Table 2. Results of CADx when using XGBoost and parameter optimization.
Algorithm | Number of trial | Validation loss | AUC | Accuracy |
---|---|---|---|---|
Random | 10 | 0.488 | 0.838 | 0.756 |
Random | 100 | 0.451 | 0.864 | 0.771 |
Random | 200 | 0.440 | 0.868 | 0.784 |
Random | 1000 | 0.422 | 0.878 | 0.806 |
TPE | 10 | 0.494 | 0.838 | 0.762 |
TPE | 100 | 0.427 | 0.876 | 0.811 |
TPE | 200 | 0.419 | 0.881 | 0.804 |
TPE | 1000 | 0.394 | 0.896 | 0.820 |
Abbreviation: computer-aided diagnosis, CADx; support vector machine, SVM; Tree Parzen Estimator, TPE; area under the curve, AUC.