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The dilution effect, where an increase in biodiversity results in a reduction in the

prevalence of an infectious disease, has been the subject of speculation and

controversy. Conversely, an amplification effect occurs when increased biodiver-

sity is related to an increase in prevalence. We explore the conditions under

which these effects arise, using multi species compartmental models that

integrate ecological and epidemiological interactions. We introduce three

potential metrics for quantifying dilution and amplification, one based on

infection prevalence in a focal host species, one based on the size of the infected

subpopulation of that species and one based on the basic reproduction

number. We introduce our approach in the simplest epidemiological setting

with two species, and show that the existence and strength of a dilution

effect is influenced strongly by the choices made to describe the system and

the metric used to gauge the effect. We show that our method can be general-

ized to any number of species and to more complicated ecological and

epidemiological dynamics. Our method allows a rigorous analysis of ecologi-

cal systems where dilution effects have been postulated, and contributes to

future progress in understanding the phenomenon of dilution in the context

of infectious disease dynamics and infection risk.
1. Introduction
There is increasing attention on the way in which ecological interactions in eco-

systems can influence the transmission of infectious disease agents, and the

impact that pathogens and parasites have on ecology. In particular, the connec-

tion between biodiversity and the transmission of infection has been a topic of

considerable scientific research and debate in recent years, focusing on the

vector-borne transmission of Lyme disease [1], as well as in its more general

sense [2–7]. That debate is essentially about the question of how, and to what

extent, loss of biodiversity in an ecosystem can lead to changes in infection trans-

mission, and potentially to changes in human zoonotic infection risk. The

so-called dilution effect (in its ‘inclusive’ sense [8]) is used to describe the idea that

infection increases in a specified host species when diversity decreases in the com-

munity of which that species is part. The name actually refers to the opposite idea:

greater diversity leading to a decrease in infection in the host species by ‘diluting’

the spread of infection. It remains unclear, however, under what circumstances a

more biodiverse community lowers infection transmission to a species, and under

what circumstances more biodiversity leads to increased transmission (referred to

as an ‘amplification effect’ in [8]), and which mechanisms underly such effects.

Discussion of the dilution effect is clouded by the multiple interpretations of

several of the relevant terms. For example, how should one measure ‘biodiver-

sity’? What is meant by ‘increased infection’, ‘increased transmission’ or

‘increased risk’? Do we mean, for example, increased prevalence of a specific

infectious agent in a specific host species, or increased size of the infectious sub-

population of that species, or an increase in the basic reproduction number (R0)
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for the system as a whole? Should infection transmission

increase in all species that are host to a given infectious

agent, or only in a limited number of species, and if limited,

what are the criteria (main host, reservoir host, host with

highest zoonotic infection risk)? Is transmission between indi-

viduals of a host species dependent more on the density of

infectious individuals, or more on the frequency of infectious

individuals? Is the infectious agent directly transmitted

between different host species, indirectly via environmental

contamination, or via an insect vector? What is meant by the

‘ecosystem’ in which these effects should be measured and

understood? The interpretation of all these aspects may well

influence whether or not a dilution or amplification effect is

said to occur in such circumstances, to what extent and gener-

ated by which underlying mechanisms. It is not surprising

therefore that there is a wide range of evidence and opinion

from experiments, field studies and mathematical models.

Some recent reviews and meta-analyses of previously pub-

lished studies highlight what is known, what is not known

and what is unclear [1,9–11].

Discussion in this area is also hindered by methodological

issues preventing an effective use of mathematical models.

Without a way to objectively, uniformly and robustly quantify

dilution and amplification, it remains difficult to study the pro-

blem and compare models, mechanisms and assumptions [8].

That this is important is shown in the examples in the present

paper, where it becomes clear that one has to be very precise

about what one assumes about the system and how one inter-

prets the above terms. Different interpretations give different

results, thus adding to confusion and controversy when com-

paring results from different studies. Here, we present a

structured approach to studying the dilution effect for infec-

tious disease agents in ecosystems, and three objective

metrics to quantify the effect. We present this in the simplest

possible setting, to allow us to introduce rigorous definitions

of dilution and amplification in an intuitive way, and to

allow analytic expressions. We also show how the definitions

generalize to systems with any number of species.

In contrast with most studies using models to investigate

the dilution effect, we explicitly integrate ecological and epide-

miological interactions between species, while recognizing

that any community of interacting species with an infectious

agent will consist of species that are host to that agent and

species that are not. The species that are not host to a particular

infectious agent may, nevertheless, influence transmission

dynamics among the host species in the same community

through ecological interaction, directly through feeding

relations or competition for resources, as well as indirectly

via their interaction in the ecosystem or the (local) food web.

The setting we use has previously been presented as an

approach to integrate ecological and epidemiological inter-

actions in one model, allowing for feeding relations and

competition between multiple species, where only a subset of

the species is host to the infectious agent under consideration

[12]. There we focused on characterizing R0, showing the

importance of both ecological and epidemiological stability

in determining when a community with the infectious agent

present can exist. We now adapt that model, restricting it

initially to two competing species, both hosts to a given

(micro-parasitic) infectious agent. This setting allows us to

introduce all relevant aspects while retaining simplicity and

clarity. We allow for frequency- and density-dependent trans-

mission of an infectious agent within and between host species,
and for density-dependent transmission via a common pool of

infection (see [13]). This latter mechanism can also be used to

approximate transmission via a vector [14]. For ease of

exposition we model the pathogen using an susceptible–

infectious (SI) model without recovery, but the method can

be easily extended to more complicated compartmental

descriptions of infection dynamics (SIR, SEIR, etc.). We

initially derive results where the two species compete for

resources, and the pathogen does not increase host mortality.

We then show how these results may be modified if the

species interact as predator and prey, and if infection

increases mortality. While a two-species model may be

regarded as representing the focal species and all other

species in the ecosystem lumped together, most real-world

applications would require the analysis of a larger number

of interacting species. Hence we conclude by indicating how

the analysis may be generalized to an arbitrary number

of species.
2. The two-host model
We introduce an approach to investigate hypotheses and mech-

anisms of dilution and amplification in ecosystems, as well as

metrics to quantify the effects when they occur. We do this in

a general framework, based on an earlier approach that

allowed for the study of invasion of infectious agents in food

webs and ecosystems, and of the way ecology and epidemiol-

ogy influence each other to determine invasion success [12].

For ease of exposition, and to derive explicit expressions, we

introduce our approach in the simplest setting of two interact-

ing species. We first present the framework and the method of

calculating appropriate metrics in a general setting with two-

host species and SI infection dynamics. In §§2.1–2.3, we

focus on different choices for modelling transmission within

this setting.

Consider an ecosystem where just two species (numbered 1

and 2) interact, and each species is a potential host of the same

infectious agent. Even here there are many choices to be made

that can influence ecological and epidemiological dynamics

and the occurrence and extent of dilution or amplification

effects. Can one or both species sustain the infectious agent

by itself? Do the species only compete for resources, or is one

a predator on the other, or are there other mechanisms of eco-

logical interaction? Is there between-species transmission and

how does this relate to within-species transmission? What is

the mechanism of transmission? What is the nature of contacts

between the individuals related to transmission (both within

the same species and between species)? What is the life history

of the two species and how does density dependence act on

various parts of that life history? How does infection influence

behaviour, survival, reproduction, competition and hence life

history? For many of the relevant factors mentioned here, the

level or strength may matter. Think, for example, of the level

of susceptibility and competence as a host for the infectious

agent, competitive ability or level of infectivity. It is clear, for

example, that the strength of predation of one species on

another, together with the size of R0 for an infectious agent

in the predator, determines whether the three species (preda-

tor, prey, infectious agent) can coexist (see [12] and other

papers cited therein).

There is in principle no choice that is prohibited in our

approach, but for exposition we start with some elementary



rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20170791

3
choices. Assume that the two host species compete for

resources, with the dynamics of their population densities

described by

dNi

dt
¼ niNi � miNi �Ni

X
j¼1,2

fijNj

for i ¼ 1, 2, with all parameters positive. Species i has

maximum birth rate ni and minimum death rate mi. The popu-

lation growth rate of species i is logistic with carrying capacity

(ni 2 mi)/fii in the absence of species j=i. The population

growth rate of species i is reduced by fijNj due to competition

for resources with species j.
When both species are present, steady-state solutions

satisfy the linear system

f11 f12

f21 f22

� �
N1

N2

� �
¼ n1 � m1

n2 � m2

� �
: (2:1)

As we are interested in studying the consequences of a

reduction in biodiversity, we need to define a measure for

quantifying changes in community composition. We designate

species one to be the focal host species of interest. We then

impose an increased mortality on species two, caused by

some unspecified factor or mechanism (for example, an

environmental or human-induced change in conditions, or a

predator specific for species two), resulting in a reduced popu-

lation density for that species. The interest is in gauging how

infection in species one responds to that change. Define

the (steady state) solutions of equation (2.1) to be Ni ¼ N*
i for

i ¼ 1, 2. Now suppose that the mortality of species two is

increased to m2 þ v, resulting in new values for the steady-

state population densities of each species. We can characterize

the change for the focal host species by defining

DN�1 ¼
N�2
N�1

dN�1
dN�2

¼ �f12N�2
f11N�1

:

This is the elasticity of the population density of species one to

changes in the population density of species two. We note that

due to the linearity of our model (equation (2.1)), DN�1 is inde-

pendent of the value of v. The derivative in the definition of

elasticity implies a small increase in the mortality of species

two, which would not be regarded as a change in biodiversity.

However, this gives rise to the same calculated elasticity in

species one that would be observed following an increase in

mortality sufficient to eradicate species two. This will not

necessarily be the case in more complicated settings.

We now describe the epidemiological part of the system.

We take into account both frequency-dependent and density-

dependent transmission of the infectious agent, within and

between species, but possibly (even probably) at (very) differ-

ent rates. A choice for frequency-dependent transmission

assumes that infectious contacts between individuals do not

scale with population density. A choice for density-dependent

transmission is typical for situations where transmission is the

result of very brief encounters of susceptible individuals with

infection. The assumption is that the encounters are so brief

that their number will increase if the population density of

the infected host species increases. This would not be the

case if contacts, or transmission during contact, take a more

substantial period of time, leading to saturation by time

constraint or for other reasons. In many situations, ‘reality’ is

a combination of the two extremes, with density dependence

at low population densities and frequency dependence at

higher densities.
We assume that the dynamics of the infectious populations

are described by

dIi

dt
¼ Si

X
j¼1,2

gij
Ij

Nj
þ Si

X
j¼1,2

bijIj � miIi � Ii

X
j¼1,2

fijNj,

where Si ¼ Ni 2 Ii for i ¼ 1, 2. We assume, for ease of

exposition, that competition and host mortality are unaffec-

ted by the infection status of the host species’ individuals.

In other words, we assume that epidemiology does not

directly influence ecology at the individual level, with feeding

rates and death rates being the same for susceptible and

infected individuals. We relax these assumptions in §§3.2

and 3.3.

Steady-state prevalences of infection solve the equations

Y�i ¼
I�i
N�i
¼ L�i

mi þ
P

j¼1,2 fijN�j þ L�i
¼ L�i

ni þ L�i
,

where the steady-state forces of infection are

L�i ¼
X
j¼1,2

gijY
�
j þ

X
j¼1,2

bijI
�
j :

The next-generation matrix K ([15]) has components

Kij ¼
gij þ bijN�j

mj þ
P

j¼1,2 fijN�j
¼

gij þ bijN�j
nj

and the basic reproduction number R0 is the largest

eigenvalue of K,

R0 ¼
1

2
(trace Kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(trace K)2 � 4 det K

q
),

where trace K ¼ K11 þ K22 and det K ¼ K11K22 � K12K21.

We now derive expressions for the magnitude of possible

dilution or amplification effects. For this, we need to specify

what we mean by an effect on infection in the focal host

species and how we quantify such an effect. We focus on

three different epidemiological interpretations of ‘effect on

infection’, these are prevalence of infection in the focal

species, Y*
1; abundance of infected individuals of the focal

species, I*
1; and basic reproduction number of the system,

R0. We quantify the magnitude of changes in each of these,

resulting from changes in the population density of species

two, as an elasticity. We denote the sensitivity and elasti-

city of a measure X to changes in N*
2 by X(2) and DX,

respectively, where

X(2) ¼ dX
dN�2

, DX ¼ N�2
X

X(2) ¼ N�2
X

dX
dN�2

:

We can interpret these elasticities as follows. If DX ¼ 0,

then reducing species two has no effect on the measure X.

If DX < 0, then a reduction in the density of species two

(i.e. less diversity) leads to an increase in the epidemiological

measure X: hence there is a dilution effect. As explained in

the introduction, the name ‘dilution effect’ actually refers to

the opposite: an increase in the density of species two leads

to a decrease in X. If DX . 0, then a reduction in the density

of species two leads to a decrease in X, and an increase in the

density of species two leads to an increase in X: hence there is

an ‘amplification effect’. In addition to determining the direc-

tion of a potential effect, the elasticities also quantify the

strength of such an effect relative to the initial values of X
and N*

2.
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In this spirit, we define the elasticity of the prevalence

of infection in species one with respect to changes in the

population density of species two by

DY�1 ¼
N�2
Y�1

dY�1
dN�2

¼ n1N�2L
�(2)
1

(n1 þ L�1)L�1
: (2:2)

The elasticity of the abundance of infection is

DI�1 ¼
N�2
I�1

dI�1
dN�2

¼ DY�1 þDN�1 : (2:3)

With a judicious choice of the units of biomass and without

loss of generality, the steady-state population densities can be

set to N*
1 ¼ N*

2 ¼ 1. This rescaling simplifies the expression

for the elasticity of the population density of species one to

DN�1 ¼ �f12=f11. The elasticity of the basic reproduction

number may be defined as a function of the entries in K and

their derivatives with respect to N*
2. In general,

DR0 ¼
N�2
R0

dR0

dN�2
¼ N�2

R0

R0(trace K)(2) � ( det K)(2)

2R0 � trace K

 !
: (2:4)

We now present three examples of the calculation of the

elasticities of prevalence and abundance of infection, and of

the elasticity of R0, for the two-host model. In §§2.1 and 2.2,

we restrict the epidemiology of the pathogen to frequency-

and density-dependent transmission, respectively. Then in

§2.3, we show how infection transmission via the environment

may be approximated by density-dependent transmission with

separable mixing, and derive analytic expressions for the

elasticities that arise in this case.
2.1. Example: frequency-dependent transmission only
Assume that bij ¼ 0 for all i and j. In general,

Y�1 ¼
g11Y�1 þ g12Y�2

n1 þ g11Y�1 þ g12Y�2
and Y�2 ¼

g21Y�1 þ g22Y�2
n2 þ g21Y�1 þ g22Y�2

:

We cannot derive explicit expressions for Y*
1 and Y*

2, but their

values depend only on the parameters ni and gij. Hence,

DY�1 ¼ 0 and there is no dilution or amplification effect on

prevalence of infection. For this example, the elasticity of the

abundance of infection is DI�1 ¼ �f12=f11. As the parameters

fij . 0, we have DI�1 < 0, and hence (by this metric) there is a

dilution effect of species two on species one. The next-generation

matrix has entries Kij ¼ gij/nj and so DR0 ¼ 0.

Note that these results can be understood as a direct con-

sequence of our assumption that ecological interactions

between species one and two are not affected by the epide-

miological status of the individuals. Infected individuals

are assumed not to differ in their competitive strength,

either in relation to uninfected members of the same species,

or with members of the other species, and irrespective of

those members’ infection status. So, the effect of competition

on members of either species is independent of whether

they belong to the Ii or Si compartment, leaving the ratio

Y*
i ¼ I*

i/N*
i , i.e. the prevalence, unaffected. The apparent

dilution effect on the abundance of infection, DI�1 < 0, is

due to the ecological interaction only. Similarly, as the

expected number of new within-species and between-species

cases generated by an infected individual during their infec-

tious period is independent of population density of either

host species, the elasticity of R0 is zero.
2.2. Example: density-dependent transmission only
Assume gij ¼ 0 for all i, j. In general, we obtain

Y�1 ¼
b11N�1Y�1 þ b12N�2Y�2

n1 þ b11N�1Y�1 þ b12N�2Y�2
and

Y�2 ¼
b21N�1Y�1 þ b22N�2 Y�2

n2 þ b21N�1Y�1 þ b22N�2Y�2
:

To analyse this example, we begin with the special case in

which there is no cross-species transmission. We then have

b12¼ b21¼ 0 and Y*
1 ¼ 1 2 n1/(b11N

*
1). Recalling that N*

1 ¼

N*
2 ¼ 1 and 0 � Y*

1 � 1, we require b11 . n1 for a non-trivial

steady state Y*
1 to exist. The elasticities of infection are

DY�1 ¼
n1f12

f11(n1 � b11)
and DI�1 ¼

b11f12

f11(n1 � b11)
: (2:5)

Therefore, DY�1 < 0 and DI�1 < 0 whenever a non-trivial steady

state exists, and there is a dilution effect both in terms of preva-

lence and abundance of infected individuals of species one. The

strength of the effect depends on ecological as well as epidemio-

logical parameters. As explained before, in this section we

assume no interaction between the effect of competition and

the epidemiological status of individuals. If N2 is decreased,

there is less competition felt by species one, resulting in a

reduction in the loss rate of species one, leading to an increase

in N1 compared to the unperturbed situation.

The next-generation matrix is diagonal with Kii ¼ biiN
*
i/ni

and R0 ¼ max {Kii}. We have DR0 ¼ �f12=f11 if K11 . K22

and DR0 ¼ 1 if K11 , K22. For this special case, DR0 is

piecewise constant, and discontinuous at K11 ¼ K22.

To move beyond the special case, we regard a gliding scale

of increasing between-species transmission. For this, we intro-

duce a quantity e by setting b12 ¼ b21 ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b11b22

p
. We study

the elasticities, obtained using equations (2.2)–(2.4), numeri-

cally by letting the value of e increase from e ¼ 0 (no

between-species transmission) to e ¼ 1 (between-species trans-

mission rates equal to the geometric mean of the within-species

transmission rates). Note that the case e ¼ 1, together with our

assumption that b12 ¼ b21, means that mixing is separable.

Theoretically, one could also consider the case where e . 1.

We ignore this possibility, as between-species transmission is

likely to be lower than within-species transmission, given

that the contact rate for individuals of the same species is prob-

ably higher than that between individuals of different species.

Numerical results obtained for 0 , e , 1 are presented in

figures 1–3, where we show how DY�1, DI�1 and DR0 vary

with e . The special case e ¼ 0 has been explicitly calculated

above; see equation (2.5). These results are indicated on the

left-hand vertical axis in figures 1–3. When e ¼ 1, we have

separable mixing. Results for this case may also be derived

independently of the numerical calculations, and are indi-

cated on the right-hand vertical axis. Their calculation is

presented in §2.3 below.

In evaluating the results presented in figures 1–3, recall

that a negative value of DX signifies a dilution effect on quan-

tity X, and a positive value signifies an amplification effect. The

parameter values used to generate the figures, apart from the

values of b11 and b22 were chosen arbitrarily; see the caption

to figure 1. The values of the bii were chosen so that trans-

mission within species one was higher than transmission

within species two (figure 1), lower than within species two

(figure 2) or approximately equal (figure 3). In figure 1,

where b11/n1 ¼ 2b22/n2, DY�1, DI�1 and DR0 are negative for
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Figure 1. The elasticity of infection prevalence DY�1 (blue), infection abun-
dance DI�1 (red) and basic reproduction number DR0 (magenta) as
functions of e . Transmission of infection is density-dependent with b11 ¼

5.0, b22 ¼ 2.05 and b12 ¼ b21 ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffi
b11b22
p

. Other parameter values
are f11 ¼ f22 ¼ 0.15, f12 ¼ 0.1, f21 ¼ 0.075, m1 ¼ 1.0, m2 ¼ 0.8,
n1 ¼ 1.25 and n2 ¼ 1.025. All parameters except e have units time21;
e is dimensionless. Circles at e ¼ 0 and e ¼ 1 are calculated from
formulae in §§2.2 and 2.3, respectively. (Online version in colour.)
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Figure 3. The elasticity of infection prevalence DY�1 (blue), infection abun-
dance DI�1 (red) and basic reproduction number DR0 (magenta) as
functions of e . Transmission of infection is density-dependent with b11 ¼

3.750, b22 ¼ 3.106 and b12 ¼ b21 ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffi
b11b22
p

. Other parameter
values as in figure 1. Circles at e ¼ 0 and e ¼ 1 are calculated from
formulae in §§2.2 and 2.3, respectively. (Online version in colour.)
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Figure 2. The elasticity of infection prevalence DY�1 (blue), infection abun-
dance DI�1 (red) and basic reproduction number DR0 (magenta) as
functions of e . Transmission of infection is density-dependent, with
b11 ¼ 2.5, b22 ¼ 4.1 and b12 ¼ b21 ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffi
b11b22
p

. Other parameter
values as in figure 1. Circles at e ¼ 0 and e ¼ 1 are calculated from
formulae in §§2.2 and 2.3, respectively. (Online version in colour.)
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all 0 � e , 1, and increase with e. Hence there is a dilution

effect that is greater when there is less inter-species trans-

mission of infection. In figure 2, where 2b11/n1 ¼ b22/n2,

DY�1 and DI�1 increase with e, but DR0 decreases. For these par-

ameter values there is a dilution effect on the abundance of

infection for all e (DI�1 < 0), dilution of prevalence of infection

for small e changing to amplification for larger values, and an

amplification effect on the basic reproduction number for all e

(DR0 . 0). The change from dilution to amplification in the

metric based on prevalence can be understood as follows.

For small values of e, i.e. small strength of cross-species trans-

mission, the situation will probably remain the same as for the
case e ¼ 0, where the analytical expression (equation (2.5))

showed that DY�1 < 0. For e ¼ 0, decreasing N*
2 will lead to

an increase in N*
1. Increasing cross-species transmission will

cause I*
1 to also increase, but for small values of e possibly

not as much as N*
1 increases because of the reduction in abun-

dance of species two. This can maintain DY�1 < 0. This

continues until a value is reached where cross-species trans-

mission becomes large enough to have a bigger influence in

boosting I*
1 than competition reduction has in boosting N*

1,

hence causing DY�1 to become positive, and dilution to turn

into amplification.

The results shown in figure 3, where b22/n2 ¼ 1.01b11/n1,

are similar to those shown in figure 2, except that DR0 is

approximately constant for 0.1 , e , 1.0. This example was

included to illustrate the result when b11/n1 and b22/n2 are

approximately equal, but avoid the anomalous result pre-

viously noted for DR0 when e ¼ 0, which results in a

discontinuity when b22/n2 ¼ b11/n1.
2.3. Example: density-dependent transmission
with separable mixing

Density-dependent transmission with separable mixing is a

special case of density dependence, equivalent to the example

discussed in §2.2 with e ¼ 1. It is appropriate for modelling

infection transmission via the environment or a vector. We

assume that infected hosts of species i contribute to an

environmental pool of pathogen, W, at rate si, and are

infected from the pool at rate ki. Infection events deplete W
by a negligible amount, but the pathogen is lost from the

environment at rate r. A simple equation for the dynamics

of W would be

dW
dt
¼ s1I1 þ s2I2 � rW:

If W reaches equilibrium on a much faster timescale than the

host–pathogen dynamics, then we can approximate the

environmental contamination by the quasi-steady-state value
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W* ¼ r1I*
1 þ r2I*

2 where ri ¼ si/r. We then have bij ¼ kirj and

Y*
i ¼ kiW

*/(ni þ kiW
*) for i ¼ 1, 2. Hence W* solves

r1k1N�1
n1 þ k1W� þ

r2k2N�2
n2 þ k2W� ¼ 1: (2:6)

For this example, a potential fourth metric for dilution could be

the elasticity of environmental contamination

DW� ¼ N�2
W�

dW�

dN�2
:

By implicit differentiation of equation (2.6) we obtain

DW� ¼ (N�2=W�)(r1k1N�1DN�1=(n1 þ k1W�)þ r2k2=(n2 þ k2W�))P
i¼1,2 rik

2
i N�i =(ni þ kiW�)2

Using this metric, the criterion for dilution is DW� < 0, which

holds when

r1k1N�1DN�1
n1 þ k1W� þ

r2k2

n2 þ k2W� < 0:

The elasticity of prevalence is DY�1 ¼ n1DW�=(n1 þ k1W�), so

we have a dilution effect on prevalence (DY�1 < 0) if DW� < 0.

The next-generation matrix has components Kij ¼ kirjN
*
j/

nj and rank one. Hence

R0 ¼
k1r1N�1

n1
þ k2r2N�2

n2
and

DR0 ¼
N�2
R0

k1r1

n1
DN�1 þ

k2r2

n2

� �
:

Results derived from these expressions coincide with those for

the special case e ¼ 1, and are indicated on the right-hand

vertical axes of figures 1–3.
3. Generalizations of the model
In §2, we analysed a model for the dynamics of a pathogen

with two host species. We assumed that the host species com-

peted for resources, and that a host’s infection status did not

change its population dynamics. In this section, we modify

these assumptions. First, we comment on how the results

would change if one host species were a predator on the

other. We then present a model where infection with a patho-

gen increases a host individual’s mortality, and present results

showing how this increased mortality modifies the proposed

metrics for dilution. Finally, we present a more general

model with a variety of interactions between population

dynamics and epidemiology as a basis for future studies of

the dilution effect and related phenomena.

3.1. Predator – prey dynamics
In §2, we assumed that interaction between the two host species

was due to competition for resources, hence an increase in host

species one would cause a decrease in species two, and vice

versa. We now examine the changes to our results when one

species is a predator on the other, so that an increase in the popu-

lation density of the prey species would result in an increase in

the population density of the predator species. Consider

equation (2.1). In §2, all the fij were positive, but if host species

number one is a predator on host species two, then f12 , 0 and

DN�1 ¼ �f12=f11 . 0. Now consider our metrics for dilution in

our different epidemiological scenarios. If transmission of infec-

tion is frequency-dependent only, then DY�1 and DR0 are

unchanged at zero, but now DI�1 ¼ DN�1 . 0. Hence, there is

an amplification effect on the abundance of infection, whereas
when the species compete for resources there is a dilution

effect. However, as in §2 this effect is entirely due to the ecologi-

cal dynamics of the system, an increase in the prey species

population results in an increase in the predator species popu-

lation, and hence an increase in the population density of

infected predators. If transmission of infection is density-

dependent and within species only, then DY�1 and DI�1 are

positive (see equations (2.2) and (2.3)), so there is an amplification

effect on prevalence and abundance of infection. If host species

two is a predator on host species one, then f21 , 0 and f12 .

0. We then have the situation where an increase in the population

density of species two results in a decrease in the population den-

sity of species one, a relationship superficially similar to that

obtained when the species compete for resources. Hence, the

results are qualitatively unchanged from those presented in §2.

3.2. Infection-induced host mortality
In §2, we assumed that the pathogen had no effect on host

population dynamics. We now relax one aspect of this

assumption, by assuming that infected hosts have increased

mortality. We assume that if a host of species i is infected,

its death rate is increased from mi to mi þ ai. The equations

for the dynamics of the host population densities become

dNi

dt
¼ niNi � miNi �Ni

X
j¼1,2

fijNj � aiIi,

for i ¼ 1, 2. Steady-state solutions now satisfy

f11 f12

f21 f22

� �
N1

N2

� �
¼ n1 � m1 � a1Y1

n2 � m2 � a2Y2

� �
: (3:1)

The equations for population density and infection abun-

dance no longer decouple, and the values of the Ni at the

infection-free and infected steady-states are no longer equal.

We denote the infection-free steady state by Ni ¼ �Ni, Ii ¼ 0,

and the infected steady state by Ni ¼ N*
i , Ii ¼ I*

i=0. The

equations for the dynamics of the infected populations are

dIi

dt
¼ SiLi � miIi � aiIi � Ii

X
j¼1,2

fijNj,

with Li ¼
P

j¼1,2 (gijYj þ bijIj) as before. Steady-state

prevalences of infection now solve

Y�i ¼
I�i
N�i
¼ L�i � aiY�i

ni þ L�i � aiY�i
: (3:2)

The next-generation matrix K has components

Kij ¼
gij þ bij

�Nj

mj þ aj
:

We now investigate how the increased host mortality may

influence the dilution effect. The expressions for the elasticity

of the prevalence and abundance of infection in species one

with respect to changes in the population density of species

two are unchanged,

DY�1 ¼
N�2
Y�1

dY�1
dN�2

¼ N�2Y�(2)
1

Y�1
and

DI�1 ¼
N�2
I�1

dI�1
dN�2

¼ DY�1 þDN�1 ,

but now from equation (3.1)

DN�1 ¼ �
(f12 þ a1Y�(2)

1 )N�2
f11N�1

:
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Substituting L�i ¼
P

j¼1,2 (gij þ bijN�j )Y�j for i ¼ 1, 2 in

equation (3.2) and differentiating, we obtain

Y�(2)
i ¼ niL

�(2)
i

aini þ (ni þ L�i � aiY�i )2
:

Given the steady-state values (N*
1, N*

2, Y*
1, Y*

2), the pair of

equations

Y�ð2Þ1 ¼

ðg11 þ b11N�1ÞY
�ð2Þ
1 þ ðg12 þ b12N�2ÞY

�ð2Þ
2 þ b11Y1

�
1
ð2Þ þ b12Y�2

a1 þ ðn1 þ L�1 � a1Y�1Þ
2=n1

and Y�ð2Þ2 ¼

ðg21 þ b21N�1ÞY
�ð2Þ
1 þ ðg22 þ b22N�2ÞY

�ð2Þ
2 þ b21Y�1N�ð2Þ1 þ b22Y�2

a2 þ ðn2 þ L�2 � a2Y�2Þ
2
=n2

;

together with N*(2)
1 ¼ 2 (f12 þ a1Y*(2)

1 )/f11 form a linear

system for the three variables (N*(2)
1 , Y*(2)

1 , Y*(2)
2 ). The elastici-

ties DY�1 and DI�1 now follow, and the expression for the

elasticity of R0 is given by equation (2.4).

The elasticities DY�1, DI�1 and DR0 are shown as functions

of the increased mortality a1 in figures 4–6. Parameter values

are as in figures 1–3, respectively, except that a1=0 and e ¼

0.1 is fixed. In all three examples, the dilution effect on infec-

tion prevalence is enhanced for small values of a1, but then

becomes relatively constant as a1 increases. By contrast, the

effect on infection abundance is markedly increased (DI�1
becomes more negative). In figures 4 and 5, there is little

change in DR0 with a1, but for the example parameters in

figure 6 the amplification of R0 is enhanced.

3.3. Multiple host species
When there are more than two host species it is in general more

difficult, if not impossible, to derive analytic expressions for the

quantities DY�1, DI�1 and DR0 used to measure dilution and

amplification. In this section we show how these quantities

can be calculated, in order to provide a general method that

can be used to analyse larger and more complicated ecosystems.
Consider n species interacting in an ecosystem. Let the

population size of species i be Ni, in an appropriate unit

(population density, number of animals, biomass, etc.).

Assume that species i has maximum birth rate and minimum

death rate, ni and mi, respectively, and that in the absence of

other species its population growth rate would be ni 2 mi 2

fiiNi. In order that species i can sustain itself independently

of the other species, we require ni . mi. Let those species

that compete for resources with species i have indices con-

tained in the set N i, where if j [ N i, then the growth rate

of species i is reduced by an amount fijNj. Let those species

that are consumers of species i have indices contained in

the set Pi, and those species that are consumed by species i
have indices contained in the set Qi. Suppose that species i
is consumed by species k, at a rate fikNk, and species k conse-

quently increases its birth rate by ekifkiNi ¼ 2 fikNi (note the

order of subscripts). Hence eki is a measure of the efficiency of

conversion of biomass of species i into biomass of species k.

We do not allow cannibalism, so i � Pi < Qi. We can, if

necessary, adjust the fij so that N i, Pi and Qi are disjoint

subsets of V, the set of all species in the ecosystem.

The population dynamics of the ecosystem species are

described by the equations

dNi

dt
¼niNi�miNi�Ni

X
j[Ni

fijNj�Ni

X
k[Pi

fikNkþNi

X
‘[Qi

e‘if‘iN‘

¼niNi�miNi�Ni

X
j[V

fijNj:

There are usually multiple steady states of these equations.

A steady state { �Ni} solves

ni � mi ¼
X
j[V

fijNj:

The stability of each steady state may be deduced from

the eigenvalues of the Jacobian matrix, C({ �Ni}), which has

elements Cij ¼ �fij
�Ni.

Let the ecosystem be infected by a pathogen, with preva-

lence Yi in species i. We now generalize the equations for the
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population dynamics of the ecosystem to include the possi-

bility that the infection status of the host may change its

ability to compete, predate or escape predation. Suppose that

if species i competes for resources with species j (j [ N i),

then the reduction in the population growth rate of species i
is pijfij when hosts of species i are infected, and qijfij when

hosts of species j are infected. Suppose that if species i is con-

sumed by species k(k [ Pi, i [ Qk), then the rate of

consumption is pikfik when the predator only is infected,

qikfik when the prey only is infected and pikqikfik when both

are infected. For symmetry we require pki ¼ qik and qki ¼ pik.

Suppose also that infected hosts of species i have their mor-

tality increased by ai. The equations for population dynamics

of the ecosystem species become

dNi

dt
¼ niNi � miNi � aiIi �

X
j[V

fij(Si þ pijIi) (Sj þ qijIj), (3:3)

where Si ¼ Ni 2 Ii ¼ Ni(1 2 Yi). Non-zero steady-state

solutions for the population densities now satisfyX
j[V

fij(1� (1� pij)Y�i ) (1� (1� qij)Y�j ) N�j ¼ ni � mi � aiY�i :

The equations for the infected species population

densities are

dIi

dt
¼ SiLi � miIi � aiIi � Ii

X
j[V

pijfij(Sj þ qijIj): (3:4)

Steady-state prevalences of infection solve

Y�i ¼
I�i
N�i
¼ L�i � aiY�i þF�i Y�i

ni þ L�i � aiY�i þF�i Y�i
,

where

L�i ¼
X
j[V

(gijY
�
j þ bijI

�
j ) F�i ¼

X
j[V

fij(1� pij) (S�j þ qijI�j ):

We now find expressions for the elasticities of infection in

one species with respect to changes in the population density
of another. Define

D‘Y�k ¼
N�‘
Y�k

dY�k
dN�‘

, D‘I�k ¼
N�‘
I�k

dI�k
dN�‘

and D‘R0 ¼
N�‘
R0

dR0

dN�‘
:

Let n and i be vectors with components Ni and Ii,

respectively, and write equations (3.3) and (3.4) as

dn

dt
¼ F(n, i)

di

dt
¼ G(n, i):

Steady-state values satisfy F(n*, i*) ¼G(n*, i*) ¼ 0. If the mor-

tality of species ‘ is then increased by a small amount v, then

the new steady states n ¼ n* þ vu and i ¼ i* þ vv solve

Fðn� þ vu; i� þ vvÞ ¼ vðN�‘ þ vu‘Þe‘
and Gðn� þ vu; i� þ vvÞvðI�‘ þ vv‘Þe‘:

Expanding and neglecting high-order terms in v,

J(n�, i�)
u
v

� �
¼ e‘N�‘

e‘I�‘

� �
,

where J(n*, i*) is the Jacobian matrix evaluated at the steady

state with v ¼ 0. The Jacobian matrix has the structure

J ¼ C D
E H

� �

and its components are

Cij ¼
@Fi

@Nj
, Dij ¼

@Fi

@Ij
, Eij ¼

@Gi

@Nj
and Hij ¼

@Gi

@Ij
:

We can then compute the elasticities of infection by

D‘I�k ¼
N�‘
I�k

vk

u‘
, D‘Y�k ¼ D‘I�k �D‘N�k and D‘N�k ¼

N�‘
N�k

uk

u‘
:

Let �n be the vector whose components are values of the Ni

at an infection-free steady state, �Ni. Hence F(�n,0) ¼ 0. The

next-generation matrix K has components

Kij ¼
gij þ bij

�Ni

mj þ aj
:

If we increase the mortality of species ‘ to m‘ þ v, then the

infection-free steady state solution nv has components Nv
i ,

and solves F(nv, 0) ¼ vNv
‘ e‘. The NGM becomes Kv, with

components

Kv
ij ¼

gij þ bijNv
i

mj þ aj
j = ‘ and Ki‘ ¼

gi‘ þ bi‘Nv
i

m‘ þ vþ a‘

and spectral radius Rv ¼ r(Kv). Hence the elasticity of the

basic reproduction number is

D‘R0 ¼
N�‘
R0

lim
v!0

Rv �R0

v
:

4. Discussion
We have introduced a flexible approach to the study of the

dilution/amplification effect in compartmental eco-epide-

miological models. We have focused on models describing

the dynamics of a single pathogen species in a population

consisting of host and non-host species for that pathogen.

We have shown that metrics to quantify dilution and ampli-

fication can be clearly and objectively defined, based on the

elasticity of a quantity related to infection, and in response

to a decrease in the population density of a particular species.
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The infection quantities we discussed were the prevalence

and incidence of infection in a focal species, and the basic

reproduction number of the pathogen in the ecosystem.

We have illustrated the use of these metrics in simple set-

tings involving just two species and assuming SI infection

dynamics, for example contrasting the influence of different

assumptions on the link between population density and trans-

mission. We have done so in the realistic situation where the two

species are allowed to interact both ecologically (competition,

consumer–resource relationship) and epidemiologically

(within-species and between-species transmission, infection-

induced mortality). In this relatively simple setting, it is already

clear that one needs to be specific about the system or model one

is studying before making statements such as ‘this system/

model shows a dilution effect’. Our simple examples show

that, under the same circumstances, there can be a dilution

effect as measured (by our definition) in terms of incidence,

but not in terms of prevalence or R0. In fact, there can be an

amplification effect in one metric and a dilution effect in

another. In addition, the assumptions regarding the way trans-

mission scales with contact rate within species, the strength of

interaction between species the relative efficiency of within-

species transmission for the different species, and the strength

of infection-induced host mortality all influence the outcome

regarding dilution/amplification and the strength of such

effects. For example, in the case of density-dependent trans-

mission within host species, when within-species

transmission is higher in species two, there is a dilution effect

in species one in terms of the prevalence of infection if

between-species transmission is weak. For increased between-

species transmission, however, the strength of the dilution

effect decreases and can, for relatively strong between-species

transmission, change to an amplification effect. Several of

these observations have been made before in pioneering mod-

elling studies into dilution where special cases were treated

[16–23], but the formalization in our general setting will

allow future exploration directly contrasting a range of different

assumptions, and greater flexibility to explore the many sys-

tems for which observational data and empirical work are

now available [1,9–11,24,25].

We have defined three different metrics for quantifying the

dilution effect, and briefly discussed a fourth. Obviously,

the choice to be made depends on the ecology and epidemiol-

ogy of the system under study, and crucially on the question

being asked. Where transmission of infection was frequency-

dependent only (§2.1), the only non-zero elasticity was that

of abundance of infection (population density of infected

hosts), and that was entirely due to ecological changes.

Although density-dependent transmission gave rise to dilution

or amplification effects as measured by each of the proposed

metrics, we have shown that choice of metric may determine

the outcome. If one is concerned about infection in a particular

species, then the quantities DY�1 or DI�1 may be appropriate. If

one is concerned about the connection between biodiversity

and persistence of a pathogen, or invasion of an absent patho-

gen, then DR0 would be more appropriate. In §2.3, we

introduced a potential fourth metric, DW�, which could be

appropriate where the concern is risk of transmission to

another species, maybe humans.

In §3.3, we show how the framework and metrics we have

introduced generalize to n-species communities. One can ima-

gine that the intricate relationship between biodiversity and

infection that is seen in the two-species system will become
even more complicated and subtle in larger communities,

where the network of interaction between several species at

different trophic levels adds many dimensions of interaction

and complexity. On the other hand, one has to be careful

with over-interpretation of two-species results because these

represent only a small and special link in food webs and ecosys-

tems. Larger interacting communities need to be studied to see

whether these effects are annihilated in larger systems (through

positive and negative feedback), changed, weakened or ampli-

fied. Our results provide an initial contribution and a way to

gently and transparently introduce the framework and metrics,

as well as an entry point for studying larger ecosystems.

We have chosen to interpret ‘reduction in biodiversity’ in

our system as a reduction in the density of one species. This

is a clear choice when the model consists of only two species.

In the arbitrary n-species ecosystem, however, there is a

wider range of options. One can imagine a reduction in popu-

lation density or the complete elimination of a single species,

but also of different sets of species. A relevant extension of

our metrics is therefore to accommodate sets of species being

reduced. Also, in our current framework, we chose to restrict

quantifying a possible dilution/amplification effect for a

single focal host species. It may be interesting to rotate the

species that is the focal host and produce a matrix of effect

sizes for an entire community. It remains a difficult issue that

even with the generality we provide, the ‘real’ situation is

that we not only have many interacting species for the study

of possible dilution effects for a given infectious agent, but

we have many different infectious agents acting at the same

time and influencing species interactions (and vice versa).

Our aim was not to explore specific examples in great

detail. As is already clear from the introduction, there are

many factors involved if we want to obtain a deeper under-

standing of dilution/amplification. These factors involve

both ecological and epidemiological aspects, as well as their

interaction. The choices and combinations of mechanisms

and processes that could be made are extensive, even without

specifying ranges for parameter values in the descriptions used

for such choices. Because of this, it would not be insightful to

present a detailed analysis of the example systems we have

used to introduce our approach. The value of the examples

lies in illustrating the general approach, and in showing that

being precise about many of the available options is important

before drawing conclusions about dilution/amplification. We

envisage that the framework and metrics presented here can

now be used to study particular eco-epidemiological systems,

where many of the choices that need to be made are dictated

by the actual biology of those systems.

The study of infectious agents in ecosystems has a much

broader relevance than understanding dilution/amplification

effects. It is well known that ecosystems are changing. Habitat

depletion and fragmentation, and other human-related activities,

are threatening the viability of many species, and changing the

population dynamics of just one species can have consequences

for a number of other species. For examples of the direct and

indirect effects of changing the populations of the largest carni-

vores and herbivores; see [26,27]. Many other examples of

ecosystem dynamics and the interplay between species may be

found in the literature. Studies that include pathogens as part

of the ecosystem are less common, but this situation is rapidly

changing; see [28] for a relatively recent review. Factors such as

climate change may alter the dynamics of the ecosystem in a

way that increases the potential exposure of humans to infection;
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see, for example, a study of monkeypox virus in the Congo Basin

[29]. There is a broader need to study how infectious agents inter-

act with the ecosystems of which they are integral parts,

particularly if wewant to understand how changes in ecosystems

affect the distributions of infectious agents, the risk of host

species jumps, and the risks and impact of future outbreaks [30].
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