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Mutualisms are ubiquitous, but models predict they should be susceptible to

cheating. Resolving this paradox has become relevant to synthetic ecology:

cooperative cross-feeding, a nutrient-exchange mutualism, has been pro-

posed to stabilize microbial consortia. Previous attempts to understand

how cross-feeders remain robust to non-producing cheaters have relied on

complex behaviour (e.g. cheater punishment) or group selection. Using a

stochastic spatial model, we demonstrate two novel mechanisms that can

allow cross-feeders to outcompete cheaters, rather than just escape from

them. Both mechanisms work through the spatial segregation of the

resources, which prevents individual cheaters from acquiring the resources

they need to reproduce. First, if microbe dispersal is low but resources are

shared widely, then the cross-feeders self-organize into stable spatial pat-

terns. Here the cross-feeders can build up where the resource they need is

abundant, and send their resource to where their partner is, separating

resources at regular intervals in space. Second, if dispersal is high but

resource sharing is local, then random variation in population density cre-

ates small-scale variation in resource density, separating the resources

from each other by chance. These results suggest that cross-feeding may

be more robust than previously expected and offer strategies to engineer

stable consortia.
1. Introduction
Mutualisms are common [1]. For example, cooperative cross-feeding, a nutrient-

exchange mutualism that is ubiquitous among microbes, has been observed in

communities including the open ocean (diatoms and bacteria exchanging vita-

min B-12 for carbon [2]), and the gut microbiomes of animals such as humans

(bacteria exchange acetate for xylose [3]), bees (bacteria exchange lactate for

pyrimidines and B-vitamins [4]) and termites (bacteria exchange hydrogen

for vitamins [5]). However, models suggest that many mutualisms will be sus-

ceptible to cheaters, who receive the benefit of a mutualism without paying the

cost of helping their partner [1,6–9]. For example, many metabolites are costly

to produce [10,11]; therefore, if cross-feeders share resources freely, then indi-

viduals may benefit from not making resources. Left unchecked, each species

will evolve towards non-production until the mutualism collapses [7,12,13].

Thus, why cross-feeding and other mutualisms are robust to cheating is a

long-standing question [1]. In this paper, we examine mechanisms that allow

cross-feeders to resist cheaters.

Cheaters in a cross-feeding mutualism may require resources from multiple

mutualists [14]. This is unusual among mutualisms: for example, in pollination

mutualism, cheaters never require both nectar and pollen transportation. We
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suspect that cheaters who rely on multiple mutualists are

more common among microbes. Microbes produce a variety

of public goods and services, including environmental detox-

ification [15], biofilm formation [16] extracellular products

[17], and, of course, cross-feeding resources [2–5]. Thus, it

is feasible that microbes could cheat at multiple functions.

This work will thus help us understand how microbial

mutualisms differ from non-microbial mutualisms.

Space is thought to be important for allowing cross-

feeding and other mutualisms to persist [9,18,19]. Many

studies have shown that mutualisms can persist by becoming

segregated from cheaters [8,9,13,14,20–23]. Segregation

typically occurs when individuals have long-term inter-

actions within small groups [13,14,20,21]. This phenomenon

can be understood using the multilevel selection framework

[12,24]: individual cheaters will have an advantage within a

group; however, groups with too many cheaters will collapse,

and groups with few cheaters will tend to form new groups.

Thus, whether cheaters dominate depends on the relative

importance of an individual-level and group-level selection.

Group selection that maintains cooperation has been called

partner fidelity feedback [23].

Partner fidelity feedback relies on two key properties of

space. First, interactions must be local (resources are shared

within a group or small neighbourhood), so cheaters strongly

affect their neighbours. If interactions are widespread and

diffuse, then an individual’s contribution will have little

effect on others, and there will not be an immediate conse-

quence of cheating. Second, microbes must have long-term

interactions, ideally across generations; otherwise, a cheater

could damage a local community and then leave (or disperse

its offspring away) without consequences.

Though most studies have focused on partner fidelity

feedback, space may promote cross-feeding in other ways.

For example, mutualists can become segregated from the

cheaters if cheaters disperse farther than mutualists [8]. How-

ever, these results still rely on the mutualists becoming

segregated from the cheaters, rather than other aspects of

the spatial structure. As far as we know, no studies have

examined how spatial factors can allow cross-feeders to

become competitively superior to cheaters.

Understanding how cross-feeding persists is of practical

use in synthetic ecology. A goal of synthetic ecology is to

grow multi-species consortia of engineered microbes

[18,25,26]. One proposed strategy for stabilizing coexistence

is to make the microbes cross-feed, so they rely on one

another [27–30]. However, if there is selection for non-

production, then such consortia may be short-lived. Some

have proposed to counter this selective pressure using

active behaviours that harm cheaters, such as quorum

sensing or cheater punishment [31]. However, such beha-

viours may be challenging to engineer (but see [32]) and

could themselves be selected against [18]. This problem

has lead some to ask whether simpler and more passive

mechanisms—such as those relying on population dynamics

alone—are possible [18].

Here we use a stochastic spatial model to study how

spatial processes affect whether cross-feeders can be robust

to cheaters. As expected, we find that if cross-feeders have

loose, short-term associations, then they are susceptible to

cheating, and if they have tight, long-term associations,

then they persist via partner fidelity feedback. Additionally,

we demonstrate two novel ways that space can stabilize
mutualism: cross-feeding can be stabilized by long-term

associations, even when interactions are diffuse; and they

can be stabilized by localized interactions, even when inter-

acting with random partners. Both mechanisms are driven

by population dynamics alone, without the need for complex

behaviours. They allow the cross-feeders to be competitive

dominants, rather than fugitive species who persist by

escaping from cheaters.
2. Model summary
We modelled microbes competing for sites on a lattice

(figure 1). Our consortium contains cross-feeding species 1

and 2 that produce resources 1 and 2, respectively, and a

cheater that produces neither resource (figure 1a). Each

cross-feeder produces quantity Q of its shared resource, and

shares it equally with every individual within dres sites in

each direction (known as a Moore neighbourhood of distance

dres, [33]), figure 1b. Thus, the concentration of each resource

at a site x, R1x and R2x for resources 1 and 2, will equal

Q times the number of species 1 and 2 microbes within dres

sites in any direction, i.e.

R1x¼
Q

ð2 dres þ 1Þ2 � 1

X
y[dres

N1y

and R2x¼
Q

ð2 dres þ 1Þ2 � 1

X
y[dres

N2y,

9>>>>=
>>>>;

ð2:1Þ

where the summation is over the (2dres þ 1)2 – 1 sites within

dres sites of x, and N1y and N2y are 1 if a site y is occupied

by a species 1 or 2 microbe (respectively) and 0 otherwise

(figure 1b). Sharing resources uniformly is not a perfect rep-

resentation of diffusion, because the resources are not

concentrated at the source; however, it is a common simplify-

ing assumption in stochastic spatial models because it is a

tractable way to represent neighbourhood interactions [33].

We assume that each microbe’s reproductive rate is deter-

mined by the rarer essential resource (i.e. Liebig’s Law of the

minimum [27,34]). Thus, a microbe that is constrained by

resource 1 limitation will not benefit from additional of

resource 2. There is evidence for this in some primary produ-

cer systems [35]; we are not aware of tests in cross-feeding

bacteria. We assume each cross-feeder makes enough of its

own resource that that resource is never limiting. Thus, a

cross-feeder produces offspring at a rate equal to its birth

rate (b1 or b2) times the availability of the resource it does

not make (R1x or R2x at site x) [27,36]. Therefore, during a

time period of length Dt, a species 1 microbe will produce

an average of b1R2xDt offspring, and a species 2 microbe

will produce an average of b2R1xDt offspring. The cheater

has a higher birth rate (i.e. b0 . b1 and b2), but because it

does not produce either resource, its reproductive rate is pro-

portional to the rarer essential resource. Thus, during a time

period of length Dt, a cheater microbe will produce an aver-

age of b0min(R1x, R2x)Dt offspring. Therefore, the cheater

has a higher reproductive rate than at least one cross-feeder

at every site, and if both resources are similarly abundant,

it will have a higher birth rate than both cross-feeders.

When a microbe reproduces, its offspring disperses to a

random site in a Moore neighbourhood of dmic (figure 1c).

If that site is empty, the microbe survives, but if the site is

occupied, then the microbe dies [33]. Thus, if Ex is the fraction
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of sites near x that are unoccupied, then a species 1 microbe

will produce an average of b2R1xExDt offspring in Dt units of

time. Empty sites act as a proxy for all other limiting

resources besides resource 1 and 2 in our model.

All microbes die at density-independent rate d, immedi-

ately freeing their site. Unused resources are degraded or

removed from the system each time step.
2.1. Model analysis
We analysed the effect of cheaters by determining if they

could invade an established pair of cross-feeders and either

displace or coexist with them. As we show below, the

system crashes in the absence of either cross-feeder, as

expected in an obligate mutualism [36]; thus, our methods

differed slightly from a traditional invasion analysis. Instead,

we allowed species 1 and 2 to establish and then introduced a

small number of cheaters. Cheaters were introduced once, but

at high enough density that extinction from demographic

stochasticity was unlikely [37]. We determined whether,

after thousands of generations, the species coexisted (i.e. all

species persisted), the cross-feeders displaced the cheaters

(i.e. the cheater went extinct while the cross-feeders persisted)

or the community crashed (i.e. all species went extinct).

Most of our analysis was done using simulations. Details

as to how the model was implemented are described in

appendix A. We also considered a mean field version of

this model, which we analysed using differential equation

(appendix B). Additional analyses on the spatial properties

of the community are reported in appendix C.
3. Results
The two parameters that determine the impact of space are

resource sharing distance, dres, and microbe dispersal dis-

tance, dmic. Resource sharing distance determines how

diffuse the interactions are. A low dres means microbes have

strong interactions with few neighbours and a high dres

means microbes have diffuse interactions with many neigh-

bours. Microbe dispersal determines partner associations.

Low dmic means offspring will not disperse far, and will

therefore have similar neighbours as their parents. In this
case, there is a strong connection between a microbe’s density

and the local conditions, because microbes will build up in

good areas. High dmic means that microbes will have

random neighbours and that local abundance is due to

random dispersal rather than local conditions.

Our model produced four qualitatively different out-

comes, depending on whether dres and dmic were large or

small (figure 2). We explain each case separately.
3.1. Non-spatial dynamics (high dres and dmic)
If resources are shared over long distances and offspring

disperse far (high dres and dmic), then microbes have weak

interactions with many random neighbours, so spatial pro-

cesses have little effect. Our simulations suggest that in this

case, cheaters always collapse the cross-feeding community

(figure 2).

By assuming that dres! 1 and dmic!1, we derive a

mean-field model to understand the well-mixed case (appen-

dix B). This acts as a baseline for understanding how space

alters community dynamics. Well-mixed communities are

highly susceptible to cheaters (figures 2, 3 and 5). A well-

mixed community with cross-feeders but not cheaters has

at most two stable equilibria—extinction and coexistence

(figure 3a). The shared resources create a positive feedback

[28,36]: if cross-feeders are rare, then each will be too

resource-limited to reproduce, and their densities will decline

further; however, if cross-feeders are common enough, then

sufficient resources will be produced, and the cross-feeders

will grow until they are limited by space (figure 3b). The

cheater can invade a community of cross-feeders, because

both resources are readily available and the cheater has a

higher birth rate (figure 3c, appendix B). As the cheaters

become abundant, they displace the cross-feeders, until the

cross-feeders become too resource limited to reproduce, and

the consortium crashes (figure 3d ).
3.2. Partner fidelity feedback (low dres and dmic)
If microbes share resources with a few neighbours and have

short-range dispersal (low dres and dmic), then a microbe’s

resource production has a strong impact on the local con-

ditions and species will tend to build up in favourable
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locations. In this case, cross-feeding is stabilized by partner

fidelity feedback (i.e. strong group selection [12]). Here,

local communities behave similarly to the global community

in the non-spatial case: individual cheaters will reproduce

and grow if they are surrounded by cross-feeders; however,

as the cheaters become locally abundant, they will displace

the cross-feeders, become too resource-limited to reproduce,

and cause the local population to crash. Cross-feeders can

persist when there is a dynamic spatio-temporal mosaic,

where groups of cross-feeders bud off and grow into empty

sites, temporarily escaping the cheaters (figure 4a,c, electronic

supplementary material, movie A1). Thus, cheaters have a

within-group competitive advantage (figure 4b and 6), but

groups of cross-feeders have an advantage (figure 7).
3.3. Pattern formation (high dres and low dmic)
If offspring disperse short distances (low dmic) but resources

are shared over long distances (high dres), then microbes

will build up where the conditions are most favourable, but

individuals will have little impact on local resource levels.

Group selection has little effect here: a cheater could build

up in a good environment without consequences (at least

until a huge area collapses). Nonetheless, our simulations

show that cross-feeders are robust to cheaters under these

conditions (figures 2 and 5), showing that a novel mechanism

is occurring.

This novel mechanism occurs because when dmic is low

and dres is high, cross-feeders self-organize into regular

spatial patterns [38] (figures 2 and 4d; electronic
supplementary material, movie A2). Both striped and spotted

patterns are possible (figure 2). These patterns form because

the resource a cross-feeder produces is most abundant where

the producer is not. To see this, consider a species 1 (blue)

stripe in figure 4d. The resource they produce is shared

over a distance slightly more than the width of a stripe, so

most of the resource 1 is produced locally rather than being

shared from neighbouring stripes. However, the species 1

stripe is surrounded by two species 2 (green) stripes, each

of which produces resource 2 that is shared across most of

the blue stripe. Thus, resource 2 will be more abundant in a

species 1 stripe (figure 4e). Because species 1 is limited by

resource 2, it has a higher reproductive rate in the middle

of its own stripe. Similarly, species 2 has a higher reproduc-

tive rate in its own stripe. Because of local dispersal, each

population builds up where it grows best, thus providing

positive feedback that reinforces the regular spatial pattern.

Cheaters cannot persist in areas with a shortage of either

resource, because they will have a lower reproductive rate

than one of the cross-feeders. For example, a cheater in the

core of a species 1 stripe will be limited by resource 1,

whereas a species 1 microbe in that area will be limited by

the more abundant resource 2 (figures 4e and 8). If this

effect outweighs the cheater’s inherent birth rate advantage,

then the cheater will have a lower reproductive rate than

the species 1 microbes and will be excluded from the core.

The only place that cheaters have a competitive advantage

is at the interface between stripes or spots, because both

resources are similarly abundant there (figure 4e). Thus,

there may be some group-level selection at the edges between
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stripes; however, cross-feeders gain an individual-level

advantage over much of the environment (figure 8). Thus,

spatial pattern formation can allow the cross-feeders to coexist

with, or even exclude the cheater (figure 2).

A similar pattern occurs when spots form: blue spots are

blue because they receive green resources from four neigh-

bours, and the cheater dominates between the spots (because

resource densities are similar), electronic supplementary

material, movie A4.
3.4. Neighbour uncertainty (low dres and high dmic)
If offspring disperse long distances (high dmic), but resources

are shared over short distances (low dres), then microbes will

interact with a small, random subset of the community and

their associations will be completely different from their off-

spring. Group selection has little effect here: a cheater will

depress the growth rates of its neighbours and a cross-

feeder will increase the growth rates of its neighbours, but

the offspring of both will experience totally different con-

ditions. Thus, a cheater could degrade a local community

without its offspring suffering the consequences. Nonethe-

less, simulations again show that cross-feeders can persist

under these conditions (figures 2 and 5), showing that

another novel mechanism is occurring.

This novel mechanism, which we call neighbour uncer-

tainty, occurs because highly localized interactions will
cause resources to segregate, even if associations are comple-

tely random. If resources are shared over short distances,

then small-scale variation in population density will lead

to small-scale variation in resource availability [39]. For

example, if microbes receive resource from eight neighbours

(i.e. dres ¼ 1) and species 1 occupies 20% of sites, this does

not mean that every microbe will have 1.75 species 1 neigh-

bours; instead, some will have two or three, others will have

one or zero. As a result, many sites will have less of resource

1 or resource 2 by chance (figure 4g,h). Such variation

hurts cheaters, because they need to obtain both resources

from neighbours to reproduce. Intuitively, imagine that

microbes are distributed randomly, and that each resource is

at above-average concentration in half of the sites; in this

case, individual cheaters will benefit in the 25% of sites

where both compounds are at above-average concentration,

but be hindered in the 75% of sites where at least one resource

at below-average concentration. Thus, on average the cheater

will be hindered. This effect is strongest when dres ¼ 1, because

resource variation is highest, but it still occurs at larger dres:

figure 8 shows that that the cheater is harmed by resources

being separated when dmic � 9 and dres � 5, and figure 9

shows that this effect is not due to spatial structure. Neighbour

uncertainty does not harm the cross-feeders: species 1 will

benefit in areas where compound 2 is abundant and be

hindered where compound 2 is rare, but there is little effect

on average. Therefore, most cheaters will be more resource
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limited than most of the cross-feeders. When this effect is

strong enough, the cheater will be at a competitive disadvan-

tage relative to the cross-feeder in most sites (figure 4h). Thus,

this mechanism can allow the cross-feeders to exclude or

coexist with cheaters (figure 2 and 4i).
4. Discussion
How mutualisms such as cross-feeding persist in a world of

cheating is a fundamental problem of evolutionary ecology.

Spatial factors are often seen as an important explanation

[9,18,19]. Studies to date have focused on how spatial factors

can allow cross-feeders to escape from cheaters

[8,9,13,14,20–22]. Here, we show two novel mechanisms by
which cross-feeding is maintained by space. Both mechanisms

create individual-level selection for cross-feeding, and can

allow cross-feeders to outcompete cheaters (figure 2). These

results thus parallel models of within-species cooperator/

cheater dynamics, which suggest spatial factors can cause

‘cooperative’ traits to be beneficial for selfish reasons [40,41].

First, if microbes can build up where conditions are most

beneficial to them but have weak, large-scale interactions,

then cross-feeders will become self-organized into regular

stripes or spots (figure 4d ). Each individual stripe or spot

has a local shortage of one resource, which limits the

growth of cheaters (figure 4e). A few previous studies have

shown pattern formation in a mutualist–exploiter system

[8,20]; however, in those models the mutualists persisted by

escaping their cheaters, rather than outcompeting them.
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This mechanism seems most likely to occur in biofilm sys-

tems, especially if shared compounds can diffuse across

many fixed microbes. Indeed, many biofilms have been

shown to form patterns [42].

Second, if microbes have strong interactions with a few

neighbours, but those neighbours are random, then cheaters

will often experience a local shortage of one resource

(figure 4h). This harms the cheater, because not synthesizing

any essential resources is a poor strategy when resources are

uncertain. A recent study suggested a similar phenomenon in

a model where microbes had random, long-term interactions

[14]. This mechanism seems most likely to occur in systems

that are well-mixed (e.g. the open ocean) and where

compounds quickly degrade (so compound densities vary).
Pattern formation and neighbour uncertainty work in

fundamentally the same way: the two essential resources

are separated in space, leaving individual cheaters limited

by one resource and at a disadvantage relative to one of

the cross-feeders. Each mechanism achieves this effect

by different means. Under pattern formation, population

dynamics arrange the cross-feeders such that there is regular,

large-scale variation in resource density (figure 4e). Under

neighbour uncertainty, localized interactions create random,

small-scale variation in resources (figure 4h), without the

need for self-organization. Thus, artificially mixing the

system will harm cross-feeders that persist via pattern for-

mation, but not those that persist via random localized

interactions (figure 9). In fact, neighbour uncertainty appears
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to function whenever dres is small, and thus works in tandem

with partner fidelity feedback (figure 6).

The second difference between these mechanisms is how

dependably cross-feeders find themselves in favourable

locations. Under pattern formation, individuals of species 1

are almost always in areas beneficial to species 1 (figures 4d
and 7); thus, cross-feeders can exclude cheaters when the

effect of resource limitation is weak. Under neighbour uncer-

tainty, individuals of species 1 are equally likely to be in areas

beneficial to species 1 or species 2 (figures 4g and 7); thus, the

effect of resource limitation on the cheaters must be much

stronger for the cross-feeders to maintain dominance. This
is why cheaters are excluded in figure 4d, but not figure 4g,

even though resource limitation is similar in both

communities (figure 8).

Like any model, our results are based on the specific

assumptions we used, such as uniform dispersal and cheaters

being limited by the rarest resource (i.e. Liebig’s Law). The

critical assumptions needed to produce neighbour uncer-

tainty are (i) microbes interact with a small number of

neighbours, (ii) the microbes associate randomly, and (iii) a

cheater who is limited by one resource gains less benefit

from taking up the other resource. Thus, we expect neighbour

uncertainty to be robust to our assumptions: any resource
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sharing kernel should produce ingredient (i) if it is short-

ranged, any rapid and random movement should produce

ingredient (ii) [39], and many concave uptake functions

should produce ingredient (iii). Our model assumed that

resource levels quickly equilibrate, rather than building up

when not used. It is not clear whether this assumption

increased or decreased the between-site variation in resource

density. If it decreased between-site variation, then a model

with slower resource removal could actually have stronger

effect of neighbour uncertainty.

The critical assumptions needed to produce pattern for-

mation are (a) microbes disperse short distances, (b) a

cheater who is limited by one resource gains less benefit

from the other resource and (c) the resource sharing kernel

must be shaped such that it is better to be at an intermediate

distance from two partners than right next to one partner.

Ingredients (a) and (b) should be easy to produce, but some

sharing kernels will probably not produce (c); for example,

preliminary simulations suggest that Gaussian kernels may

not have that property. We expect that if (c) does not hold,

then patterns will not be stable because the most abundant

resource in a stripe or spot will be the one produced by the

microbes there. Future studies should determine how

robust this mechanism is to different resource sharing

kernels.

Both novel mechanisms work because cheaters need both

resources. Thus, we suspect that if a cheater only needed only

one resource, and could make the other resource without

sharing it, then the novel mechanism will fail. It is not unrea-

sonable to assume that microbes cannot produce a resource

without sharing it: many microbes excrete compounds to

maintain homeostasis, and all microbes excrete compounds

when they lyse [11]. More generally, detoxification, biofilm

production and many other microbial functions produce

some public benefit [11]. Thus, we feel the assumption that

cheaters need both mutualists is valid for some microbial

mutualisms (though unlikely for non-microbial mutualisms).

Future studies should examine how leaky traits must be for

our mechanisms to function.

Our results suggest novel ways that cross-feeding can be

maintained by population dynamics alone. However, many

active behaviours have also been proposed to explain how

cross-feeding persists [31]. For example, mutualisms can be

maintained if mutualists can choose their partners [7], pro-

vide fewer resources to cheaters [6] or actively punish

cheaters [43]. It is likely that both behavioural and population

dynamics mechanisms act in real populations. Future work

should examine if such active behaviours would enhance or

undermine pattern formation and neighbour uncertainty.

In addition to providing two novel explanations for how

cross-feeding is maintained, our work suggests strategies for

making synthetic consortia robust against non-producing

cheaters. Pattern formation and random local interactions

do not require complex behaviours like quorum sensing,

and will be more temporally stable than partner fidelity feed-

back (figure 4; electronic supplementary material, movies A1,

A2 and A3). Many of the technologies needed to produce

these effects have already been developed. For example,

gels, semi-permeable membranes and microfluidic devices

can stop microbes from moving without stopping them

from sharing compounds [44]; these could be used to

generate spatial patterns. Similarly, microfluidic devices

have been developed which partition consortia into small
groups by injecting them into tiny droplets [45]; these could

be used to generate random local interactions. Future work

should examine what are effective ways to implement these

mechanisms in synthetic consortia.
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Appendix A. Model implementation
Most results were generated using simulations. The community

is modelled on a grid (typically 200 � 200 sites) with periodic

boundary conditions. Each site can be empty or contain a

single microbe of any type. Each time step in a simulation

represents Dt units of time (typically 0.1). During each time

step, we determine if empty sites become occupied by new

microbes and if occupied sites become empty via a microbe

dying. We assume that both events occur simultaneously.

An empty site became filled if a nearby microbe gives

birth and disperses its offspring there. The average number

of offspring produced in a given time step, Bjx for species j
at site x, is

B1x¼ b1R2xDt,
B2x¼ b2R1xDt

and B0x¼ b0 minðR1x, R2xÞDt:

9>=
>; ðA 1Þ

The probability that a site x became filled with an individual

of species j was therefore 1=
�
ð2 dmic þ 1Þ2 � 1

�P
y[dmic

N jyB jy.

We selected values of Dt such that this average was much less

than 1 to minimize the possibility that multiple microbes

colonize a site in the same time step (such effects were ignored).

Microbes die in each time step with probability dDt.
Microbes can reproduce during the time step they die.

A site cannot be recolonized the same time step it becomes

empty, and a microbe cannot die during the time step it

was born; such events do not have an effect when Dt is small.

The simulation was written in Java and interfaced through

R, and some of the analysis was performed in Matlab.

For figure 2, we initiated a community with 3000 individ-

uals of each cross-feeder (7.5% of sites occupied). This was

enough to allow the cross-feeders to persist for these par-

ameters in the absence of cheaters. After 20 000 time steps

(2000 time units or approximately 300 generations), we intro-

duced 150 cheater individuals (0.375% of sites) at random

locations, displacing any individuals there. We then ran the

simulation for an additional 50 000 time steps to approach a

steady state. Figure 4 was generated using similar methods,

except that the cheater was introduced after 5000 time steps

and then the simulation was run for an additional 30 000

http://dx.doi.org/10.5061/dryad.s1v3801
http://dx.doi.org/10.5061/dryad.s1v3801
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time steps. Figure 4 displays the spatial distribution at 29 400

time steps, in order to show the population in figure 4a as it

was transitioning between a boom and a bust (at 30 000 time

steps, there are few empty locations, but the population is

about to crash in many localities, making the figure less

illustrative). The neighbour uncertainty case (figure 4g– i)
was run for 50 000 time steps, because it took longer for the

community to equilibrate. Movies of each can be found in

the electronic supplementary material.
 .org
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Appendix B. Analytical results
B.1. Derivation of mean field model
Under mean-field conditions, the finite rate of increase of an

individual of species j (i.e. its geometric growth rate), lj, is

l ¼ 1 þ birth–death. This expression simplifies to

lj ¼ 1þ Bjð1�N1 �N2 �N0Þ � dDt, ðB 1Þ

where Bj is the average number of times that species j repro-

duces (equation (A 1)) and Nj is the fraction of sites held by

species j. In this appendix, we use Nj and Bj without the x
to represent the mean of Nxj and Bxj across space. The par-

enthetical term is the fraction of sites that are empty. Taking

the limit of (B 1) as Dt! 0 results in the continuous-time

model

dN1

dt
¼N1ðb1QN2ð1�N1 �N2�N0Þ � dÞ,

dN2

dt
¼N2ðb2QN1ð1�N1 �N2�N0Þ � dÞ

and
dN0

dt
¼N0ðb0Q minðN1,N2Þð1�N1�N2 �N0Þ � dÞ :

9>>>>>>>=
>>>>>>>;
ðB 2Þ

For the analysis used to generate figure 3, we make the

additional simplifying assumption that b1 ¼ b2 and N1 ¼ N2

(which we call N1 – 2), to reduce the model dimensionality

to aid intuition. With this assumption of species symmetry,

we can model both cross-feeders with a single equation,

and (B 2) simplified to

dN1�2

dt
¼ N1�2ðb2QN1�2ð1� 2N1�2 �N0Þ � dÞ

and
dN0

dt
¼ N0ðb0QN1�2ð1� 2N1�2 �N0Þ � dÞ :

9>>=
>>; ðB 3Þ

We justify this symmetry assumption below.
B.2. Stability of mean-field model
We will conduct most of the analysis on equation (B 2) (i.e.

without the symmetry assumption), though add that

assumption when needed.

If the cheater is absent, this system will have one of three

equilibria. This system always has an extinction equilibrium

N�1 ¼ N�2 ¼ 0: ðB 4Þ

Additionally, when birth rates and compound production are

sufficiently high relative to death rates, then it will have two
positive equilibria,

(N�1 , N�2 ) ¼
 

b1 +
ffiffiffiffiffiffiffiffiffiffiffi
b1=b2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2 � 4dðb1 þ b2Þ=Q

p
2ðb1 þ b2Þ

,

b2 +
ffiffiffiffiffiffiffiffiffiffiffi
b2=b1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2 � 4dðb1 þ b2Þ=Q

p
2ðb1 þ b2Þ

!
ðB 5Þ

If b1¼ b2, these simplify to

N�1 ¼ N�2 ¼
1

4
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

16
� d

2b1Q

s
ðB 6Þ

which exists whenever Qb1 . 8d. Thus, N1 and N2 approach

equality when b1 ¼ b2 and the cheater is absent, which

justifies our symmetry assumption that N1 ¼ N2.

At the extinction equilibrium, the Jacobian matrix is

J ¼ �d 0
0 �d

� �
, ðB 7Þ

which is always stable. At a positive equilibrium, the Jacobian

matrix is

J ¼ �b1N�2 �2b1N�2 � b1N�1
�2b2N�1 � b2N�2 �b2N�1

� �
: ðB 8Þ

Plugging in (B 5), we find that the smaller positive equili-

brium is unstable but the larger positive equilibrium is stable

(if they exist). Thus, this system has multiple stable equilibria.

Next, we show that the cheater will inevitably crash the

system.

No positive equilibrium can exist in a system with the

cheater. To see this, we will assume that one does exist and

arrive at a contradiction. We assume WLOG that N�1 � N�2 .

If a positive equilibrium exists, then dN2/dt ¼ 0 and

N�2 . 0. In this case, we can rearrange species 2’s growth

equation to

QN�1ð1�N�1 �N�2 �N�0Þ ¼
d

b2
: ðB 9Þ

Substituting this into the cheater’s growth rate (when

min ðN�1 , N�2Þ ¼ N�1 ), we find that

dN0

dt
¼ N�0 b0

d

b2
� d

� �
: ðB 10Þ

This is positive whenever N0 . 0, by our assumption that

b0 . b2. Thus, because dN0/dt . 0 when dN2/dt ¼ 0 and

each species has a positive density, a positive equilibrium

with all three species cannot exist.

The equilibrium ðN�1 , N�2 , N�0Þ ¼ ðN�1 . 0, N�2 . 0, 0Þ cannot

be stable, because if dN1/dt ¼ 0 and dN2/dt ¼ 0, then the

cheater must have a positive growth rate (as shown above).

The extinction equilibrium has Jacobian matrix

J ¼
�d 0 0
0 �d 0
0 0 �d

2
4

3
5: ðB 11Þ

Thus, only the extinction equilibrium, ðN�1 , N�2 , N�0Þ ¼ ð0,0,0Þ,
is stable.

If we assume that b1 ¼ b2 and N1 ¼ N2, then we can

reduce our system to a two-dimensional system, shown in

figure 3. In this case, we have a closed, bounded, two-

dimensional system with no internal equilibria; therefore,

no limit cycle exists. Because the system is bounded, does

not contain a closed loop, and contains no other stable
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equilibria, the extinction equilibrium is globally stable.

Hundreds of computer simulations across a variety of

parameters suggest that the same results hold when b1 = b2.
oyalsocietypublishing.org
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Appendix C. Additional analysis of spatial
patterns
Here we present an additional analysis of the spatial patterns

observed in our simulations.

For figure 5, we used a bisection method to calculate the

maximum birth rate b0 a cheater could have without driving

the cross-feeders extinct. We checked values between b0 ¼ 0.6

(equal to b1 and b2) and 2.4. For each value of b0, we allowed

the cross-feeders to reach an equilibrium, introduced a small

number of cheaters, and determined if the cross-feeders per-

sisted after 20 000 time steps. If the cross-feeders persisted at

a given b0, then we checked if they persisted at a b0 half way

between this and the lowest b0 where they did not persist; if

the cross-feeders did not persist, then we checked if they per-

sisted at a b0 half way between this and the highest b0 where

they did persist. We repeated this for eight trials, reaching an

accuracy of 1.8 � 228 � 0.007. We measured the minimum b0

needed to invade using the same method, and the results

were similar. Two simulations runs showed extremely similar

results, suggesting that stochastic extinctions had only a

minor effect on our estimates of b0.
Figures 6–9 were generated using the communities in

figure 2. We used the final distribution of microbes (those

displayed) and ignored communities which collapsed. To

test whether sites that were favourable to the cross-feeders

were also favourable to the cheater (figure 6), we correlated

B0x with B1x and with B2x across each site. Figure 6 shows

the mean of these two correlations. Results were similar

for the correlation between B0x and 1/2 (B1x þ B2x),

though the correlations were higher. To test whether

microbes were more likely to be in favourable spots

(figure 7), we calculated the mean of probability of repro-

duction in sites where the microbe could be found and

compared to its probability of reproduction averaged

across all sites [47]. To determine how much the cheater

was harmed because the resources were in different areas

(figure 8), we calculated the mean of min(R1x, R2x) across

all sites and divided this by the mean of R1x and R2x

across all sites. The denominator here represented the

mean-field level of resource levels, and thus the ratio

shows how much variation in resources harms the cheater.

To test the effect of spatial structure (figure 9), we randomly

reorganized each of the communities. After reorganization,

we tested how much the cheater’s mean probability of

reproduction (B0x averaged across all sites) changed.

Because B1x and B2x are linear functions of species 2 and 1

densities, mean values of B1x and B2x did not change

when the microbes were reorganized.
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