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Tumour immunotherapy is dependent upon activation and expansion

of tumour-targetting immune cells, known as cytotoxic T-lymphocytes

(CTLs). Cancer vaccines developed in the past have had limited success and

the mechanisms resulting in failure are not well characterized. To elucidate

these mechanisms, we developed a human-parametrized, in silico, agent-based

model of vaccination-driven CTL activation within a clinical short-peptide vac-

cination context. The simulations predict a sharp transition in the probability of

CTL activation, which occurs with variation in the separation rate (or off-rate)

of tumour-specific immune response-inducing peptides (cognate antigen)

from the major histocompatibility class I (MHC-I) receptors of dendritic cells

(DCs) originally at the vaccination site. For peptides with MHC-I off-rates

beyond this transition, it is predicted that no vaccination strategy will lead to

successful expansion of CTLs. For slower off-rates, below the transition, the prob-

ability of CTL activation becomes sensitive to the numbers of DCs and T cells

that interact subsequent to DC migration to the draining lymph node of the

vaccination site. Thus, the off-rate is a key determinant of vaccine design.
1. Introduction
Cancer vaccination aims to activate and expand population(s) of tumour peptide-

specific CD8þ cytotoxic T-lymphocytes (CTLs) that recognize peptide sequences

bound to major histocompatibility class I (MHC-I) receptors on human cells. (The

definitions of all acronyms used in the text are given in table 1.) There is a wide

range of vaccination strategies, including whole protein, dendritic cell (DC),

DNA, RNA, and long- and short-peptide approaches. Short-peptide vaccination

aims to induce CTL activation in part by injecting 8–9 amino acid long peptides

derived from known tumour-associated peptides. Short peptides have very short

intra- and extracellular half-lives [1,2], due to relatively high rates of intracellular

breakdown (half-lives of seconds) and vascular clearance (half-lives of minutes in

the dermis). As a result, the proportion of surface MHC-I receptor presentation

may be suboptimal and thereby limit the probability of CTL activation.

Vaccines contain both antigen and adjuvant, which drive localized DC

activation. They can be delivered by a number of routes with dermal and/or sub-

cutaneous delivery requiring the maturation and migration of DCs to draining

lymph nodes (LNs). This process takes between 12 and 32 h [3–10]; thus temporal

and spatial kinetics are key to understanding vaccine responses. When DCs con-

tact CTLs within LNs, their peptide–MHC complexes (pMHC) ligate naive T-cell

receptors (TCRs). For successful CTL activation, a threshold number of TCRs

must be ligated by antigen with sufficient affinity to drive TCR clustering and sub-

sequent CTL activation (i.e. cognate antigen) [11,12]. DCs and T cells have

multiple interactions over several hours [7,13–15]; however, the majority of

these do not lead to activation, due either to insufficient TCR affinity (non-cognate

T-cell interactions) or suboptimal amounts of pMHC complexes. CTL activation

thus depends on the probability that DCs with sufficient numbers of cognate
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Table 1. A list of acronyms used in the text.

( p)MHC(-I) ( peptide-) major histocompatibility complex (one)

LN lymph node HEV high endothelial venule

CD4/CD8 cluster of differentiation 4/8 FAST Fourier amplitude sensitivity testing

TCR T-cell receptor IL interleukin

DC dendritic cell CTL(A) cytotoxic T-lymphocyte(-associated protein)
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antigen are able to meet and successfully activate CTLs. This is,

for instance, influenced by both the properties of the antigen

and the number of DCs that carry it. The combination of con-

ditions under which these factors become limiting for CTL

activation is not immediately clear, but may be clarified by

modelling the key biological processes and associated spatial

and temporal scales from the vaccination site to presentation

within the draining LN(s). T cell–DC interactions in tissue-

draining LNs has been extensively modelled [16–18]. One of

the key parameters determining the development of effector

function is the probability of interactions between T cells and

professional antigen-presenting cells. To investigate this

factor, previous studies have considered a combination of

in vivo mouse experimental measurements and an off-lattice

spherical model of the LN to estimate the minimum numbers

of DCs and T cell required for CTL activation [19]. However,

the focus of this model was limited to cell dynamics; to

model a short-peptide-based vaccine, it is also necessary to

consider the amount of administered peptide bound to DC

MHC-I receptors and its dissociation rate. The main objective

of this study is, therefore, to investigate how the events follow-

ing short peptide administration drive CTL activation and how

they depend on the number of cognate antigen-specific T cells

and DCs, their dynamics, and biophysical peptide properties.

Within the context of this scope, we define successful CTL acti-

vation as the expansion of one or more tumour peptide-specific

CD8þCTL populations. Our aim is to further understand early

events in CTL activation together with the factors that limit the

success of short-peptide DC-based vaccination, to better

inform vaccine design methodologies (table 1).
2. Material and methods
2.1. Model overview
The fundamental methodology of this study is that of agent-based

modelling. In contrast with modelling frameworks which consider

population-level descriptions, for example, by considering mean-

field equations, agent-based models track all individuals, for

instance cells, whose behaviour in space and time is governed by a

set of rules. In the current context one agent might be a T cell,

which moves every time step according to its stored velocity. If

this cell approaches within a certain distance of a DC agent, then it

will become activated or not based on parameters stored in the DC

agent. Agent-based modelling is ideal when the individuals under

consideration are not identical, undergo complex dynamics and

are not present in extensive numbers, rendering standard reductions

to population-level equations inappropriate. For instance, one

common technique, the Van Kampen expansion of the master

equation [20], is impractical due to a combinatorial explosion in

the dimension of the state space required to classify a system with

numerous non-identical agents, and the absence of a thermodyn-

amic limit. Hence, in the current context an agent-based model is

ideal and previous work using this technique [19] has been
extended, with the new developments summarized in the appendix

in the electronic supplementary material. Ab initio Cþþ code is

available from https://doi.org/10.5287/bodleian:dmpX0a42R.

In particular, the framework we have developed is that of a

human parametrized, agent-based model of simulated T cells

and DCs interacting within an off-lattice, spherical LN. The LN

is assumed to be non-inflamed and thus focus is on the probability

of a first successful encounter between naive cognate T cells and

DCs. T cells in the model are present in the LN at the beginning

of the simulation, but DCs carrying varying proportions of peptide

antigen are assumed to arrive gradually from the vaccination site

at physiological rates. DC antigen decays exponentially over time

according to its off-rate with MHC-I (receptors on the DC surface)

and an estimated physiological MHC-I receptor turnover rate.

When a cognate T cell interacts with a DC, it is assumed to be acti-

vated with a probability that depends on the amount of cognate

antigen presented by the DC. The output of the model is the overall

probability of CTL activation as a function of time up to 48 h, the

assumed lifetime of activated DCs within the LN [4,7,9,21–23].

We have systematically investigated the parameter regimes for

which antigenic properties and/or cell interaction dynamics

within the LN are important, and any ‘trade-off’ between them.

Initial positioning of cells, direction and magnitude of cell vel-

ocities, and the probability of successful T-cell activation all

depend on random numbers, as detailed in the following sections.

The model is hence non-deterministic, and all presented results are

an ensemble average over a number of replicates specified in each

case, which are sufficient to ensure that the ensemble predictions

used in this study are insensitive to including further replicates.

A more detailed outline of key model assumptions and features

follows, and are depicted in figure 1.
2.2. Peptide binding dynamics in the dermis and
lymph node

Prior work [25] suggests that the rate-limiting processes for CTL

activation following vaccination are diffusion, vascular clearance,

binding of peptides to MHC-I receptors and the number of

peptide-presenting DCs migrating to the draining LNs. Thus, we

assumed that other vaccine components do not need to be expli-

citly modelled. We assumed that short peptides bind directly to

MHC-I receptors, which typically present ‘self’-peptides produced

within the DC. Self-peptides must dissociate before injected pep-

tide may bind, thus high peptide concentrations are injected to

‘buy time’ before vascular clearance. The typical proportion of

DC MHC-I receptors to which peptide can bind has been estimated

to be 10%–15% [26,27]. DCs take time to mature, leave the dermis

and migrate to the draining LN. In this time, peptide may unbind

from MHC-I receptors and be cleared by the vasculature, or the

entire peptide–MHC complex may be internalized and replaced.

The sum of the rate constants of these processes, koff, is used to

quantify the proportion of DC MHC-I receptors with cognate

antigen bound, A, expected to remain after a time t,

_A(t) ¼ �koffA(t): ð2:1Þ
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Figure 1. Model overview. (1) Following short-peptide vaccination in the dermis, peptide binds to dendritic cell (DC) receptors (MHC-I). The DCs mature and then
migrate to the lymph node via the lymphatics, which in total takes 20 – 28 h following vaccination. They are then placed at random locations in the simulated lymph
node. (2) DCs in the paracortex may contact T cells within a radius b. (3) T cells move with velocity v and mean free path F. If they contact a DC, they are activated
with probability p*(A), where A is the proportion of MHC-I receptors on the DC with cognate antigen bound. (4) A reduces over time due to unbinding and to MHC-I
receptor turnover by the cell, depicted by the arrows indicating the removal of peptide and receptors. Cutout: A modified screenshot of the graphical output of the
model (videos in the electronic supplementary material), which uses GLSC3D [24]. Yellow cells surrounded by translucent spheres represent DCs and their contact
radii. Smaller, red cells are T cells, which turn green when activated. (Online version in colour.)
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Equation (2.1) is hereafter referred to as the off-rate of the cognate

antigen from the DC.
2.3. T cell – DC interactions
We model the LN paracortex as a sphere with DCs and T cells at

random locations throughout the volume, such that no cell is

initially within a contact distance b from another. DCs are

added to their assigned locations linearly over a finite period of

time. A stochastic arrival distribution was also considered, but it

made little quantitative difference to the results. Upon arrival

in the draining LN, each DC presents a cognate antigen ratio

Adermise
2kofftarrival, where Adermis is the cognate antigen ratio pre-

sented by the cell in the dermis immediately following injection

of vaccine components and tarrival is the time taken for the DC to

reach the draining LN. This initial ratio decays according to

equation (2.1). DCs are generally assumed to be stationary in the

LN, though this assumptions is relaxed in some cases to confirm

its validity. T cells draw random velocities and free path lengths

from gamma and Gaussian distributions, to match experimental

data [14] as detailed in the appendix in the electronic supplemen-

tary material. The free path represents the distance that a T cell

moves before it stops for any reason and reorients, after which it

draws a new free path value. If a T cell moves within a contact dis-

tance b from a DC, then its chance of activation is determined as

detailed in §2.4 below. If activated, the T cell is removed from

the simulation, otherwise; it stops and reorients in a direction

away from the DC as outlined above. T cells do not collide with

any other simulated cells, as this effect is already included in the

free path distribution. However, T cells that reach the LN bound-

ary stop and move in a new random direction. They continue to

search the volume until one of three conditions becomes true:

— all T cells have been activated, or

— no DCs have enough cognate antigen to activate a T cell, or

— 48 h have passed (approximate lifetime of activated DCs in the

LN [4,7,9,21–23]).
2.4. Probability of T cell – DC interaction success

We assume that cognate peptide–MHC-I complexes, self-peptide–

MHC-I complexes and TCRs are all expressed uniformly on the

surface of DCs and T cells, and that any new MHC-I receptors upre-

gulated during DC maturation are independent of the initial

population of MHC-I receptors that could be bound to the short

peptide. Suppose that the proportion of MHC-I receptors that are

bound to cognate antigen is A and that N MHC-I receptors are

sampled from this population, representing the sampling of the

DC’s receptors by a nearby T cell. Then the probability that x
from this sample are cognate is (approximately) given by the

binomial distribution,

N!

x!ðN � xÞ! Axð1� AÞN�x:

Following this, the probability that the number of cognate recep-

tors x within the sampled population N surpasses some

threshold T � N is given by

p�(A) ¼ 1�
XT�1

x¼0

N!

x!(N � x)!
Ax(1� A)N�x: ð2:2Þ

As a T cell is only activated when it is simultaneously in contact with

a threshold number T of cognate pMHC [11,12], p*(A) represents the

conditional probability of activation given that a cognate T cell has

made contact with a DC, with N the total number of MHC-I recep-

tors in the T cell–DC contact area that were expressed on the DC

surface at the time of vaccination. This conditional probability of

activation is plotted against the cognate antigen ratio A in figure 2

with other parameters taking the values in table 2. As the number

of MHC-I receptors in the T cell–DC contact region N is large,

there is a sharp transition in p*(A), which approaches unity rapidly

for AN . T. This is because for large N, comparatively small

changes in A lead to large changes in AN. For example, if T ¼ 20

and N ¼ 500, p*(AN¼ 32) ¼ 0.9923.

Note, however, that equation (2.2) ignores various complexities

that influence the probability of CTL activation, such as when

further DC–T cell interactions are required for activation
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[7,13,14,28]. After one CTL is activated, it is assumed that the LN

becomes inflamed, affecting both cell densities and dynamics. We

also ignore TCR affinity: we assume instead that there is a precursor

frequency f of T cells capable of recognizing the antigen with

approximately equal affinity. In addition, the role of CD4þ T cells

in licensing DCs for activation [13,29] is not considered and our

model quantifies only the probability that CTL activation fails

due to insufficient quantities of migrating DCs or cognate antigen.

This is in accordance with our objective to find the regimes in which

CTL activation is impossible, rather than the precise prediction of

LN output. Note also that the binomial distribution represents

sampling with replacement, so it would not be appropriate if

the number of MHC-I receptors on DCs were not so large (105

[30–34]). For a comparison with the exact probability distribution,

see the appendix, in the electronic supplementary material.

2.5. Dendritic cell dynamics
Following the estimates and assumptions of Karanikas et al. [25],

we assume that the number of DCs per square millimetre of

dermis is 600 [35] and that the initial injected vaccine solution dis-

persion area is 0.6 cm2. The number of these DCs that successfully

reach the draining LN is small [36]; we assumed it to be of order 1%

[36] and that they reach the LN at different times. We considered

both linear and stochastic distributions of DC arrival times but

found very little quantitative difference between them (data not

shown), and hence proceeded with the simpler assumption that

DCs arrive linearly between the times P and P þ p.

Many models have neglected the movement of DCs. We, there-

fore, proceed to quantify the accuracy of this assumption in two

cases: when DCs first enter the LN, and after they have settled

into the paracortex. In the first scenario, DCs in vivo exhibit directed

random motion to the high endothelial venule at the LN centre, then

to the paracortex. This is modelled by allowing each DC to enter the

LN from its outer surface, move linearly towards a random location

and then halt. DCs drain from the afferent lymph vessel into the

interstitial space surrounding the LN. They then enter the node at

essentially any point, with points closest to the vessel more likely.

For simplicity, we model entry with equal probability over one

hemisphere of the LN. In the second scenario, after DCs have settled

into the paracortex, they ‘run and tumble’ akin to T cells with lower

motility, which we model by assigning velocity and mean free path
distributions to DCs (as detailed in the appendix, in the electronic

supplementary material). Most sources report DC velocities of

around 2–6 mm min�1 (e.g. [7,9,14]), so we consider this range

for both active migration and random motion.

2.6. Parameter selection
Model parameter values were selected and/or estimated from

relevant literature, as summarized in table 2. We matched values

to measurements in primary citations where possible; otherwise

we have implemented a value within the reported range in the

experimental literature. We have used mouse parameters where

human data were absent and the parameter is not expected to

change substantially between mouse and human (for example,

cell velocities). T-cell numbers were chosen by multiplying

observed T-cell densities with a precursor frequency f, the pro-

portion of T cells with an affinity for the modelled cognate

antigen, and DC numbers were chosen as described in §2.5.

2.7. Sensitivity analyses
To identify important parameters and ensure that the model is well-

behaved, we performed a sensitivity analysis. We used two tech-

niques for this: the random forest model [53] and calculation of

the variance of model outputs under variation of parameters. The

former was implemented using the python package Scikit-learn

[54], while the latter made use of extended FAST [55–57].

The random forest technique can yield relative importance fac-

tors for each parameter, whose sum adds up to one. eFAST yields

two indices for each parameter. The first of these is the ‘sensitivity

index’, which represents the proportion of an output’s variance that

is due solely to a given parameter, i.e. first-order contributions. The

sum of these indices is usually less than one, due to missing higher-

order terms, which involve combinations of parameters. The ‘total

sensitivity index’ is calculated from the proportion of an output’s

variance due to all parameters except one. This index contains all

of the contributions that involve a given parameter at any order.

The higher-order terms are counted in multiple indices, so the

sum of the indices is usually greater than one.

The difference between the total sensitivity and sensitivity

indices is the contribution of a parameter’s variance due only to

higher-order terms, indicating the degree of ‘interaction’ that a par-

ameter has with others. Total sensitivity indices can be large even

for unimportant parameters, if its higher-order terms also include

other, more important parameters.
3. Results
3.1. Cytotoxic T-lymphocyte activation probability

against numbers of T cells or dendritic cells
The simulated effect on CTL activation probability (the fractionof

simulated T cells that become activated) of the numbers of T cells

or DCs in the LN is shown in figure 3a–b, which confirm pre-

viously reported results [19] (see the appendix in the electronic

supplementary material for a description of the differences). In

these results, peptide off-rate is set to be very low, so that all

DC–T cell interactions lead to successful CTL activation in the

simulated time period. This represents a ‘best-case’ scenario in

which properties of the administered short peptide are not limit-

ing for T-cell response and increasing the number of either cell

type causes the activation probability to increase until saturation.

3.2. Cytotoxic T-lymphocyte activation probability
against antigen off-rate

The simulated effect of cognate antigen on the probability of

CTL activation is shown by figure 3c–d as a function of the
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Figure 3. The probability of cytotoxic T-lymphocyte (CTL) activation against numbers of dendritic cells or antigen off-rate, koff. In all plots, time t ¼ 0 is defined as
the time at which the first dendritic cell (DC) arrives in the lymph node. Where parameters are not specified, their values are as presented in table 2. (a, b)
Probability of activation of at least one simulated T cell in (a) 48 h or (b) 24 h, against number of DCs. A very low antigen off-rate is used such that any interaction
between cells results in successful CTL activation. Curves for T-cell precursor frequencies between 1026 and 1024 are shown. The greater the numbers of either kind
of cell, the greater is the chance of successful CTL activation. Both plots are an ensemble average over 1000 replicates. (c, d ) Probability of T-cell activation after the
specified number of hours versus peptide off-rate after (c) 20% or (d ) 100% of MHC-I receptors bind to cognate antigen at the site of vaccination. The probability is
characterized by a sigmoidal increase followed by a saturation. Solid lines show the probability for 720 DCs and shaded regions show the probabilities between 500
and 1000 DCs. The dotted line in each plot indicates the turnover rate of MHC-I receptors [58]. Both plots are an ensemble average over 100 replicates.

Table 2. Model parameters. References for each parameter are organized by species: MM, mouse; HS, human; CM, monkey.

sym parameter typical value reference

A ratio of cognate to total antigen on DC surface initially 10% – 20% HS [26]

b contact radius 20 mm MM [37 – 41], HS [42], CM [18]

D number of simulated DCs 500 – 1000 see §2.5

F T cell free path 25 mm MM calculated from Mempel et al. [14] and Miller et al. [43]

FDC DC mean free path 3 – 5 mm MM calculated from Mempel et al. [14]

koff antigen off-rate from MHC-I receptors n.a.

N antigen in T cell – DC contact area 500 MM [5,9,23,43]

P time of first DC arrival 18 h MM [3 – 6]

p time between first and last DC arrival 6 h MM [4,7 – 9], HS [10]

f T cell precursor frequency 1024 – 1026 [19,44 – 46]

rtot number of MHC-I receptors per DC 100k internalþMM [30 – 34]

R LN ( paracortex) radius 500 mm [19,37 – 41] HS [42], CM [18]

T T-cell activation threshold 20 MM [11,12,47 – 50]

v T-cell velocity 10 mm min�1 MM [43,51]; [14] in particular

w DC velocity 2 – 6mm min�1 MM [7,9,14]

— density of T cells in paracortex O(105�106) mm�3 MM [4,7,23,52], CM [18]
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antigen off-rate. The probability is characterized by a sigmoidal

increase followed by a saturation. The location of the sigmoidal

region on the off-rate axis shifts to higher off-rates (‘left’ in the

figure) if Adermis is increased, as shown between figure 3c and d.

A decrease in P (the time taken for the first DC to migrate from

the dermis to the LN) also shifts the region left, according to

ALN entry ¼ Adermise
2koffP. Changes to the number of antigen

in the T cell–DC contact region, N, or the threshold for

response, T, also shift the region, due to the corresponding

shift in the transition (figure 2) for the conditional probability

of a T cell–DC interaction leading to CTL activation. Changing

the number of DCs changes only the saturation height of the

slope, as the shaded regions in figure 3c and d indicate.
3.3. Motion of dendritic cells
To approximate the error due to assuming DCs are stationary,

we also considered a version of the model in which DCs are

allowed to move. Figure 4a,c shows the change in probability
of CTL activation when DCs are allowed to move at random

throughout the sphere. The greater the DC velocity w, the

greater is the increase in CTL activation probability. However,

for velocities w , 6mm min�1, a relatively high DC velocity

according to experimental estimates, much of the change in

activation probability is within the standard error of the

stationary model’s output (for 100 statistical replicates per

datum). When DC velocities are as high as 10mm min�1, the

difference is outside of these error bars, though the impact on

modelling predictions is still weak. Figure 4b,d shows the

difference in CTL activation probability when DC migration

is explicitly modelled instead of adding simulated DCs directly

to random positions. In general, ignoring migration causes an

overestimate of activation probability at low velocities and an

underestimate at high velocities. At low velocities, DCs are con-

fined to the outer edges of the LN for long times and do not

sample as much of the volume. At high velocities, DCs move

rapidly through the LN and sample a larger volume than a

stationary DC would for the migration period.
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Ignoring migration causes an under-/over-estimate for

small/large numbers of DCs compared to simulations with

intermediate velocities (figure 4b). Moving DCs sample a

greater volume of the LN than stationary ones, so the acti-

vation probability is increased for small numbers of DCs.

However, if the number of DCs is large, then the volume sur-

veyed by each arriving DC overlaps. Randomly scattering the

DCs in this case increases the surveyed volume at early times

and hence yields a higher activation probability.

Considering changes in antigen off-rate with 720 simulated

DCs, as presented in figure 4d, there is essentially no difference

in activation probability with changes in motility for very low

or very high off-rates. In the transition region, the volume of the

LN surveyed by DCs before losing their cognate antigen

becomes important, so activation probability differs with vel-

ocity as described above. In figure 4a–d, the predictions by

the stationary model lie between the predictions for

w ¼ 2mm min�1 and w ¼ 6mm min�1 for the entire parameter

region, indicating that the error due to ignoring this motion

is no greater than the error in our uncertainty of the DC’s

true velocity.
3.4. Analysis of the sensitivity of cytotoxic
T-lymphocyte activation probability

We performed a sensitivity analysis on the model, shown in

figure 5. We used two techniques: random forest and eFAST.

The former yields estimates of the importance of each

parameter, while, the latter yields a ‘sensitivity’ and a ‘total

sensitivity’ index for each.
We varied each parameter between+25% of their default

values. R3 and b3 were altered in lieu of R and b, as cell counts

and interaction volume are proportional to the cube of these

respective parameters. We performed analyses with two

ranges of koff: one within and one beyond the transition

region described in §3.2.

As expected, only factors relating to cell interactions are

important beyond the transition region, where antigen off-

rate does not influence CTL activation at long times. Within

the transition, CTL activation depends upon sufficient anti-

gen being present, so factors relating to antigen and rapid

transit of DCs are most important. Interestingly, total sensi-

tivity indices for many parameters are of a similar size,

indicating that there is a high degree of correlation between

model parameters.
4. Discussion and conclusion
4.1. The role of peptide off-rate and DC/T-cell numbers

in cytotoxic T-lymphocyte activation
The primary aim of this work was to determine the factors

that influence the probability of CTL activation following

short peptide vaccination. Figure 3 shows that the predicted

probability increases with time, the number of DCs, T-cell

precursor frequency and decreasing peptide–MHC (pMHC)

off-rate. The fundamental factor is the off-rate, against which

activation probability exhibits three characteristic behaviours

(figure 3c,d ): a region of zero probability for fast off-rates, a

region of high probability for slow off-rates and a transition

region between the other two that is highly sensitive to changes
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in off-rate. This behaviour is inherited from the sharp transition

in the binomial equation (figure 2). Such transition-like behav-

iour has been observed in the amount of cytokine produced

by CTLs as a function of pMHC density when the latter are

immobilized on a surface [11,59], which is consistent with

conclusions drawn from our model.

For sufficiently slow off-rates beyond the transition, the

probability of CTL activation is sensitive to patient-specific fac-

tors such as the number of recruited DCs or the precursor

frequency, as shown in figure 3a,b. In this region, activation prob-

ability is not sensitive to or limited by properties of the antigen.

Within the transition, small changes in off-rate are

predicted to cause dramatic changes in CTL activation prob-

ability. Thus, vaccination with short peptides with off-rates

in this range may show higher levels of inter-patient variability

in T-cell activation response. Activation probability within the

transition is insensitive to the number of recruited DCs, seen in

the narrow thickness of the shaded regions in figure 3c,d. CTL

activation probability in this parameter regime could be

increased by shifting the transition region, by reducing the

time taken for DCs to reach the LN or increasing the proportion

of MHC-I receptors bound to cognate antigen in the dermis (by

more efficiently loading peptides).

Below the transition, off-rates are too high and there is

no prospect for improving the CTL activation probability with-

out first reducing the off-rate. We conclude that the initial

events in a short-peptide vaccination that determine CTL

activation depends foremost on pMHC presentation and off-

rate. To improve the probability of CTL activation, peptides

should be optimized for slow off-rates, high presentation

at the vaccination site and fast migration time to draining

LNs. For example, performing multiple single vaccinations

instead of a single multiple-peptide dose would reduce compe-

tition for MHC-I receptors and thus increase MHC-I receptor

occupancy for each peptide. DC migration time could

be improved with alternate delivery mechanisms, such as

intranodal DC vaccination.

4.2. The sensitive parameters in our model
support expectations

The factors that influence the probability of CTL activation

were further studied with sensitivity analyses both within

and beyond the transition. The parameters that were found

to be important was as expected intuitively. Within the tran-

sition, where the pMHC off-rate is barely sufficient for CTL

activation, the model is most sensitive to parameters relating

to antigen-MHC-I receptor binding such as Adermis or the

time taken for the first DC arrival, P. Beyond the transition,

where activation probability is not limited by off-rate, only

parameters relating to T cell–DC interactions such as the

number of DCs are important. This supports the conclusions

given in §4.1.

In most cases, the sensitivity indices and random forest

importances described in §3.4 agree on which parameters are

important. The differences likely stem from the details of each

algorithm: the growth process for the random forest chooses

parameters that are best able to split data into two groups,

while eFAST compares how the variance of different par-

ameters affects the variance of the output. For example, e2koffP

determines the location of the transition and thus P can effec-

tively split data that crosses the transition, but does not

contribute greatly to output variance away from the transition.
Additionally, the sensitivity index for P quantifies output

variance due to changes in P alone, but P appears only as a pro-

duct with the off-rate, koff, while koff is used alone to calculate

decay of antigen within the LN (equation (2.1)).

Total sensitivity indices also disagree with the other two

sets of indices, but we choose to discount these as they are

heavily influenced by interactions between parameters. Sensi-

tivity to other parameters is low, indicating that the model

and its conclusions are robust.

4.3. Model observations are not sensitive to dendritic
cell motion

Section 3.3 contains a description of the differences made to

model predictions when DC movement into the LN is explicitly

modelled, and when they are allowed to move randomly

akin to T cells. Measurements of a typical DC velocity differ.

For example, one measurement using two-photon micro-

scopy [14] gave a median three-dimensional velocity of

6:6mm min�1, whereas another [15] gave a value correspond-

ing to 3:3mm min�1. This discrepancy could be due to the

time of measurement; DCs in the LN are known to lose motility

over time before stopping after 48h [4,7,9,21–23]. This loss of

motility could be due to changes in either velocity or mean

free path, but either case improves the approximation of DCs

as stationary.

We found that the difference made to model predictions by

random motion of DCs is no greater than statistical fluctuations

(for 100 replicates) for DC velocities w � 6mm min�1, and that

ignoring DC migration gives a prediction equal to one in the

range of migration velocities 2 � w � 6mm min�1. These

results indicate that it is valid within uncertainties to ignore

motion of DCs. However, we modelled DC migration as

straight-line movement from the perimeter, which is not true

to the biology. It neglects collisions with cells in the node,

and the fact that DCs move first to the high endothelial venules.

However, as we do not model T cell ingress, HEV modelling

is unnecessary. Straight-line movement represents a first

approximation, which we expect to be of similar order to the

true error. In light of these considerations, and that the differ-

ences made to prediction is within experimental uncertainty,

we conclude that it is valid to neglect movement of DCs for

the range of DC velocities reported in the literature and

hence the other results presented here use the ‘basic’ model

with no DC movement.

4.4. Conclusion and future work
We produced a model of the events leading to initiation of CTL

activation within the LN and quantified various assumptions

made by us and others. We analysed the sensitivity of par-

ameters in our model to ensure that our model’s conclusions

are robust. By considering the properties of antigen bound to

DCs and how this affects CTL activation probability, we

found that peptide–MHC off-rates that are significantly

faster than a certain transition value lead to zero probability

of CTL activation. For slightly slower off-rates, there is a

rapid transition to a probability that is independent of further

decreases in off-rate. For these slower off-rates, the only factors

naturally varying among individuals that CTL activation prob-

ability depends on are the numbers of interacting T cells and

DCs. The transition off-rate depends upon factors such as the

time taken by DCs to migrate to the draining LN.
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This work could have significant impact on short-peptide

cancer vaccine design. We predict that certain tumour-

associated peptides used in vaccines may have zero probability

of ever activating CTLs in patients, based only on properties

of the peptide. This may explain the lack of success in

many cancer vaccine clinical trials to date. Peptides should be

selected first for a pMHC off-rate low enough to have a

chance of CTL activation, and then patient-specific factors

should be optimized to improve this chance. The vaccination

site may be cooled to reduce peptide clearance multiple vacci-

nation sites that drain to the same LN may be used to increase

numbers of recruited DCs or reduce competition for MHC-I

receptors in multi-peptide vaccinations, or intranodal DC

vaccination may be considered.

There is considerable scope for further work from this

study. We could consider additional complexities such as

T-cell ingress, egress and receptor affinity to quantify CTL pro-

liferation and compare to the work of others [17,18,60]. The

model could be applicable to other types of vaccination such

as mRNA or DC delivery, or to tumour-draining LNs, though

these would all require consideration of cross-presentation.

We showed that various simplifications and assumptions in

the model are valid, thus a simpler first-passage model as
previously reported [19] could be used in future, by comparing

the expected interaction time with the antigen off-rate. How-

ever, such an approach should take into account complexities

such as staggered arrival of DCs and a ‘run and tumble’

description of T-cell dynamics. As the objectives of this study

were to quantify the requirements for driving CTL activation

in response to short-peptide vaccinations, a more immediate

extension is to simulate past clinical trials and attempt to esti-

mate or replicate the probability of patient response within a

cohort. We may then simulate possible alterations to trial

design that improve response probability, which may lead to

further insight into optimal design.
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