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Resurgent outbreaks of vaccine-preventable diseases that have previously

been controlled or eliminated have been observed in many settings. Reactive

vaccination campaigns may successfully control outbreaks but must necess-

arily be implemented in the face of considerable uncertainty. Real-time

surveillance may provide critical information about at-risk population and

optimal vaccination targets, but may itself be limited by the specificity of

disease confirmation. We propose an integrated modelling approach that syn-

thesizes historical demographic and vaccination data with real-time outbreak

surveillance via a dynamic transmission model and an age-specific disease

confirmation model. We apply this framework to data from the 1996–1997

measles outbreak in São Paulo, Brazil. To simulate the information available

to decision-makers, we truncated the surveillance data to what would have

been available at 1 or 2 months prior to the realized interventions. We use

the model, fitted to real-time observations, to evaluate the likelihood that can-

didate age-targeted interventions could control the outbreak. Using only data

available prior to the interventions, we estimate that a significant excess of

susceptible adults would prevent child-targeted campaigns from controlling

the outbreak and that failing to account for age-specific confirmation rates

would underestimate the importance of adult-targeted vaccination.
1. Introduction
Reports of resurgent outbreaks of vaccine-preventable diseases following long

periods of relative absence are increasingly common [1–4]. Several factors

may contribute to the occurrence of such outbreaks. McLean & Anderson [5]

predicted that such outbreaks should be expected because of the ‘honeymoon’

phenomenon following the introduction of vaccination, whereby post-

vaccination cohorts no longer experience high rates of natural immunization

to supplement population immunity following vaccination activities [6].

Further, population-level vaccination rates may decline over time as immigration

from areas of low vaccination coverage lead to a build-up of susceptible individ-

uals, or the reduction in individual infection risk [7] leads to apathy about

vaccination within the population. Also, local stochastic extinction may result in

temporary breakdown of local transmission, even though populations remain

susceptible to subsequent outbreaks upon the reintroduction of infection [8].
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Increasingly, in the event of a measles outbreak, outbreak

response immunization (ORI) is recommended as an inter-

vention. The goals of these ORIs are twofold: (i) to protect

high risk groups (i.e. young children) and (ii) to attenuate

the current outbreak [9,10]. To achieve the former goal, ORI

campaigns routinely target children 6–59 months of age

[9]. To achieve the latter goal, the campaign must reach

some target level of immunization (Pc)—i.e. a percentage

reduction of the susceptible population—such that effective

reproductive number, Re, will be below 1 and the outbreak

will end. From the standard susceptible–infected–removed

(SIR) model, this level of immunization is Pc ¼ 1 2 1/Re

[11]. To identify this target coverage and appropriately plan

a campaign, one must estimate both the value of Re itself,

which determines the necessary reduction of the susceptible

population required to end the outbreak, and the age distri-

bution of the susceptible population, which allows us to

identify the critical age classes to be targeted in a campaign.

For example, if Re ¼ 1.5 one must then reduce the susceptible

fraction by 33%; if 80% immunization of susceptibles in the

target age groups can be achieved (considering both cam-

paign coverage and vaccine efficacy), then at a minimum,

the intervention should target the first a age groups whose

summed proportion
Pa

i¼1 si
� �

=S of the susceptible population

S exceeds 0.33/0.8 ¼ 0.41.

Experience with past outbreaks can provide guidance

about likely values of Re [12] and the likely distribution of

the susceptible population [13,14]. However, in the case of

resurgent outbreaks, which follow periods of relatively low

measles incidence, there may be insufficient data on which

to base estimates of Re. In these settings, it is the current out-

break itself which may provide the most relevant empirical

information [12,15,16]. However, clinical confirmation of

measles cases through case-based surveillance systems has

relatively low specificity, particularly in settings of low

prevalence [17–20] when other illnesses that result in fever

and rash (e.g. rubella, Dengue) may be misdiagnosed as

measles [18]. Given that the various aetiologies of febrile

illness may disproportionately affect different age classes,

reliance on a clinical definition alone may result in a

biased assessment of the age classes at risk [12,17]. Further,

misdiagnosis of cases may bias the assessment of the rate

of increase of total cases and lead to a biased estimate of

Re and hence the vaccination coverage necessary to limit

the outbreak. Though serological confirmation of measles

cases is preferred to clinical confirmation, resources often

limit the proportion of clinical cases that can be confirmed

by serology in outbreak settings in time to be of use to

decision-makers.

A variety of methods are available to estimate Re from

early surveillance data [12,21–23]. The use of mathematical

modelling to estimate the age distribution of the susceptible

population during an outbreak is rare; decisions about age

targeting have been classically based on prior experience or

early evaluation of cases confirmed earlier in the outbreak

[24]. Here we present an epidemic model that uses serological

confirmation on a subset of cases to estimate age-specific

confirmation, and use these estimates to correct the observed

number of reported cases before being used to estimate

epidemic parameters.

The age distribution of the susceptible population is

usually unknown at the start of a measles outbreak. The

mean and variance of the age distribution of susceptible
individuals are expected to increase as the prevalence of

infection declines [13,25] and during periods of measles

absence [12]. As a result, historical surveillance data may be

misleading with respect to the current distribution of suscep-

tibles. Initial estimates of the susceptible population can be

reconstructed from demographic rates, historical records of

routine and supplemental vaccination coverage, and measles

incidence [26]; however, uncertainty in these rates and

historical incidence mean that a priori estimates of the sus-

ceptible population may be significantly biased. Further,

lack of data on migration, heterogeneity of vaccination

coverage, and clustering of susceptibles means that these

estimates will be highly uncertain in the best of circum-

stances. The 1997 measles outbreak in São Paulo, Brazil,

presented in detail below had many more adolescent and

adult cases than was expected based on historical rates

[27]. This pattern of unexpectedly wide age distributions of

cases has been recently seen in outbreaks in Malawi [28]

and Mongolia (http://www.wpro.who.int/mongolia/media-

centre/releases/20160505-measles-outbreak-faqs/en/).

This work comprises a retrospective analysis of a resur-

gent measles outbreak in São Paulo, Brazil in 1996–1997.

This outbreak followed several years of relatively low measles

incidence as a result of both routine and supplemental

measles vaccination. Brazil began its national immunization

plan in 1973, with a single dose of measles vaccine. In 1992,

Brazil introduced a nation-wide recommendation of a

second routine dose of measles vaccine, while adopting a

goal of measles elimination by the year 2000. Also beginning

in 1992, Brazil began conducting national supplemental

measles vaccination campaigns. Notably, São Paulo state

conducted a restricted campaign in 1992, targeting children

between the ages of 9 months and 10 years (compared to a

9-month-to-14-year target elsewhere in the country) and

did not participate in a 1995 national campaign targeting

children between the ages of 1 and 3 years. The outbreak

itself resulted in over 30 000 confirmed cases in São Paulo

State, with an unexpectedly high proportion of cases in

adults; 60% were in individuals greater than 20 years of

age. Several limited vaccination campaigns targeting

children under 4 years of age, health workers, and some

adults were implemented between June and August, prior

to a widespread campaign targeting all children between 6

months and 4 years of age that was conducted in August

of 1997. As a consequence of the broad age distribution of

susceptibles, typical childhood-based ORIs may not have

resulted in sufficient immunity to limit the outbreak. Follow-

ing the outbreak, Brazil implemented a Supplementary

Emergency Measles Action Plan in 1999 with significant

increases in surveillance, case investigation and rapid

response [29]. Between 2001 and 2013 all cases that occurred

in Brazil were attributed to importations. During 2013–2014

there was an outbreak of measles in Ceara, Brazil [30]. This

outbreak was confirmed to have ended after the last case

was registered in July 2015 and in September 2016 the Inter-

national Expert Committee for Documenting and Verifying

Measles, Rubella, and Congenital Rubella Syndrome Elimin-

ation in the Americas declared measles eliminated in the

whole of the Americas.

We created a novel statistical model that combines an

a priori model of the susceptible population based on available

immunization coverage information, a time-series model of

the progression of the outbreak, and an age-specific model

http://www.wpro.who.int/mongolia/mediacentre/releases/20160505-measles-outbreak-faqs/en/
http://www.wpro.who.int/mongolia/mediacentre/releases/20160505-measles-outbreak-faqs/en/
http://www.wpro.who.int/mongolia/mediacentre/releases/20160505-measles-outbreak-faqs/en/
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of IgM serological confirmation of suspected cases to estimate

Re and the age distribution of the susceptible population. To

illustrate how real-time surveillance could be applied to

inform the design of ORI age targets, we generated estimates

of Re and the resulting ORI target recommendations at both 1

and 2 months prior to the vaccination campaign that was con-

ducted on 15 August. We argue that a flexible approach to

ORIs can better incorporate the information gained in the

early stages of an outbreak to identify campaign age targets

and that unforeseen biases in clinical diagnosis can be miti-

gated through the incorporation of serological confirmation

and high quality surveillance data.
.Soc.Interface
15:20170575
2. Methods
2.1. Data
Case-based records of individuals presenting with clinical

measles symptoms (fever, rash, and at least one of the following

symptoms: cough, conjunctivitis or coryza [17]) during the calen-

dar year of 1996 were provided by the Ministério da Saúde

(Ministry of Health) in Brazil. Fields for each record included

the county in which the case presented, reporting date, age in

months or years, and the results (positive, negative or inconclu-

sive) of a serological test for measles specific IgM, if one was

conducted. After limiting the data to cases presenting in urban

São Paulo and discarding those with incomplete records, there

were 10 810 cases presenting with clinical symptoms only and

23 699 cases with serological tests, of which 1067 were discarded

due to lack of reagent or improper collection and thus treated as

clinical cases.

The age distribution of the population in São Paulo was

extrapolated from the decadal census. Historical rates of routine

vaccination coverage were taken from http://apps.who.int/

gho/data/node.main.A826.
2.2. Confirmation bias model
We specified a structured case confirmation submodel to retro-

spectively determine the age group-specific probabilities of

laboratory confirmation (i.e. laboratory positive for measles

specific IgM) for measles in São Paulo, conditional on clinical

diagnosis. Individual laboratory confirmation events ci were

modelled as Bernoulli random variables, with the probability

of confirmation being allowed to vary by age group:

ci � Bernoulliðpa½i�Þ,

where a[i] denotes the age group for the individual indexed by i.
There were 16 age groups, the first 15 of which were 5-year age

intervals [0, 5), [5, 10), . . ., [70, 75), with the last interval including

all individuals 75 years and older. Since our choices of age group

boundaries were arbitrary, we allowed the probabilities of adja-

cent groups to be correlated with one another. To this end, the

transformed set of probabilities was modelled as a multivariate

normal random variable:

bðconfÞ � Nðm, SÞ,

where the transformation is the logit (logit( p) ¼ log[ p/(1 2 p)]),

which serves to convert probabilities (defined on the [0, 1]

interval) to the real line:

logit( paÞ ¼ bðconfÞ
a ,

where the corresponding covariance matrix was tridiagonal,

incorporating a correlation term r that was assumed, for simpli-

city, constant among groups. This was to allow confirmation
rates to be correlated between neighbouring age groups, since

the age boundaries were arbitrarily defined.

X
¼

s2 s2r 0 . . . 0 0
s2r s2 s2r . . . 0 0

0 s2r s2 . . . 0 0

..

. ..
. ..

. ..
. ..

.

0 0 0 . . . s2 s2r

0 0 0 . . . s2r s2

2
66666664

3
77777775
:

To estimate the true (latent) number of cases for each age

group Ia, the estimated probabilities were used to correct the

clinically reported cases nðclinicÞ
a , as modelled by a binomial distri-

bution, and the total number of cases then calculated as the sum

of this estimated value xðclinicÞ
a and the laboratory-confirmed

cases xðlabÞ
a :

xðclinicÞ
a � Bin(nðclinicÞ

a , pa)

Ia ¼ xðclinicÞ
a þ xðlabÞ

a :

The set of I ¼ fIagwas, in turn, used to inform the estimate of

the latent age distribution of the infected class. A natural prob-

ability distribution to model age classes is the multinomial

distribution, which is parametrized by a set of probabilities,

here corresponding to the expected proportion in each age

group; the corresponding prior for this vector of probabilities is

the Dirichlet distribution. These are specified by

f ðageÞ � Dirichletð1Þ
fIag � MultinomialðI, f ðageÞÞ,

where f(age) is a vector of age-specific proportions and 1 a vector

of ones, which is used as a non-informative prior for the

Dirichlet.
2.3. Disease dynamics model
2.3.1. Initial susceptible population
We used the population age structure in 1996 and the history of

vaccination (through routine immunization and campaigns)

prior to 1997 to estimate the initial number of susceptible indi-

viduals in each age class at the beginning of the 1997 outbreak.

We modelled the number of susceptible individuals in each

annual age class at the beginning of 1997 Sa,0 as a finite mixture

of local susceptibles SðLÞa,0 and excess susceptibles SðEÞa,0 , where

excess susceptibles are defined as those that cannot be predicted

from local demographic processes. We model local susceptibles

SðLÞa as a binomial draw from the São Paulo population:

SðLÞa � BinomialðNa, psÞ,

where Na is the population size in age class a and ps the realized

susceptibility. Uncertainty in this probability was specified with

a beta distribution having expected value ms, which was

calculated based on historical immunization activity in the city:

ms ¼ pðvaccÞpðSIAÞpðnatÞ

¼ ð1� 0:85VaÞ
Q2
j¼1

½1� cjIa,j� exp
Pa�1

y¼0

ua�y

" #
,

where p(vacc), p(SIA) and p(nat) are proportions of residual

susceptibility following routine vaccination, supplemental

immunization activities (SIA) and natural immunity, Va is the

routine vaccination coverage experienced by age class a when

they were eligible for routine vaccination between 9 and 12

months of age. We assume that efficacy of the routine dose is

85% [31],1 while SIAs conducted in 1987 and 1992 were conser-

vatively assumed to result in 80% reduction of susceptibles in

their targeted age classes [32]. Further, cj is the coverage of the

jth SIA and Ia,j is an indicator function that is 1 if age class a

was eligible for the jth SIA and 0 otherwise, and ui the force of

http://apps.who.int/gho/data/node.main.A826
http://apps.who.int/gho/data/node.main.A826
http://apps.who.int/gho/data/node.main.A826


rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20170575

4
infection in year i (i.e. the contribution of natural immunity). The

force of infection is assumed to be 1/A in the absence of vacci-

nation, where A ¼ L/R0 [11] is the mean age of infection in the

absence of vaccination, L is the life expectancy and R0 is the

basic reproduction number. The force of infection ui in the pres-

ence of vaccination is then approximated as (1 2 Va)/A [11]. The

basic reproduction number R0 is estimated below. We present an

analysis of sensitivity to assumptions about historical vaccination

coverage in the electronic supplementary material.

We modelled excess susceptibles using a data augmentation

approach. A latent number of susceptibles, constrained to a value

uniformly distributed between zero and 1 million, were added to

the model. These excess susceptibles were assigned an age distri-

bution, modelled as Gaussian with unknown mean mage and

standard deviation sage and added to the resident susceptibles

for a total susceptible estimate in the São Paulo population:

Sa ¼ SðLÞa þ SðEÞa . Because the number and distribution of excess

susceptibles were modelled as latent variables, the estimates of

their values were determined by the data, rather than being

specified using prior information. This provided a means of

accounting for infections that may not have been provided by a

local population of susceptibles, but potentially by a pool of

non-resident susceptibles migrating from areas of low immunity.

We also fit an alternative version of the model assuming no

excess susceptibles (i.e. the distribution of susceptibles is forced

to be consistent with local demographics), to assess the effect

of including excess susceptibles explicitly in our model.

We modelled the number of measles cases in each age class a
and time step t as a Poisson random variable:

Ia � Poisson Sa,t�1
It�1Ba

N

� �
,

where Sa,t21 is the number of susceptibles in age class a at time

t 2 1, It21 a row vector of the number of infected individuals

in each age class at time t 2 1, and Ba is the ath column of the

who acquires infection from whom (WAIFW) matrix. We

model the WAIFW matrix as an assortative matrix B

B ¼

b bd . . . bdk�2 bdk�1

bd b . . . bdk�3 bdk�2

bd2 bd . . . bdk�4 bdk�3

..

. ..
. . .

. ..
. ..

.

bdk�1 bdk�2 . . . bd b

2
666664

3
777775

that assumes that interaction among age groups declines expo-

nentially with difference in age. The basic reproduction

number, R0, in the model of the initial population size is taken

as the dominant eigenvalue of the matrix B.

Our assumed contact matrix structure is simple, reflecting the

fact that there is little information in the available data to inform

a more complex parametrization. Nevertheless, the decay par-

ameter allows for some flexibility in transmission dynamics; if

there is little difference in the contact rate among age groups,

the estimated d will be close to one, while lower (higher) contact

among disparate groups will result in d estimates less (greater)

than one. In previous work, Mossong et al. [33] used population

survey data to estimate contact rates within eight European

countries. Unfortunately, estimating a similar empirically

driven contact matrix for the São Paulo population was outside

the scope of this work. However, to examine the potential for

more realistic patterns of mixing to explain the dynamics of the

1997 outbreak, we conducted a sensitivity analysis using a

contact matrix for Brazil, calculated by [34]. For this, we used

the following formulation:

B ¼ bMa,

where M is the contact matrix of [34] and a is a constant, esti-

mated as a random variable in the model. a was assigned an

Exponential(0.1) prior, giving ample prior weight to any
plausible values it might take. Values of a near one would

imply that contact structure like that represented in M is relevant

for predicting the observed data, while values closer to zero

would eliminate age-specific transmission values, since all the

elements would converge to one.

2.4. Model fitting
Our model was fitted using data truncated at two different dates

during the outbreak, to simulate the information state at June 15

and July 15, 1997. These two dates, which include 3698 and 11

982 cases, respectively, represent two contrasting levels of avail-

able monitoring data on which to potentially base intervention

decisions. Hence, excluding any potential lags in reporting, the

model was fitted only to the information that would have been

available at those time points (this includes the estimation of

age-specific confirmation bias). Hence, four different management

scenarios were modelled:

— June 15 information state, adjusted for age-specific confirmation

bias

— June 15 information state, unadjusted for confirmation bias

— July 15 information state, adjusted for age-specific confirmation

bias

— July 15 information state, unadjusted for confirmation bias

All models were fitted using PyMC 2.3 [35], a software package

for the Python programming language that fits Bayesian statisti-

cal models using Markov chain Monte Carlo [36] sampling. Each

model was sampled for 50 000 iterations using a Metropolis–

Hastings sampling algorithm, with the first 40 000 samples

discarded conservatively as a warmup period, and the remaining

sample was assessed for lack of convergence using the Geweke

diagnostic [37]. Hence, all inference was based on the final

10 000 samples from each model run.

2.5. Evaluating outbreak response campaigns
The classic result states that a fraction pc . 1 2 1/Re of suscepti-

bles must be immunized (i.e. vaccinated and seroconverted) in

order to reduce Re , 1 [11]. Young children are conventionally

targeted in outbreak response vaccination campaigns because

they are, on average, more likely to be susceptible and to experi-

ence severe complications because of measles infection. In

populations with a long history of measles control, the age distri-

bution of susceptibles is frequently wider [25] and wider age

campaigns are often considered to reach larger proportion of sus-

ceptibles. As Re, and thus the pc, increases, then one might target

a wider age range to increase the proportion of susceptibles

immunized for a given coverage. Here, both the estimate of Re

and the age distribution of susceptibles are conditional on both

date of the estimate (June or July) and the model used (all clinical

cases or age-corrected). For each model, we calculated the neces-

sary vaccination threshold assuming a campaign that achieves

90% coverage of the target population and 95% efficacy. We

then evaluated whether there would have been empirical sup-

port on 15 June or 15 July that outbreak response campaigns

targeting individuals from 6 months to 5 years, 6 months to 15

years, and 6 months to 30 years, or a mixed strategy targeting

children 6 months to 5 years and adults 20 to 30 years would

have met this necessary target.
3. Results
The 1997 outbreak in São Paulo began in December 1996 and

spread throughout São Paulo State, peaking in August 1997

(figure 1a). The outbreak resulted in 25 393 total suspected

cases, of which 13 516 were confirmed by serology (IgM).
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The age distribution of cases was strongly bimodal, with 22%

of suspected and confirmed cases below 2 years of age and a

secondary mode at between 23 and 26 years of age

(figure 1b).

The probability of a clinical case being confirmed by posi-

tive IgM serology was strongly age dependent (figure 2).

Clinical cases less than 20 years were significantly more

likely to be IgM negative (posterior mean between 27% and

42%, figure 2); individuals between age 20 and 40 years

were significantly more likely to be IgM positive (greater

than 50%). The consequence of this bias is that the observed

age distribution of clinical cases over-represents the number

and proportion of childhood cases.

If we assume that the entire pool of susceptibles is from

the local population (no excess susceptibles), the best fit

model for 15 June data yields an estimate of R0 ¼ 57 (95%

credible interval: 54–60). This estimate is not consistent

with previously published estimates of R0 for measles

[38,39]; thus we interpret this as a result of poor model fit

and do not consider this model parametrization further (see

electronic supplementary material for details).

We fit the full epidemic model, including resident and

excess susceptibles, using data through either 15 June or 15

July under the assumption either that all clinical cases were

true measles cases or that true measles cases were a sub-set

of the reported clinical cases (i.e. corrected for confirmation

bias), where the confirmation rate was determined by

the age-specific confirmation model. The age distribution
estimate of total susceptibles (both local and excess) was simi-

lar at both observation points (figure 3a,b). The model fit

using the age confirmation model consistently estimated

larger numbers of susceptibles in the [0, 5) and [20, 25) year

age classes and fewer susceptibles in the [15,20) year age

classes (figure 3a,b). Estimates of R0 from the 15 July data

were 12.4 (95% CI 11.5–13.5) for the age confirmation model

and 12.75 (95% CI 12–13.5) for model fitted to data using

only clinical confirmation. The corresponding estimate

using data truncated to 15 June was 11.75 (95% CI 10–14)

and 11.5 (95% CI 10–12.5) for the clinical only and age

confirmation models respectively.

The effective reproduction number Re, which describes

the rate at which the epidemic spread in 1997 in a partially

immune population, was estimated to be clearly greater

than 1 for both 15 June and 15 July using the age confir-

mation model (figure 4). Notably, while the posterior mean

estimate for Re on 15 June was 1.125, the 95% credible interval

did not overlap the estimate that results from including the

data through 15 July. Ignoring the age confirmation model

and treating all clinical cases as measles cases yielded a 15

June estimate of Re ¼ 1.02 with a 95% credible interval

(0.95–1.08) that includes 1. Using all data through 15 July,

the estimate of Re was comparable, irrespective of whether

clinical cases were corrected using the age confirmation

model or not.

These differences in Re, with posterior means ranging

from 1.02 to 1.25 depending on time (June or July) and
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observation model (clinical or age-corrected), though small in

absolute value, reflect larger practical differences in the vacci-

nation response required to stop the outbreak. If we use these

estimates to calculate minimum vaccination thresholds

(assuming campaigns that reach 90% of the target population

and achieve 95% effectiveness), this establishes vaccination

targets ranging from 2 to 20% of susceptibles; conservatively

using the 95th percentile of the posterior distribution of Re

estimates, this shifts the target range to 8–24% (figure 5).

From this, we define an ORI campaign as sufficient if it is

expected to reduce the susceptible population by at least

the threshold amount. Based on the July estimates, neither

confirmation model predicts a 5-and-under strategy to be suf-

ficient for stopping the outbreak (figure 5). Using the June

estimates under the age confirmation model, there is the sug-

gestion that targeting children under 5 years would be

sufficient, while the June estimate fitted to the clinical cases

only predicts all strategies would be comfortably above the

threshold. In all cases, ORI strategies that target individuals

up to 15 or 30 years of age, as well as a mixed strategy that

targets children under 5 and adults between 20 and 30

years of age, are predicted to be sufficient to stop the

outbreak.
4. Discussion
The 1997 measles outbreak in São Paulo was unexpected,

having followed several years of high routine vaccination

coverage, SIAs, and relatively low incidence. Further, the

age distribution of cases, with a secondary mode among

adults, had not been observed in previous outbreaks. Thus,

while historical precedent often serves as a guide for out-

break response, in this case, such precedent would have
greatly underestimated outbreak risk and the vaccination

targets necessary to control the outbreak. Here we have

presented a novel approach for integrating real-time outbreak

surveillance into the evaluation of an evolving outbreak in

order to evaluate candidate response strategies. In doing so,

we have developed a model for interpreting clinical measles

surveillance that acknowledges that the correlation between

clinical measles symptoms and laboratory confirmation of

positive measles IgM serology is age-specific. Further, we

have shown that relying on clinical confirmation alone can

significantly bias inference about transmission rate (Re) and

the minimal vaccination targets required to stop an outbreak.

In the case of São Paulo in 1997, estimates of Re were simi-

lar as was the assessment of which campaign age targets

were sufficient to reduce Re below 1, regardless of whether

confirmation bias was corrected, when fitted to data on 15

July. Thus, while our proposed model accounting for age-

specific bias in serologic confirmation explicitly estimates

the uncertainty in clinical diagnosis, it results in little practi-

cal difference in the interpretation of risk Re or candidate

interventions on 15 July. However, using only the data avail-

able on 15 June, estimates based only on clinical confirmation

data would have grossly underestimated risk and over-

estimated the benefit of a vaccination campaign targeting

children below 5 years of age.

Although outbreak risk can be evaluated a priori,
outbreaks themselves are often the first indication of the

build-up of susceptibles or gaps in immunity. In 1997, the

age distribution of cases in São Paulo indicated a dangerous

gap in immunity among individuals between 15 and 35 years

of age. The SIA conducted in 1987, targeting children below

14 years of age, would be expected to have immunized indi-

viduals below 23 years of age in 1997; those older than 23

years would have been born prior to a national immunization

system in Brazil and would be expected to have experienced

natural infection during their childhood. We estimated that

excess susceptibles between 15 and 35 years of age may

have accounted for 63% of all susceptibles during the 1997

outbreak. We term these as excess susceptibles because they

are excess relative to the expected age distribution of suscep-

tibles based on historical rates of natural infection, routine

vaccination and SIAs. We are unable to positively identify

the source of these excess susceptibles; they may have been

the result of over-estimating the coverage of previous vacci-

nation programmes, or migrants from low coverage or low

transmission risk areas that were unlikely to be exposed to

vaccination or natural infection. While the former explanation
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is possible, insufficient vaccination coverage would be

expected to result in more circulating infection, which

would still likely result in exposure to natural infection, and

thus immunity, by adulthood. The latter explanation requires

that individuals were recent immigrants to São Paulo and

had not been exposed to either vaccination or natural infec-

tion as children in the region that they emigrated from.

Measles rarely persists endemically in small populations

below some critical community size [40,41]; thus it is possible

that recent migrants from small villages might have not been

exposed to natural infection. A case-control trial conducted

after the 1997 outbreak found that recent immigration to

São Paulo was a significant risk factor for measles infection

during the outbreak [27]. Further, immigration rates into

São Paulo in 1991 were highest among individuals between

15 and 30 years of age [42], which is consistent with the

age distribution of the excess susceptibles estimated by our

models. While this does not confirm that immigration or

gaps in prior immunization were the source of the adult sus-

ceptibles during the 1997 outbreak, this analysis does suggest

that these adult susceptibles may have played a significant

role in the outbreak; absent the excess susceptibles, Re at

the start of the outbreak would have been comfortably less

than 1. Other recent measles outbreaks have exhibited this

same age profile, with an unexpectedly large number of

adult cases (e.g. Malawi [28], Mongolia (http://www.wpro.

who.int/mongolia/mediacentre/releases/20160505-measles-

outbreak-faqs/en/), China [43]). Thus, strategies for monitor-

ing and targeting immunity gaps in adults (e.g. migrant

susceptibles, in this case) may be useful in preventing

future outbreaks. Moreover, outbreak response strategies

should consider adult-targeted vaccination when surveillance

indicates a large number of adult susceptibles.

Though our models account for the age distribution of sus-

ceptibles, we make very simplistic assumptions about

age-specific transmission; namely that within age-class trans-

mission is the same for all ages, and between age-class

transmission decays exponentially with difference in ages.

Important recent work has shown that age-specific mixing
rates are likely to vary considerably and may be culturally

specific [33]. It is possible that higher contact (and thus, trans-

mission) rates among adults mean that adult susceptibles

disproportionately contributed to this outbreak. Fitting an

age-specific transmission matrix with differential age-specific

rates would have greatly inflated the model complexity and

is beyond the scope of the present work, but may be worth-

while in cases where age-specific contact network structure

information is available [44]. In our sensitivity analysis

based on the contact matrix for Brazil estimated by [34], the

value of the exponent a for scaling the matrix was estimated

to be 0.01 (95% BCI ¼ [0.00, 0.04]). This resulted in the virtual

elimination of contact structure in favour of a constant trans-

mission parameter. Moreover, the estimate of R0 under this

parametrization was 52 (95% BCI ¼ [50, 55]), which suggests

a poor fit relative to what would be expected of a measles out-

break. Thus, we conclude that there is no support for a

structured generational matrix such as that presented by

[34] to have generated the observed patterns in the age distri-

bution of cases in this outbreak. However, we do not claim

that structured mixing was not happening in São Paulo,

only that it is not necessary to explain the age distribution

that was observed, nor is it preferred to a simpler model.

There are several potential explanations for the age-

specific serological confirmation bias for cases with clinical

symptoms. There are many aetiologies that may generate

fever and rash symptoms in young children [17–20], which

would increase the rate of false positives in children based

on clinical symptoms alone. Further, young children may

be more likely to be brought to clinic shortly after the onset

of symptoms, when IgM titres may not yet have reached

detectable levels. Regardless of the cause of this bias, the

result is that assessing the overall age distribution of cases

may tend to underestimate the role of adults if based on clini-

cal confirmation alone. Further, as the age distribution of

cases presenting with symptoms may change over the

course of an outbreak (in São Paulo, there were relatively

more young children near the start and end of the outbreak,

and more adults in the middle), clinical cases may reflect

http://www.wpro.who.int/mongolia/mediacentre/releases/20160505-measles-outbreak-faqs/en/
http://www.wpro.who.int/mongolia/mediacentre/releases/20160505-measles-outbreak-faqs/en/
http://www.wpro.who.int/mongolia/mediacentre/releases/20160505-measles-outbreak-faqs/en/
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time-varying confirmation and bias estimates of transmission

rates. If true, by correcting for age-specific confirmation bias,

we also necessarily correct for temporal variation in false

positives. We see the effect of this in the higher estimated

Re using the confirmation bias corrected model with the 15

June data (figure 4), relative to that of the clinical confir-

mation model; though the model predicts fewer true

measles cases (i.e. false positives are removed), the exponen-

tial increase from the start of the outbreak to 15 June is

steeper and this estimate is consistent with the higher Re

estimate from the longer time series available on 15 July.

While we have demonstrated the potential for integrating

real-time monitoring information to inform and improve

outbreak response, the ability to provide model-based predic-

tions is just one component for an operational system for

adaptive control of outbreaks. For example, our approach

does not take into account the investment of time and

resources needed to prepare for ORI, such as vaccine procure-

ment, microplanning, training or social mobilization. A

complete decision support system would fully integrate

costs and constraints into the planning process so that man-

agement objectives can be adequately met. However,

because we implemented our model using an extensible,

open-source Bayesian modelling framework (PyMC), one

can readily integrate it into a larger decision support

system, as appropriate.

This work highlights the value of an integrated approach

to model-based inference and prediction in supporting

decision-making for the control of measles outbreaks. We

used a Bayesian hierarchical model structure to integrate

three critical sources of uncertainty that are common in emer-

ging and re-emerging outbreaks: the structure and parameter

values of the underlying disease dynamics model, partial

observability of epidemic process due to imperfect reporting

or diagnostics, and the current level of risk due to uncertainty

in historical levels of vaccine coverage and efficacy. The full

model is comprised of component sub-models, which are

linked explicitly via conditional probability statements; this

results in parameter estimates and evaluation of candidate

vaccination targets that fully incorporate the uncertainty in

the dependent variables, ultimately yielding predictions

that more fully account for the lack of complete information

at hand for decision-making. For example, the likely presence
of a pool of excess susceptibles in the population was not evi-

dent based on historical immunization records, but was made

apparent only when this information was integrated with

outbreak monitoring data, via a realistic model of measles

dynamics. From this, the model predicted that only cam-

paigns targeting adults, as well as children, were likely to

be effective in stopping the outbreak, and this was evident

from data available as early as July 15. In practice, while tar-

geted efforts to vaccinate school children and adults were

made in 1997, before and after the August campaign target-

ing children between 6 months and 4 years, this analysis

suggests, retrospectively, that there may have been evidence

to support broader vaccination efforts targeting older age

groups. Despite the apparent complexity of the integrated

model, it was straightforward to implement and fit using

readily available, open-source software, which allowed us

to iteratively evaluate key assumptions regarding model

structure and prior information in terms of their influence

on model estimates and predictions. We believe this approach

holds promise as a structured decision-making tool for a var-

iety of disease outbreak scenarios, by efficiently incorporating

all available information and incorporating monitoring infor-

mation to provide robust decision support under uncertainty.
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Endnote
1We assume efficacy is a function of age, hence 85% at 9 months
(largely due to interference with maternal immunity), with higher
efficacy for older age groups.
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