protein, at copy number 7 which is frequently mutated in 

AML29, and has recently been shown to have altered epigenetic regulation in pancreatic 

tumors30 (Fig. 4e). An all-by-all pairwise comparison revealed clusters k2 and k4 as the 

most similar, sharing 65.9% of copy number segments, followed by k1 and k4 at 58.3%, and 

k1 and k2 at 55.0%. Several cluster-specific CNVs contain genes of potential functional 

relevance (Fig. 4e). These include a focal amplification to copy number 6 of IKBKB in 

cluster k1, which encodes a serine kinase important in the NF-κB signaling pathway31; 

another focal amplification to copy number 5 in cluster k1 containing genes DSC1,2,3 and 

DSG1,2,3,4 all of which encode proteins involved in cell-cell adhesion and cell positioning 

and are often mis-regulated in cancer32; and the deletion of a region containing PDGRFB 
specific to cluster k2, which encodes a tyrosine kinase cell surface receptor involved in cell 

proliferation signaling, and is frequently mutated in cancer33.

Lastly, we applied xSDS SCI-seq to a frozen stage II rectal adenocarcinoma measuring 500 

mm3. During preparation we noticed a high abundance of nuclear debris and ruptured nuclei 

which likely attributed to the decreased yield of the preparation (16 PCR indexes) of 146 

single cell libraries (median unique read count of 71,378; M50 of 352,168; 111 cells ≥ 

50,000 unique reads). We carried out the same CNV calling approach as with the PDAC 

sample; however high frequency breakpoints were not observed and subclonal populations 

could not be identified (Supplementary Fig. 25). This may be a result of nuclear 

deterioration due to irradiation, a common treatment for rectal cancers, underscoring the 

challenge of producing high-quality single cell or nuclei suspensions shared by all single cell 

methods12.

Discussion

We developed SCI-seq, a method which utilizes nucleosome depletion in a combinatorial 

indexing workflow to produce thousands of single cell genome sequencing libraries. Using 

SCI-seq, we produced 16,698 single cell libraries (of which 5,395 were sequenced to a depth 

sufficient for CNV calling) from myriad samples, including primary tissue isolates 

representative of the two major areas of single cell genome research: somatic aneuploidy and 

cancer. In addition to the advantages of throughput, the platform does not require specialized 

microfluidics equipment or droplet emulsification techniques. Using our more uniform 

nucleosome depletion strategy, xSDS, we were able to achieve resolution on the order of 250 

kbp, though we suspect further optimization, such as alternative crosslinking agents, may 

provide sufficient depth for improved resolution. We also demonstrate the ability to identify 

clonal populations that can be aggregated to facilitate high resolution CNV calling by 

applying this strategy to a pancreatic ductal adenocarcinoma which revealed subclone-
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specific CNVs that may impact proliferation, migration, or possibly drive other molecular 

subtypes34.

While the technology is currently limited to copy number variant detection, it may be 

possible to include in situ pre-amplification within the nuclear scaffold prior to SCI-seq or 

the incorporation of T4 in vitro transcription, such as in THS-seq35, an ATAC-seq variant, to 

boost the resulting coverage and facilitate single nucleotide variant detection. While 

optimization is possible, as with any new method, we believe that the throughput provided 

by SCI-seq will open the door to deep quantification of mammalian somatic genome 

stability as well as serve as a platform to assess other properties of single cells including 

DNA methylation and chromatin architecture.

Online Methods

Sample preparation and nuclei isolation

Tissue culture cell lines were trypsinized then pelleted if adherent (HeLa S3, ATCC 

CCL-2.2; NIH/3T3, ATCC CRL-1658) or pelleted if grown in suspension (GM12878, 

Coriell; karyotyped at the OHSU Research Cytogenetics Laboratory), followed by one wash 

with ice cold PBS. They were then carried through crosslinking (for the xSDS method) or 

directly into nuclei preparation using Nuclei Isolation Buffer (NIB, 10 mM TrisHCl pH7.4, 

10 mM NaCl, 3 mM MgCl2, 0.1% igepal, 1× protease inhibitors (Roche, Cat. 

11873580001)) with or without nucleosome depletion. Tissue samples (RhesusFcx1, 

RhesusFcx2, PDAC, CRC) were dounce homogenized in NIB then passed through a 35µm 

cell strainer prior to nucleosome depletion. The frozen Rhesus frontal cortex samples, 

RhesusFcx1 (4 yr. female) and RhesusFcx2 (9 yr. female), were obtained from the Oregon 

National Primate Research Center as a part of their aging nonhuman primate resource.

Standard Single Cell Library Construction

Single cell libraries constructed using quasi-random priming (QRP) and degenerate 

oligonucleotide primed PCR (DOP) were prepared from isolated nuclei without nucleosome 

depletion and brought up to 1 mL of NIB, stained with 5 µL of 5 mg/ml DAPI (Thermo 

Fisher, Cat. D1306) then FANS sorted on a Sony SH800 in single cell mode. One nucleus 

was deposited into each single well containing the respective sample buffers. QRP libraries 

were prepared using the PicoPlex DNA-seq Kit (Rubicon Genomics, Cat. R300381) 

according to the manufacturer’s protocol and using the indexed PCR primers provided in the 

kit. DOP libraries were prepared using the SeqPlex DNA Amplification Kit (Sigma, Cat. 

SEQXE-50RXN) according to the manufacturer’s protocol, but with the use of our own 

custom PCR indexing primers that contain 10 bp index sequences. To avoid over-

amplification, all QRP and DOP libraries were amplified with the addition of 0.5 µL of 100× 

SYBR Green (FMC BioProducts, Cat. 50513) on a BioRad CFX thermocycler in order to 

monitor the amplification and pull reactions that have reached mid-exponential 

amplification.
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Nucleosome Depletion

Lithium assisted nucleosome depletion (LAND): Prepared Nuclei were pelleted and 

resuspended in NIB supplemented with 200 µL of 12.5 mM lithium 3,5-diiodosalicylic acid 

(referred to as Lithium diiodosalycylate in main text, Sigma, Cat. D3635) for 5 minutes on 

ice prior to the addition of 800 µL NIB and then taken directly into flow sorting.

Crosslinking and SDS nucleosome depletion (xSDS): Crosslinking was achieved by 

incubating cells in 10 mL of media (cell culture) or nuclei in 10 mL of HEPES NIB (20 mM 

HEPES, 10 mM NaCl, 3mM MgCl2, 0.1% igepal, 1× protease inhibitors (Roche, Cat. 

11873580001)) (tissue samples) containing 1.5% formaldehyde at room for 10 minutes. The 

crosslinking reaction was neutralized by bringing the reaction to 200 mM Glycine (Sigma, 

Cat. G8898-500G) and incubating on ice for 5 minutes. Cell culture samples were 

crosslinked and then washed once with 10 ml ice cold 1× PBS and had nuclei isolated by 

incubating in NIB buffer on ice for 20 minutes and pelleted once again. Nuclei were then 

resuspended in 800 uL 1× NEBuffer 2.1 (NEB, Cat. B7202S) with 0.3% SDS (Sigma, Cat. 

L3771) and incubated at 42°C with vigorous shaking for 30 minutes in a thermomixer 

(Eppendorf). SDS was then quenched by the addition of 200 µL of 10% Triton-X100 

(Sigma, Cat. 9002-93-1) and incubated at 42°C with vigorous shaking for 30 minutes.

Combinatorial indexing via tagmentation and PCR

Nuclei were stained with 5 µL of 5mg/ml DAPI (Thermo Fisher, Cat. D1306) and passed 

through a 35 µm cell strainer. A 96 well plate was prepared with 10 µL of 1× Nextera® 

Tagment DNA (TD) buffer from the Nextera® DNA Sample Preparation Kit (Illumina, Cat. 

FC-121-1031) diluted with NIB in each well. A Sony SH800 flow sorter was used to sort 

2,000 single nuclei into each well of the 96 well tagmentation plate in fast sort mode. Next, 

1 µL of a uniquely indexed 2.5 µM transposase-adaptor complex (transposome) was added 

to each well. These complexes and associated sequences are described in Amini et. al. 2015, 

Ref. 14. Reactions were incubated at 55°C for 15 minutes. After cooling to room 

temperature, all wells were pooled and stained with DAPI as previously described. A second 

96 well plate, or set of 96 well plates, were prepared with each well containing 8.5 µL of a 

0.058% SDS, 8.9 nM BSA solution and 2.5 µL of 2 uniquely barcoded primers at 10 µM. 22 

post-tagmentation nuclei from the pool of 96 reactions were then flow sorted on the same 

instrument but in single cell sort mode into each well of the second plate and then incubated 

in the SDS solution at 55°C for 5 minutes to disrupt the nuclear scaffold and disassociate the 

transposase enzyme. Crosslinks were reversed by incubating at 68°C for an hour (xSDS). 

SDS was then diluted by the addition of 7.5 µL of Nextera® PCR Master mix (Illumina, Cat. 

FC-121-1031) as well as 0.5 µL of 100× SYBR Green (FMC BioProducts, Cat. 50513) and 

4 µL of water. Real time PCR was then performed on a BioRad CFX thermocycler by first 

incubating reactions at 72°C for 5 minutes, prior to 3 minutes at 98°C and 15–20 cycles of 

[20 sec. at 98°C, 15 sec. at 63°C, and 25 sec. at 72°C]. Reactions were monitored and 

stopped once exponential amplification was observed in a majority of wells. 5 µL of each 

well was then pooled and purified using a Qiaquick PCR Purification column (Qiagen, Cat. 

28104) and eluted in 30 µL of EB.
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Library quantification and sequencing

Libraries were quantified between the range of 200bp and 1 kbp on a High Sensitivity 

Bioanalyzer kit (Agilent, Cat. 5067-4626). Libraries were sequenced on an Illumina 

NextSeq® 500 loaded at 0.8 pM with a custom sequencing chemistry protocol (Read 1: 50 

imaged cycles; Index Read 1: 8 imaged cycles, 27 dark cycles, 10 imaged cycles; Index 

Read 2: 8 imaged cycles, 21 dark cycles, 10 imaged cycles; Read 2: 50 imaged cycles) using 

custom sequencing primers described in Amini et. al. 2015, Ref.14. QRP and DOP libraries 

were sequenced using standard primers on the NextSeq® 500 using high-capacity 75 cycle 

kits with dual-indexing. For QRP there is an additional challenge that the first 15 bp of the 

read are highly enriched for “G” bases, which are non-fluorescent with the NextSeq® 2-

color chemistry and therefore cluster identification on the instrument fails. We therefore 

sequenced the libraries using a custom sequencing protocol that skips this region (Read 1: 

15 dark cycles, 50 imaged cycles; Index Read 1: 10 imaged cycles; Index Read 2: 10 imaged 

cycles).

Sequence Read Processing

Software for processing SCI-seq raw reads can be found in the accompanying 

Supplementary Software or downloaded from http://sci-seq.sourceforge.net. Sequence runs 

were processed using bcl2fastq (Illumina Inc., version 2.15.0) with the --create-fastq-for-

index-reads and --with-failed-reads options to produce fastq files. Index reads were 

concatenated (36 bp total) and used as the read name with a unique read number appended 

to the end. These indexes were then matched to the corresponding index reference sets 

allowing for a hamming distance of two for each of the four index components (i7-

Transposase (8 bp), i7-PCR (10 bp), i5-Transposase (8 bp), and i5-PCR (10 bp)), reads 

matching a quad-index combination were then renamed to the exact index (and retained the 

unique read number) which was subsequently used as the cell identifier. Reads were then 

adaptor trimmed, then paired and unpaired reads were aligned to reference genomes by 

Bowtie2 and merged. Human preparations were aligned to GRCh37, Rhesus preparations 

were aligned to RheMac8, and Human/Mouse mix preparations were aligned to a combined 

human (GRCh37) and mouse (mm10) reference. Aligned bam files were subjected to PCR 

duplicate removal using a custom script that removes reads with identical alignment 

coordinates on a per-barcode basis along with reads with an alignment score less than 10 as 

reported by Bowtie2.

Single Cell Discrimination

For each PCR plate, a total of 9,216 unique index combinations are possible (12 i7-

Transposase indexes × 8 i5-Transposase indexes × 12 i7-PCR indexes × 8 i5-PCR indexes), 

for which only a minority should have a substantial read count, as the majority of index 

combinations should be absent – i.e. transposase index combinations of nuclei that were not 

sorted into a given PCR well. These “empty” indexes typically contain very few reads (1–

3% of a run) with the majority of reads falling into bona fide single cell index combinations 

(97–99% of a run). The resulting histogram of log10 unique read counts for index 

combinations (Supplementary Fig. 3) produces a mix of two normal distributions: a noise 

component and a single cell component. We then used the R package “mixtools” to fit a 
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mixed model (normalmixEM) to identify the proportion (λ) mean (μ) and standard deviation 

(σ) of each component. The read count threshold to qualify as a single cell library was taken 

to be the greater of either one standard deviation below the mean of the single cell 

component in log10 space, or 100 fold greater than the mean of the noise component (+2 in 

log10 space), and had to be a minimum of 1,000 unique reads.

Human-Mouse Mix Experiments

We took one of two approaches to mix human (GM12878 or HeLa S3) and mouse (3T3) 

cells: i) mixing at the cell stage (HumMus.LAND1 and HumMus.LAND2) or ii) mixing at 

the nuclei stage (HumMus.LAND3, HumMus.LAND4, and HumMus.xSDS). The reason we 

employed the latter was to control for nuclei crosslinking or agglomerating together that 

could result in doublets. Libraries were constructed as described above, for instances where 

two distinct DAPI-positive populations were observed during flow sorting, included both 

populations in the same gate so as not to skew proportions. Reads were processed as in other 

experiments, except reads were instead aligned to a reference comprised of GRCh37 (hg19) 

and mm10. The mapping quality 10 filter effectively removed reads that aligned to 

conserved regions in both genomes and then for each identified single cell, reads to each 

species were tallied and used to estimate collision frequency. For our early LAND 

preparations we sorted 25 indexed nuclei per PCR well and produced total collision rates 

(i.e. twice the human-mouse collision rate) of 28.1% and 10.4%. For the second two LAND 

preparations we sorted 22 nuclei per PCR well, which produced a total collision rate of 4.3% 

for one preparation and no detectable collisions in another. We also tested two FANS sorting 

conditions for our xSDS preparation, one was permissive and allowed a broader range of 

DAPI fluorescence, and the other more restrictive, and carried out both preparations on 

separate sides of the same PCR plate. For the permissive gating we observed a total collision 

rate of 23.6% with a substantial reduction for the more restrictive gating at 8.1%. Based on 

these results we decided to continue sorting 22 nuclei per PCR well using the more 

restrictive FANS

Library Depth Projections

To estimate the performance of a library pool if, or when, it was sequenced to a greater 

depth, we incrementally sampled random reads from each SCI-seq preparation across all 

index combinations including unaligned and low quality reads without replacement at every 

one percent of the total raw reads. For each point we identified the total number reads that 

are aligned with high quality (MQ ≥ 10) assigned to each single cell index and the fraction 

of those reads that are unique, non-PCR duplicates, as well as the corresponding fraction of 

total reads sampled that were assigned to that index. Using these points we fit both a 

nonlinear model and a Hanes-Woolfe transformed model to predict additional sequencing 

for each individual single cell library within the pool and projected out to a median unique 

read percentage across cells of 5%. To determine the accuracy of the models, we determined 

the number of downsampled raw reads of each library that would reach the point in which 

the median unique read percentage per cell was 90%, which is somewhat less than what was 

achieved for libraries that were sequenced at low coverage. We then subsampled the pre-

determined number of reads for 30 iterations and built a new model for each cell at each 

iteration and then predicted the unique read counts for each cell out to the true sequencing 
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depth that was achieved. The standard deviation of the true read count across all iterations 

for all cells was then calculated.

Genome Windowing

Genomic windows were determined on a per-library basis using custom tools. For each 

chromosome the size of the entire chromosome was divided by the target window size to 

produce the number of windows per chromosome. The total read count for the chromosome 

summarized over the pool of all single cells (GM12878 for all human samples where 

absolute copy number was determined, as well as for each pooled sample where 

amplifications or deletions relative to the mean copy number were determined) was then 

divided by the window count to determine the mean read count per window. The 

chromosome was then walked and aligned reads from the pool tallied and a window break 

was made once the target read count per window was reached. Windows at chromosome 

boundaries were only included if they contained more than 75% of the average reads per 

window limit for that chromosome. By using dynamic windows we accounted for biases, 

such as highly repetitive regions, centromeres and other complex regions that can lead to 

read dropout in the case of fixed size bins22.

GC Bias Correction

Reads were placed into the variable sized bins and GC corrected based on individual read 

GC content instead of the GC content of the dynamic windows. We posit that the large bin 

sizes needed for single cell analysis average out smaller scale GC content changes. 

Furthermore, SCI-seq does not involve pre-amplification where large regions of the genome 

are amplified, therefore GC bias originates solely from the PCR and is amplicon-specific. To 

calculate correction weights for the reads we compared the fraction of all reads with a given 

GC to the fraction of total simulated reads with the average insert size at the same GC 

fraction. This weight was then used in lieu of read counts and summed across all reads in a 

given window. All regions present in DAC blacklisted regions were excluded from analysis 

for the human sample analyses (http://genome.ucsc.edu/cgi-bin/hgFileUi?

db=hg19&g=wgEncodeMapability)19. Following GC correction, all reads were normalized 

by the average number of reads per bin across the genome. Finally for each window we took 

the normalized read count of each cell and divided it by the pooled sample baseline to 

produce a ratio score.

Measures of data variation

To measure data quality, we calculated two different measures of coverage dispersion: the 

median absolute deviation (MAD), the median absolute pairwise difference (MAPD). For 

each score we calculated the median of the absolute values of all pairwise differences 

between neighboring bins that have been normalized by the mean bin count within the cell 

(log2 normalized ratios for the MAPD scores). These scores measure the dispersion of 

normalized binned reads due to technical noise, rather than due copy number state changes, 

which are less frequent2,22.
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Copy Number Variant Calling

CNV calling was performed on the windowed, GC corrected and bulk sample normalized 

reads with two available R packages that employ two different segmentation strategies: a 

Hidden Markov Model approach (HMMcopy, version 3.3.0, Ref. 25) and Circular Binary 

Segmentation (DNAcopy, version 1.44.0, Ref. 24). Values were Log2 transformed for input 

(2*log2 for CBS) and copy number calls were made based on the optimized parameters 

from Knouse et al. 2016, Ref. 11. For optimal sensitivity and specificity to detect copy 

number calls with sizes ≥5Mb we set the probability of segment extension (E) to 0.995 for 

HMM and for CBS we chose the significance level to accept a copy number change (α) to 

be 0.0001. The Log2 cutoffs for calling losses or gains were 0.4 and −0.35 for HMM and 

1.32 and 0.6 for CBS. As an additional tool for CNV calling we used Ginkgo22, which uses 

an alternative method for data normalization. We uploaded bed files for each cell and a bulk 

down sampled bed file, which we created with Picard Tools (we used a down sample 

probability of 0.1). For the analysis we chose to segment single cells with the down sampled 

bulk bed file and when ploidy was known for the samples we created FACS files to force 

Ginkgo to normalize to that ploidy. Calls for the three methods were intersected either on a 

per-window basis or were filtered to only include calls that span ≥ 80% of a chromosome 

arm and then intersected for aneuploidy analysis.

Tumor breakpoint analysis

Unlike the assessment of sporadic aneuploidy, tumor structural variation is much more 

complex with a large portion of breakpoints within chromosomes. Further, sporadic 

aneuploidy within any given subclone of a tumor is less pertinent than an accurate profile of 

the subpopulations that are present. We therefore used the HMM and CBS segmented ratio 

score matrixes to identify breakpoints by tallying up the boundaries of segmented regions 

across cells. We then used the resulting distribution of shared chromosomal breakpoints 

across the genome to identify local maxima to account for variability in which specific 

window the call was made, and then retained those that are present in at least 5% of cells. 

We then merged all windows within each breakpoint span and calculated the new log2 ratio 

of each aneuploid cell over the mean values of the euploid population. We then carried out 

principle components analysis prior to k-means clustering with a k value determined by 

Silhouette analysis. To minimize the effect of doublets which can account for ~10% of 

putative single cells and also to exclude low-performance cells, we retained only those in the 

close proximity to their respective centroids. We then merged sequence reads for all cells 

within each cluster and then carried out a higher resolution CNV analysis (target window 

size of 100 kbp) using an HMM strategy followed by absolute copy number state 

identification and the identification of focal amplifications and deletions using a sliding 

window outlier strategy20. Intra-tumoral clonal relationships are most accurately captured by 

shared breakpoints as opposed to the drift in copy number of a segment based on the 

assumption that structural changes involving breaks in the DNA as being more impactful on 

the cell. We therefore compared cells by assessing the proportion of segments between 

breakpoints that were identified using the high resolution (100 kbp) CNV analysis that 

overlapped by at least 90% (to account for noise in the exact window that was called as the 

copy number change) out of the total number of segments.
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Editor’s Summary

Single-cell Combinatorial Indexed Sequencing (SCI-seq) resolves genomic heterogeneity by 

generating thousands of low-pass single-cell libraries at once for somatic copy number 

variant detection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Single cell combinatorial indexing with nucleosome depletion
(a) Single cell combinatorial indexing workflow. (b) Phase contrast images of intact nuclei 

generated by standard isolation followed by nucleosome depletion using Lithium Assisted 

Nucleosome Depletion (LAND) or crosslinking and SDS treatment (xSDS). Scale bar: 100 

µm. (c) Nucleosome depletion produces genome-wide uniform coverage that is not restricted 

to sites of chromatin accessibility.
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Figure 2. Comparison of LAND and xSDS nucleosome depletion methods with SCI-seq
(a) Complexity for one of six LAND SCI-seq preparations on GM12878. Right panel, 

histogram showing distribution of read counts. Dashed line represents single cell read cutoff. 

(b) As in (a) but for xSDS nucleosome depletion for one of three PCR plates. (c) Left, 

model built on downsampled reads for the GM12878 xSDS preparation and used to predict 

the full depth of coverage. Right, Projections for one of the LAND preparations and the full 

xSDS preparation. Shading represents standard deviation over multiple models. Points 

represent actual depth of sequencing. (d) Coverage uniformity scores for SCI-seq using 

LAND or xSDS and for quasi-random priming (QRP) and degenerate oligonucleotide PCR 

(DOP). (e) Summary of the percentage of cells showing aneuploidy at the chromosome arm 

level across all preparations with and without imposing a variance filter. (f) Karyotyping 

results of 50 GM12878 cells. (g–h) Summary of windowed copy number calls and clustering 

of GM12878 single cells produced using LAND (g) or xSDS (h). Top represents a 

chromosome-arm scale summary of gain or loss frequency for all cells, bottom is the 

clustered profile for cells that contain at least one CNV call.
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Figure 3. Somatic CNVs in the Rhesus brain
(a) Three single cell examples showing copy number variants, and one representative 

euploid cell for the SCI-seq preparation (HMM). (b) Frequency of aneuploidy as determined 

by each of the methods with and without filtering.
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Figure 4. SCI-seq analysis of a stage III human Pancreatic Ductal Adenocarcinoma (PDAC)
(a) SCI-seq library complexity. Right panel, histogram showing distribution of read counts. 

Dashed line represents single cell read cutoff. (b) Breakpoint calls (top) and breakpoint 

window matrix of log2 sequence depth ratio. (c) Principle component analysis and k-means 

clustering on breakpoint matrix. (d) 100 kbp resolution CNV calling on aggregated cells 

from each cluster. (e) Cluster specific CNVs and CEBPA amplification present in all clusters 

(k4 shown).
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