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Abstract

Complex natural systems from brains to bee swarms have evolved to make adaptive multifactorial 

decisions. Recent theoretical and empirical work suggests that many evolved systems may take 

advantage of common motifs across multiple domains. We are particularly interested in value 

sensitivity (i.e., sensitivity to the magnitude or intensity of the stimuli or reward under 

consideration) as a mechanism to resolve deadlocks adaptively. This mechanism favours long-term 

reward maximization over accuracy in a simple manner, because it avoids costly delays associated 

with ambivalence between similar options; speed-value trade-offs have been proposed to be 

evolutionarily advantageous for many kinds of decision. A key prediction of the value-sensitivity 

hypothesis is that choices between equally-valued options will proceed faster when the options 

have a high value than when they have a low value. However, value-sensitivity is not part of 

idealised choice models such as diffusion to bound. Here we examine two different choice 

behaviours in two different species, perceptual decisions in humans and economic choices in 

rhesus monkeys, to test this hypothesis. We observe the same value sensitivity in both human 

perceptual decisions and monkey value-based decisions. These results endorse the idea that neural 

decision systems make use of the same basic principle of value-sensitivity in order to resolve 

costly deadlocks and thus improve long-term reward intake.
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1 Introduction

Adaptive decision-making is a hallmark of intelligent complex systems at all levels of 

biological complexity. Such systems can monitor inputs and then calculate effective 

responses to them with impressive efficiency and flexibility. A major goal is the elucidation 

of the basic computational principles underlying mechanisms for decision making, from 

perceptual decision making, to economic decision making to social decisions (Krajbich, 

Hare, Bartling, Morishima, & Fehr, 2015).

Decision mechanisms are often studied from the perspective of the speed-accuracy trade-off. 

That is, the decision-maker is assumed to optimize choices based on two competing cost 

functions, the cost of inaccurate choices and the cost of delays imposed by longer 

deliberations. This trade-off function has been a central aspect of models of decision-making 

in psychology, neuroscience, and behavioural ecology (e.g., Bogacz, Brown, Moehlis, 

Holmes, & Cohen, 2006; Chittka, Skorupski, & Raine, 2009). However for many decisions, 

such as food choice, decision-makers should optimize value, not accuracy, and decision-

making processes should take this fact into account (Pirrone, Stafford, & Marshall, 2014; 

Teodorescu, Moran, & Usher, 2015). Both the cost of a decision – in time taken and risk of 

error – and benefit of a decision – in reward – may frequently depend on the value of 

options. When referring to ‘overall value’ we mean the magnitude or intensity of the stimuli 

or reward under consideration; in this case value can have a relation with hedonistic 

concepts as ‘reward’ or be related to the physical dimension of stimuli. For example, by 

comparing two lights, we would say that the brighter one has a higher value. At the same 

time, of two sources of the same food we would say that the bigger has an higher value. It 

seems reasonable to assume a correlation in many ecological scenarios between stimulus 

magnitude (or salience) and fitness value; for example, a brighter fruit may be riper and thus 

more nutritionally beneficial (Schaefer, McGraw, & Catoni, 2008), or a high intensity cue 

may indicate a more dangerous situation (Teodorescu et al., 2015). Prominent computational 

models of choice work by integrating difference (Ratcliff & McKoon, 2008) or ratio (Brown 

& Heathcote, 2008) in evidence between alternatives, thus disregarding information related 

to the absolute value of the alternatives under consideration (Pirrone et al., 2014; Teodorescu 

et al., 2015). Such systems may also exhibit decision deadlock between equal alternatives, 

which can be solved by adding urgency signals, asymmetry of inhibition or collapsing 

thresholds (Ditterich, 2006; Thura, Beauregard-Racine, Fradet, & Cisek, 2012), however, 

these additions are motivated by avoiding long reaction times in low evidence trials, without 

explicit reference to implementing ecologically-relevant option magnitude sensitivity.

Consider, for example, a forager who encounters two food items. Laboratory formalism 

treats this choice as independent of other events (Bogacz, Hu, Holmes, & Cohen, 2010), but 

if in the subject’s natural environment food item availabilities and qualities are drawn from 

typical environmental distributions, then an optimal agent will be more willing to reject both 
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items if they are matched and relatively low in value and instead search for a larger food 

item. However, if both items are matched and high in value, there is no sense in waiting, nor 

is there any benefit in deliberation between them. This decision-maker will thus be faster to 

respond to high-value stimuli than to low-value ones, even if their ratio or difference is 

identical.

A nonlinear model of decision-making, inspired by observations of house-hunting 

honeybees (Seeley et al., 2012), has been proposed that implements precisely this value-

sensitive deadlock-breaking behaviour (Pais et al., 2013). The dynamics of the model are 

such that decisions between equal options below a value threshold result in deadlock, but 

deadlock is spontaneously broken for options above this value threshold; the value threshold 

is determined by a single biologically-relevant parameter, strength of cross-inhibition 

between evidence accumulating populations (Pais et al., 2013). An adaptive strategy is to 

progressively increase this parameter so that equal low-value alternatives that result in 

decision deadlock will eventually result in deadlock breaking (Pais et al., 2013); under this 

schedule high-value equal alternatives will result in deadlock breaking before low-value 

equal alternatives, and hence exhibit shorter reaction times in the former case. As the 

decision-maker moves from maintaining to breaking decision deadlock, change in the 

stochastic dynamics around the deadlock point corresponds to a sign change in the Ornstein-

Uhlenbeck (O-U) process

ẋ = Bx + ση (1)

from stable (B < 0) to unstable (B > 0) (Pais et al., 2013). In equation 1 x represents state of 

the decision process, with 0 corresponding to decision deadlock and a decision being 

reached when x crosses a positive or negative threshold, η is a Wiener process, or Brownian 

motion, and σ is its standard deviation.

Additionally, when differences between options are large enough the decision-mechanism 

approximates the classical drift-diffusion model of decision-making (Pais et al., 2013)

ẋ = A + ση, (2)

where x represents integrated evidence with 0 corresponding to equal evidence, and A is the 

strength of drift, which is a function of the difference between mean evidence strengths 

(Ratcliff, 1978). If there is no such difference then A = 0 and the decision variable will only 

cross a decision threshold through integrating sufficient noise; importantly, if decision 

thresholds have been set high (indicating a prioritisation of decision accuracy) and do not 

change, then this will take a correspondingly long time. While Pais et al. present a model of 

collective behaviour, corresponding non-linear neural models with qualitatively similar 

properties can be found (Bose, Reina, & Marshall, n.d.).

A first demonstration of value sensitivity in human decision making comes from Teodorescu 

et al. (2015), and some preliminary results about magnitude sensitivity are also present in 

Teodorescu and Usher (2013). In Teodorescu et al. (2015) subjects were required to choose 
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the brighter of two grey patches presented on the screen. Compared to a baseline condition, 

the authors increased the overall value of the alternatives while holding the ratio or the 

difference between the mean luminances of the two grey patches constant. Their results 

demonstrate that subjects show a sensitivity to the overall value of the alternatives both in 

the condition where the difference and the condition where the ratio are maintained constant 

but the overall value is increased. However, to the best of our knowledge, no study to date 

has investigated value sensitivity as a mechanism to break decision deadlocks for equal 

alternatives. We hypothesized that value sensitivity, exhibited by a model of decision-

making in honeybee swarms (Pais et al., 2013), will also be observed in neural decision 

systems. We therefore measured the effects of value on matched-value decisions in two 

different contexts, perceptual decisions in humans and reward-based decisions in rhesus 

monkeys. In both cases, decisions of interest (i.e., equal alternatives) were embedded in a 

larger set of decisions between options of unequal value. In both cases, we observed a 

significant decrease in reaction time with increasing value for matched-value options. These 

findings are readily predicted by a value-sensitive model, but are not predicted by many 

classical models, except under implementations or assumptions that we discuss in our final 

remarks.

2 Methods

2.1 Human Perceptual Decision Task

For the Human Perceptual Decision Task, all procedures were approved by the University of 

Sheffield, Department of Psychology Ethics Sub-Committee (DESC), and carried out in 

accordance with the University and British Psychological Society (BPS) ethics guidelines. 

Subjects gave their informed consent before participation. The sample size was chosen to be 

similar to that of Teodorescu et al. (2015); we examined the behaviour of 9 human subjects 

(1 male, mean age = 18.8 years, SD = 1.64). All subjects had normal or corrected-to-normal 

vision and participated voluntarily in the experiment in exchange for course credit. Each 

subject was tested in a single sixty minute session.

Stimuli were programmed in Matlab, using the Psychophysics Toolbox extensions 

(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997), and were presented on a Mitsubishi 

Diamond Pro 2070sb 22 CRT monitor. Materials and procedure were similar to those used 

by Teodorescu et al. (2015), with the only exceptions being the addition of the equal-

alternatives conditions, and the elimination of trial by trial feedback.

As done by Teodorescu et al. (2015), we defined as ‘multiplicative’ the condition that held 

the same ratio between the two alternatives as in a baseline condition while increasing the 

overall value, and we defined as ‘additive’ the condition in which the difference between the 

two alternatives was kept constant as in a baseline condition while the overall value of the 

alternatives was increased.

Stimuli consisted of two homogeneous, round, grey patches on a black background. The 

width of each patch was 1.2 cm; the distance between the centres of the two grey patches 

was 6.2 cm. A fixation cross was positioned between the two patches. The baseline array 

consisted of grey levels normally distributed around means of 0.4 and 0.3 (scale: 0 to 1.0), 
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the multiplicative condition around means of 0.6 and 0.45, the additive condition of 0.6 and 

0.5 and the four equal alternatives conditions were distributed respectively around means of 

0.3, 0.4, 0.5 and 0.6; all conditions had a standard deviation of 0.1. On each frame, a 

Gaussian random variable with mean 0 and standard deviation of 0.01 was added to the 

mean grey level of each patch. If the final computed grey level was below 0.1, it was 

rounded to 0.1. The screen had a refresh rate of 60 Hz and subjects were positioned at 57 cm 

with their head on a chin rest. Order presentation of the two grey patches was counter-

balanced for each subject. In the remainder we will refer to the four equal-alternatives 

conditions of increasing value with regards to their intensity (i.e., condition 0.3, condition 

0.4, condition 0.5 and condition 0.6). Typical stimuli and value luminance distributions for 

the two alternatives are represented in Figure 1.

2.1.1 Procedure—The two grey patches were presented simultaneously on the screen and 

subjects were asked to decide which of the two was brighter by pressing ‘left’ or ‘right’ on a 

keyboard using their left and right index fingers. One second after giving a response they 

were presented with a new trial. Subjects were not informed about the presence of equal-

alternatives conditions or about the presence of a multiplicative and additive condition. 

Subjects performed 1400 trials of which 320 (22.9 %) were baseline trials and 180 (12.9 %) 

for each of the remaining conditions. After each block of 60 trials, subjects were asked to 

take a break and were presented on the screen with their accuracy and reaction times for the 

block. Accuracy was only computed for non-equal alternatives trials. Subjects were 

instructed to be as fast and accurate as possible and to maintain their fixation on the cross at 

the centre of the screen throughout each block. Before the experiment they were presented 

with 14 training trials (2 trials for each condition) to familiarise them with the task. No 

feedback was provided after each trial. No additional conditions or measures were collected.

2.2 Results of Human Study

No fast data were excluded from the following analyses, given that fast responses are 

particularly relevant for this study. However, we excluded slow responses over 3 seconds 

excluding in this way about 1 % of the data.

Recall that our interest is in the equal alternatives. To assess whether the effect of value on 

equal alternatives was consistent across subjects (Figure 2) we ran for each of the nine 

subjects a linear regression on mean RTs with value as predictor. Given the typical skewness 

of RTs data, for the regression analysis we used Box-Cox transformations of RTs (Entink, 

Linden, & Fox, 2009). For eight out of nine participants the regression slope was 

significantly non-zero; for one participant the regression slope had a non-zero trend. 

Estimates of the slope, and significance levels are reported in Table 1.

Regarding the baseline, the additive and the multiplicative conditions, in an attempt to 

replicate the results of Teodorescu et al. (2015), we show for each participant mean RTs, and 

mean accuracy, Figure 3, with bars representing 95% confidence intervals of the mean. In 

interpreting a graph that shows 95% confidence intervals, when a confidence interval does 

not overlap with a specific value, it is possible to conclude that there is a statistical 

difference between the estimates of the values of interest at a false negative rate equal or 
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lower than .05. For example, for the first participant, for mean RTs the graphs show that for 

the additive condition the subject was significantly slower than for the baseline or the 

multiplicative condition. For the multiplicative conditions the first participant did not differ 

from the baseline in mean RT. Regarding accuracy levels, the trend is consistent across 

subjects with subjects being generally less accurate for the additive condition compared to 

the baseline or the multiplicative, while the multiplicative condition remains the same as the 

baseline. Generally the accuracy of subjects is high especially for the baseline and the 

multiplicative condition with participant 1 and 3 being at ceiling level for all conditions. 

Regarding RTs however, there is no consistent pattern in how decision time varies across the 

three unequal conditions.

2.3 Experiment on Monkeys

2.3.1 Basic Procedures—The basic procedures used in this study were based on existing 

protocols we have used for other experiments (Blanchard, Pearson, & Hayden, 2013). All 

procedures were approved by the University of Rochester Institutional Animal Care and Use 

Committee and were designed and conducted in compliance with the Public Health 

Service’s Guide for the Care and Use of Animals. Four male rhesus monkeys (Macaca 
mulatta) served as subjects. Each animal was outfitted with a small prosthesis using a 

standard technique (Hayden, Nair, McCoy, & Platt, 2008). Animals received analgesics and 

antibiotics after all surgeries. Animals were slowly habituated to laboratory conditions and 

trained to perform oculomotor tasks for liquid reward. Standard reinforcement training was 

used with only positive rewards; punishment was never used, nor was aversive conditioning.

In each session, the animal was transported from the colony at the University of Rochester to 

the testing room, about 100 feet away in the same building. The testing room was built 

specifically for primate studies and houses a computer screen and floor plate for firm 

mounting of the ergonomically designed primate chair (Crist). Animals made all task-

relevant decisions using gaze shifts to selected targets. Horizontal and vertical eye positions 

were sampled at 1000 Hz by an infrared eye-monitoring camera system (SR Research). 

Stimuli were controlled by a computer running Matlab (MathWorks) with Psychtoolbox 

(Brainard, 1997) and Eyelink Toolbox (Cornelissen, Peters, & Palmer, 2002).

A standard solenoid valve controlled the duration of water delivery (Parker). We estimated 

the precision of fluid volume delivered by the solenoid across the range of open time 

commands used in this study. All reward volumes were measured and confirmed. Fluid 

access was controlled outside of experimental sessions.

2.3.2 Monkey Behavioural Task—We used a two-alternative forced choice task to study 

the effect of overall magnitude of the decision variable on reaction time in macaques. The 

task is a computerized implementation of a simple economic choice task, of the type we and 

others have long used. Our task uses the same basic structure as several other tasks in the 

lab, including those used to study risk (Blanchard, Wilke, & Hayden, 2014), intertemporal 

choice and foraging (Blanchard & Hayden, 2015), and curiosity (Blanchard, Hayden, & 

Bromberg-Martin, 2015). The key novel elements of this task were the use of simultaneous 

option presentation with speeded responses. We used a computerized presentation, with a 
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standard LCD monitor placed 144.8 cm (57 inches) inches in front of the monkey in a 

darkened room. Screen resolution was 1024×768. All trials were identical aside from the 

specific values and colours used. On each trial, monkeys first fixated on a small white 

central spot (50 px diameter, 200 ms duration) to indicate their willingness to initiate the 

trial. Successful fixation led to the immediate presentation of two choice options; monkeys 

were allowed to select the choice option (by shifting gaze to it) immediately; no minimum 

initial fixation was required, nor were monkeys required to look at both options before 

making a choice. The computer selected two options independently and at random, with a 

uniform distribution. It then presented them 300 pixels to the left and right of the central 

spot. Both stimuli were squares (200 pixels wide) in one of 10 colours. The colors we used 

were red, off-white, orange, indigo, yellow, blue, lime green, pink, purple and cyan. These 

colours indicated the size of the reward offered by this option, according to the following 

scheme: red: 50¼L, off-white: 60¼L, orange: 66¼L, indigo: 100¼L, yellow: 110¼L, blue: 

132¼L, lime green: 200¼L, pink: 220¼L purple: 240¼L, and cyan: 264¼L. We chose these 

particular reward values carefully to allow us to have several ratios with different 

magnitudes. Thus, while subjects saw trials in all possible combinations of the above 10 

stimuli, we were particularly interested in subsets of trials that form the focus of our 

analyses. Subjects had extensive experience with the reward-colour mappings of most 

colours in this hierarchy of rewards from previous experiments (specifically: red, orange, 

yellow, blue, lime green, purple and cyan; Blanchard & Hayden, 2015; Strait et al., 2016). 

To ensure that this familiarity did not introduce any special bias, we extensively familiarized 

our subjects with the rewards offered by new colours in several training sessions prior to 

testing. Following presentation, the subject then selected an option by shifting their gaze 

toward it. Subjects were required to maintain fixation on their choice for 300ms. Failure to 

maintain fixation led to deselection of the option and returned the monkey to the choice 

state. Thus, monkeys were allowed to inspect the options without committing to them if they 

wanted. Once the subject successfully completed fixation, the reward was given and an inter-

trial interval of 1 s, 1.5 s, or 2 s began. The particular ITI on a given trial was selected at 

random from a uniform distribution. Options remained on the screen during reward delivery 

and throughout the inter-trial interval. Typical stimuli and reward values for the two 

alternatives are represented in Figure 4. No additional measures or conditions were 

collected.

2.4 Results of Monkey Study

All subjects initially performed over 9000 trials of this task (subject B: 9132 trials, subject 

H: 11652 trials, subject J: 11150 trials, subject K: 10230 trials). The exact number of trials 

performed by each subject was constrained by the subject’s willingness to work on any 

given day, and the need to start them on different tasks. Monkeys performed anywhere 

between approximately 800 and 1,200 trials per day, depending on their motivation. Session 

length was entirely determined by the monkeys: sessions were terminated when monkeys 

stopped performing the task for a considerable period of time. Subjects were highly accurate 

in their choices (overall accuracy: 85.41%; subject B: 87.64%; subject H: 87.69%; subject J: 

88.93%; subject K: 77.01%). These values are all significantly greater than chance (two-

sided binomial test, all p < 0.0001). No fast data were excluded from the following analyses 

but we removed the slowest 0.5 % of trials per subject, which represents unreasonably slow 
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RTs. Given the variability across subjects in mean RT, we could not use a single common 

value for an upper cutoff as done for the human data.

Our condition of interest is in the condition for which the ratio is 1, Figure 5, meaning that 

the two alternatives that the subject were presented with were equal in value – hence, 

subjects were presented with two identical squares. For these conditions, as done for the 

human experiment, we ran for each of the four subjects a linear regression on RTs with value 

as predictor. For three subjects the regression slope was significantly non-zero while for one 

subject it was non significant, although Figure 5 shows a non-zero, negative trend. Estimates 

of the slope, and significance levels are reported in Table 2; also in this case, results are 

based on Box-Cox transformation of RTs (Entink et al., 2009).

Regarding unequal alternatives, in the Appendix we show for each subject mean RTs with 

bars representing 95% confidence intervals for all those ratio conditions for which more than 

three magnitude levels were present, separately for each participant; Figure A1, Figure A2 

and Figure A3. We did not analyse these conditions as for these conditions it is not possible 

to assess whether the decrease in RTs is due to the increase in magnitude, or to scaling 

factors; however, except for the easiest discrimination (i.e., ratio =4), there is a decreasing 

trend in RTs when magnitude increases.

3 Discussion

Influenced by a model of value-sensitive decision-making (Pais et al., 2013) and by 

evolutionary and ecological arguments (Pirrone et al., 2014; Teodorescu et al., 2015) we 

have investigated the effect of the overall value of the alternatives on decision making, in 

humans and in monkeys. In line with these arguments, our initial prediction was that an 

effect of the overall value of the alternatives should be present also for ‘equal’ alternatives: 

fast decision times when the overall value of the alternatives is high and slow decisions 

when the overall value is low. Both the perceptual decision-making experiment on humans 

and the economic decision-making experiment on monkeys provide evidence that the overall 

value of the alternatives affects response times. These effects are not predicted by classical 

models of choice which integrate only differences between or ratios of alternatives. Value 

sensitivity might seem to be counter-intuitive if considered from a speed-accuracy trade-off 

perspective. From a speed-accuracy point of view, choices involving more valuable options 

may be more costly to make mistakes on, so we might expect decision making to shift 

towards a low error regime and, hence, be slower. Instead, we observe the opposite since 

when the overall value is increased, subjects are faster and could open themselves to making 

more errors. This result, for the value-based task is in line with a ‘satisficing’ perspective 

where a ‘good enough’ choice is preferred rather than the ‘best’, and as a consequence 

accuracy in decisions over small differences is sacrificed in favour of quick responses 

(Kacelnik, Vasconcelos, Monteiro, & Aw, 2011; Pirrone et al., 2014).

Unfortunately, due to a programming error, in our experiment the display screen was not 

linearised with respect to brightness. This means that our results hold for physical rather 

than perceived multiplicative and additive shifts with respect to the baseline. As a 

consequence, our results on non-equal alternative conditions are not directly comparable to 
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those of Teodorescu et al. (2015). For example, they found a difference in RTs between the 

baseline and multiplicative conditions which we did not, probably due to our stimuli being 

shifted by a smaller physical amount. Our results for the multiplicative and additive 

conditions coincide with what is predicted given the non-linear increase in brightness. 

However, the equal alternative conditions, which are the focus of our work – and, 

importantly, are absent from Teodorescu et al. (2015), and thus completely novel – do not 

suffer from issues related to linearisation. The consistency across subjects for these 

conditions, as shown in Figure 2, represents a simple but effective test of value-sensitivity in 

human perceptual decision-making for deadlock breaking.

Relevant to our monkey experiment, regarding the unequal conditions (i.e., the ratio between 

the two alternatives is not 1), no analyses were performed. These conditions were presented 

to allow subjects to focus on the task; clearly an experiment consisting only of equal 

alternatives would be unreasonable as for all trials each choice would be random by 

necessity. Moreover, these unequal conditions do not allow to test for value sensitivity given 

that when the ratio between two alternatives is kept constant but the overall value is 

increased, also the discriminability between the two alternatives increases -assuming 

constant noise-resulting in decreasing RTs. This means that although for unequal alternatives 

RTs generally decrease as magnitude increases, it is not possible to dissociate the effect of 

magnitude from the effect of increased disriminability between the two alternatives. 

However, also for the monkey data the presence of equal alternatives conditions (e.g., 

ratio=1) allows us to test and confirm value sensitivity in monkey reward-based decision 

making.

A strength of presenting both sets of data using different species and domains is that this 

finding seem to suggest that value guides decision making, regardless of the specific 

domain. We believe that this supports the idea of a single common mechanism underlying 

decision making that given evolutionary pressures is value sensitive for perceptual stimuli 

and for rewards (Pirrone et al., 2014; Teodorescu et al., 2015).

Our point, argued in Pirrone et al. (2014), is that most naturalistic decisions are value-based 

rather than accuracy-based, in the sense that decision-makers are rewarded by the value of 

the alternative chosen, regardless of whether it was the best available. Although decision-

making is traditionally studied within the speed-accuracy trade-off perspective, this 

alternative viewpoint suggests that a speed-value trade-off (Pirrone et al., 2014) could be the 

most relevant decision trade-off to manage in various naturalistic settings (Bateson & 

Kacelnik, 1998). We believe that the value-sensitivity shown in simple tasks such as those 

presented in this paper is a signature of this evolutionarily-plausible strategy.

These findings stand in contrast to celebrated models of choice. For example, the Drift 

Diffusion Model (Ratcliff & McKoon, 2008) assumes that the subject integrates difference 

in evidence supporting two alternatives until a decision boundary is crossed and a decision is 

made in favour of that alternative. This reliance on evidence difference rather than evidence 

value entails predictions of equal RTs for choices between two options of equal difference 

regardless if they are two high value options or two low value options.
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Theoretically, value sensitivity of the kind we have demonstrated here can be explained by a 

number of models in addition to the one we took as our starting point (Pais et al., 2013). 

Teodorescu et al. (2015) show that under the neurally plausible assumption that processing 

noise increases with stimulus value, then a difference-based diffusion model becomes value 

sensitive and can make similar predictions. Other computational models of choice such as 

the Leaky Competing Accumulator (Usher & McClelland, 2001, LCA) can also give rise to 

similar patterns, as directly demonstrated in Teodorescu et al. (2015). The LCA at the early 

stages of accumulation shows a sensitivity to the overall value of the alternatives and at the 

later stages approximates a DDM (Bogacz et al., 2006), hence it is a value sensitive model. 

At the same time, other models such as sequential choice ‘race’ models (as compared to 

models in which the decision maker explicitly compares options) in which agents choose an 

option that exceeds a fixed threshold of acceptability (Kacelnik et al., 2011) are in line with 

the value sensitive reaction time results presented here. Further theoretical effort should be 

made to determine which empirical data on value-sensitivity can be explained by which 

models, and attempt to discriminate between them on this basis; an extensive, though surely 

not complete, model comparison effort of this nature was performed by Teodorescu et al. 

(2015). As noted in earlier work, the nonlinear dynamics of models that explicitly 

implement value-sensitive decision-making give rise to a further prediction, of decision 

hysteresis (Pais et al., 2013), which may motivate further experimental investigation.

Our results were inspired by a model of choice that involves explicit mutual inhibition in 

economic and perceptual decisions. Neural activity in several reward regions in the brain 

shows evidence of mutual inhibition during economic decisions. These regions include the 

ventromedial prefrontal cortex (Strait, Blanchard, & Hayden, 2014), ventral striatum (Strait, 

Sleezer, & Hayden, 2015), orbitofrontal cortex (Padoa-Schioppa, 2011), dorsal premotor 

area (Pastor-Bernier, Tremblay, & Cisek, 2012), and parietal cortex (Louie, Grattan, & 

Glimcher, 2011). Human neuroimaging results also support this (Hunt, Behrens, Hosokawa, 

Wallis, & Kennerley, 2015; Hunt et al., 2012; Jocham, Hunt, Near, & Behrens, 2012). While 

a direct link between this literature and the present study remains speculative, the similarity 

is nonetheless striking. Future work will be required to determine whether these neural 

processes instantiate the mechanism that our investigation was motivated by.

In conclusion, we hypothesise that far from being an artefact of imperfect implementation, 

longer RTs with low-value alternatives and shorter RTs with high-value alternatives are 

diagnostic of an adaptive decision strategy for the uncertain environments faced by decision 

making systems, at different level of biological complexity, and in various domains.
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Appendix

Figure A1. 
Mean RTs for conditions with constant ratios of increasing magnitude for each subject. Bars 

represents 95% confidence intervals. The red (straight) line represents the linear regression 

line on mean RTs. Top: ratio =1.1. Bottom: ratio =1.2.
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Figure A2. 
Mean RTs for conditions with constant ratios of increasing magnitude for each subject. Bars 

represents 95% confidence intervals. The red (straight) line represents the linear regression 

line on mean RTs. Top: ratio =1.32. Bottom: ratio =1.67.
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Figure A3. 
Mean RTs for conditions with constant ratios of increasing magnitude for each subject. Bars 

represents 95% confidence intervals. The red (straight) line represents the linear regression 

line on mean RTs. Top: ratio =2. Middle: ratio =2.2. Bottom: ratio =4.
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Figure 1. 
Top (a) Time course of an experimental trial; the stimulus remained on screen until subjects 

responded and 1 second after that subjects were presented a new trial. Bottom-left (b) 

Luminance value distributions for the target (red; distribution on the right) and non-target 

(black; distribution on the left) alternatives. In the baseline condition alternatives had a mean 

of 0.4 and 0.3 respectively, hence a difference of 0.1 and a ratio of 4/3. In the additive 

condition, alternatives had a mean of 0.6 and 0.5 respectively, hence maintaining the same 

difference of 0.1 as in the baseline condition but giving a ratio of 6/5. In the multiplicative 

condition alternatives had a mean of 0.6 and 0.45 respectively, hence a difference of 0.15 but 

same ratio of 4/3 as in the baseline condition. Bottom-right (c) Equal alternative conditions 

of increasing value, respectively 0.3, 0.4, 0.5, 0.6.
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Figure 2. 
Mean RTs for the equal alternatives conditions of increasing magnitude for each subject 

(human study). Bars represents 95% confidence intervals. The red (straight) line represents 

the linear regression line on mean RTs.
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Figure 3. 
Left: mean RTs for the baseline (b.), multiplicative (m.) and additive (a.) conditions for each 

subject. Bars represents 95% confidence intervals. Right: mean accuracy levels for the 

baseline, multiplicative and additive conditions for each subject.
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Figure 4. 
Time course of an experimental trial and reward values for the two alternatives for the 

monkey experiment. RGB values for stimuli were as follows: – red: [255 0 0] – off-white: 

[255 218 185] – orange: [255 102 0] – indigo: [78 90 200] – yellow: [255 255 0] – blue: [0 0 

255] – lime green: [0 255 0] – pink: [250 128 114] – purple: [160 32 240] – cyan: [0 255 

255] – white (fixation dot): [255 255 255].
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Figure 5. 
Mean RTs for the equal alternatives conditions of increasing magnitude for each subject 

(monkey study). Bars represents 95% confidence intervals. The red (straight) line represents 

the linear regression line on mean RTs.
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Table 1

Estimate of slope, t statistic, and p value for the linear effect of value on RTs for the equal alternatives 

conditions (human participants).

slope est. t stat. p. value

participant 1 −.042 −2.215 .027

participant 2 −.033 −2.279 .023

participant 3 −.093 −5.494 .000

participant 4 −.040 −2.410 .016

participant 5 −.025 −1.756 .080

participant 6 −.039 −2.774 .006

participant 7 −.024 −2.115 .035

participant 8 −.027 −2.661 .008

participant 9 −.044 −2.441 .015
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Table 2

Estimate of slope, t statistic, and p value for the linear effect of value on RTs for the equal alternatives 

conditions (monkey participants).

slope est. t stat. p. value

subject B −.002 −6.477 <.001

subject H −.001 −9.516 <.001

subject J −.001 −3.361 .001

subject K <−.001 −.133 .894
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