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The subtropical front (STF) generally represents a substantial oceanographic

barrier to dispersal between cold-sub-Antarctic and warm-temperate water

masses. Recent studies have suggested that storm events can drastically

influence marine dispersal and patterns. Here we analyse biological and geo-

logical dispersal driven by two major, contrasting storm events in southern

New Zealand, 2017. We integrate biological and physical data to show that

a severe southerly system in July 2017 disrupted this barrier by promoting

movement of substantial numbers of southern sub-Antarctic Durvillaea kelp

rafts across the STF, to make landfall in mainland NZ. By contrast, a less

intense easterly storm (Cyclone Cook, April 2017) resulted in more moderate

dispersal distances, with minimal dispersal between the sub-Antarctic and

mainland New Zealand. These quantitative analyses of approximately

200 freshly beach-cast kelp specimens indicate that storm intensity and wind

direction can strongly influence marine dispersal and landfall outcomes.
1. Introduction
Recent studies have suggested that major storm events can disrupt prevailing

connectivity patterns among marine ecosystems, leading to anomalous cases

of long-distance dispersal (LDD) [1]. Such sporadic, storm-driven events can

have major implications on the distributions of species, and on the composition

of ecosystems [2–4].

Recent studies have started to address questions of storm-forced marine

dispersal by combining biological and physical datasets. Emerging data from

the New Zealand region, for instance, suggests that temporal variation in wind

conditions can play a major role in constraining the dispersal (i.e. movement

via advection and dispersion) of rafting macroalgae [5,6]. Additionally, there is

increasing evidence for oceanographic features interacting with coastal geometry

to constrain biological dispersal—whereby landfall of drifting material can be

substantially influenced by beach/bay orientation (e.g. [7,8]).

Large buoyant species of the southern kelp genus Durvillaea present strong

systems for addressing biological and geological connectivity in temperate and

cold waters of the Southern Hemisphere. Several recent studies have tested epi-

faunal connectivity associated with this macroalgal rafting vector [9–12] that

can drift for substantial distances in the Southern Ocean (see [13,14]).

Southern New Zealand coastal waters are characterized by a strong northeast-

erly flow of coastal water [15] that facilitates a prevailing northward dispersal of

buoyant biological material [16]. Offshore, the subtropical front (STF) [17–19]

represents a marked transition from warm coastal waters to cool water of sub-

Antarctic origin (figures 1a and 2a). This oceanographic feature runs sub-parallel

to the continental shelf for several hundred kilometres, and generally represents a
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Figure 1. Topography and weather events in New Zealand and the Southern Ocean. (a) Onshore and offshore topography (from GoogleEarth) of the New Zealand
crustal area and adjacent deep ocean. The STF oceanographic barrier represents the boundary between warm-temperate versus cold-sub-Antarctic water masses.
(b) Easterly surface winds of Cyclone Cook on 14 April 2017, from earth.nullschool.net (adapted from [20]). (c) Surface wind model for the southerly storm of 21 July
2017. (Online version in colour.)
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Figure 2. Summary of extreme weather events and receiving beach geography in the Dunedin area, southern New Zealand. (a) Locations of beaches sampled for
cast kelp rafts, and exotic rocks collected from holdfasts. (b) Easterly storm of Cyclone Cook, April 2017. (c) Southerly storm of July 2017. (Online version in colour.)
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substantial barrier for biological dispersal (figure 1; [5,6,11]).

However, recent analyses have suggested that strong wind

events can disrupt prevailing oceanographic connectivity

patterns [1], including promoting the dispersal of sub-

Antarctic-origin material across the STF oceanographic barrier

to make landfall on mainland NZ [5,6]. Until now, quantitative
analyses of beach-cast material linked to such storms have

been lacking.

We here test our hypothesis that storms can alter marine

dispersal patterns, via a comparative study made possible by

two strong but contrasting storm events in southern New

Zealand during 2017 (figures 1 and 2). First, the region was
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Figure 3. Modelled ocean current directions and velocities ( from earth.nullschool.net) for New Zealand and Southern Ocean on (a) 7 April 2017; and (b) 17 June
2017, while the kelp rafts described in this study were at sea. Regional distributions of genetically distinct D. antarctica kelp populations (adapted from [21]) are
indicated in (a). Potential oceanographic connectivity between the Macquarie Island region and mainland NZ in July 2017 is indicated by a yellow arrow (bottom left
of (b)). (Online version in colour.)

Table 1. Summary of beach-cast Durvillaea sampling at four southern New Zealand beaches following April and July 2017 storm events. To avoid beach-cast
material of local origin, sampling was restricted to specimens covered in L. australis barnacles. Sample sizes, numbers of specimens genetically assigned to each
species/clade and mean (maximum) capitulum length of associated L. australis goose barnacles are indicated.

beach—month (n) location D. poha
D. antarctica
‘NZ south’

D. antarctica
‘subantarctic’ Lepas (mm)

Victory—April (29) 458500 S, 1708440 E 10 9 1 5.4 (10)

Victory—July (18) 0 15 0 6.1 (11.2)

Allans— April (29) 458520 S, 1708420 E 10 14 1 5.2 (17.2)

Allans—July (33) 5 24 3 10.0 (23.4)

St Clair—April (14) 458540 S, 1708300 E 6 5 0 3.0 (6.6)

St Clair—July (43) 5 25 10 11.8 (30.8)

Brighton—April (23) 458560 S, 1708200 E 7 8 0 4.6 (11.9)

Brighton—July (28) 11 15 1 6.5 (11.8)
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subjected to a sustained period of greater than 40 km h21

easterly winds associated with Cyclone Cook in April 2017

(figures 1b and 3). Second, the same region experienced a

period of sustained strong (greater than 60 km h21) southerly

winds in July 2017 (figures 1c and 3). Oceanographic and sur-

face wind model data associated with these events are taken

from earth.nullschool.net (figures 1 and 3). Both events drove

substantial numbers of drifting kelp specimens ashore onto

exposed beaches of southeastern New Zealand. By using a

combination of oceanographic, genetic, geological and bio-

logical observations, we here reconstruct the travel history

of these specimens, to test predictions about the role of

wind in driving marine dispersal events across the major

STF oceanographic barrier.

We predicted that:

(1) The stronger storm would be linked to longer dispersal

distances, with more specimens traversing the STF to
make landfall. Specifically, we hypothesized that the

stronger and more sustained winds of July 2017 would

drive a larger component of sub-Antarctic-origin specimens

across the STF than the April 2017 event;

(2) Coastal geometry might interact with storm-forced dispersal

to influence landfall of rafting specimens (see [8]). Specifically,

we assessed whether beach orientation (e.g. east- versus

south-facing) might be linked to the extent of offshore drift

material driven onshore by these contrasting storms.

2. Material and methods
2.1. Coastal sampling
Specimens of beach-cast Durvillaea, associated epibiota and geo-

logical clasts were collected from four Dunedin beaches (Victory

Beach, Allans Beach, St Clair and Brighton; table 1, figure 4) in

the immediate aftermath of the April and July 2017 storms.
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Figure 4. Provenance of beach-cast kelp samples collected from Otago beaches in (a) April and (b) July 2017 (table 1) based on DNA sequencing. Sampling was
restricted to specimens covered in L. australis barnacles, in order to avoid material of local origin. For (a) and (b), proportions of each haplogroup are shown in total
in the large pie chart, and for each site in smaller pie charts, with blue representing D. antarctica haplotypes from southern New Zealand, green representing
haplotypes of D. poha and red representing D. antarctica haplotypes previously only detected at sub-Antarctic locations. (c) Map showing distributions of
D. antarctica haplogroups, with blue outline (South Island NZ and Stewart Island) representing the ‘NZSth’ haplogroup, and red outline representing the
‘Subant’ haplogroup. Sites in this region from which the ‘Subant1’ haplotype has previously been detected in attached populations are labelled in red
text. The inferred dispersal from Macquarie Is across the STF barrier to southeastern New Zealand is indicated schematically by an orange arrow, and the
prevailing wind direction in July 2017 storm event is shown by blue arrows. (d ) Box and whisker plots of Lepas capitulum length on beach-cast kelp
rafts in April (purple) and July (blue) for each haplogroup. A photo of large Lepas on one of the kelp holdfasts is shown (inset). (Online version in colour.)
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Specifically, sampling was conducted within 6–24 h of the cessa-

tion of strong onshore winds—in the aftermath of the April and

July 2017 storms. Sampled specimens were clearly identifiable as

freshly beach-cast by the presence of live epifauna (including

Lepas australis barnacles), and a lack of desiccation. To avoid

beach-cast specimens of local origin (e.g. from the immediate head-

land), we sampled only kelp specimens covered in L. australis
barnacles, a signature of substantial time adrift at sea. Ninety-five

Durvillaea specimens were collected in April 2017 and 122 in July

(table 1). In addition to samples of Durvillaea and L. australis, epi-

fauna and holdfast rocks were also sampled if present. All

specimens were stored in plastic bags and returned to the labora-

tory where they were stored frozen prior to analysis. The

northeast-facing Warrington Beach (figure 2) was also examined

after the July storm, and non-local beach-cast kelp was notably

absent from this beach.

2.2. Genetic analysis
For genetic analyses, DNA extraction, PCR and DNA sequencing

of Durvillaea COI followed the methods of Fraser et al. [5], with

new sequence data compared to the reference Durvillaea sequence

database of Bussolini & Waters [21]. Durvillaea DNA sequence data

were edited and aligned using Geneious 6.1.8, yielding a 629 bp

alignment, with no indels detected. Sequences were assigned

to reference haplotypes through UPGMA analysis using absolute

distances, and assigned to previously described phylogeo-

graphic clades ([21]; figures 3a and 4c) through phylogenetic

bootstrapping [22] using PAUP Version 4.0a152 [23].
2.3. Geological analysis
Rocks were found attached to holdfasts of 22 of the sampled

(L. australis-covered) kelp specimens: 10 of the April 2017 speci-

mens, and 12 of the July 2017 specimens. These rocks ranged in

size from millimetre-scale veneers to greater than 7 kg. The mineral

content, textures and rock identification were determined by stan-

dard petrographic microscopic observations, including polished

thin sections. Distinctive rocks were the principal focus of this

component of our study, and these were compared to the known

regional geology of southern New Zealand and the sub-Aantarctic

islands, to determine probable coastal source areas. Rock samples

and sections are available by request from the Geology

Department, University of Otago.
2.4. Lepas barnacle analysis
For each Durvillaea specimen collected, the size of encrusting bar-

nacles (L. australis) was used as a proxy for rafting duration, based

on L. australis growth rates reported by Skerman [24]. For each

Durvillaea specimen, the three to four largest L. australis barnacle

specimens were collected and returned to the laboratory where

they were stored frozen prior to measurement. Barnacle capitulum

length was measured using digital calipers. Rafting time was esti-

mated using Fraser et al.’s [5] regression: y ¼ 0.565x–4.0359 (where

y ¼ capitulum length and x ¼ L. australis age). While the L. australis
specimens sampled in the present study were collected several

hundred kilometres south of the specimens measured by Skerman

[24], in slightly cooler waters, the published growth rate estimates,
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nevertheless, present a useful tool for assessing relative ages of

drifted specimens.
3. Results
3.1. Contrasting genetic composition of April versus July

beach-cast kelp samples
Genetic analysis yielded 115 high-quality Durvillaea sequences

for the July 2017 kelp samples (figure 4), of which 94 were

D. antarctica (informative for discriminating mainland versus

sub-Antarctic origins) whereas 21 were D. poha (uninformative

as this species shows little geographical variation for COI [25])

(table 1). Likewise, April 2017 kelp samples yielded 71 high-

quality Durvillaea sequences (figure 4), of which 38 were

assignable to D. antarctica and 33 to D. poha (table 1). Phylo-

genetic analysis reliably assigned the vast majority of these

Durvillaea sequences to known reference haplotypes [21] with

the exception of nine samples from July 2017 assigned to a

previously unrecorded haplotype ‘NZSth11’. Similarly, phylo-

genetic bootstrapping reliably assigned all sequences to

previously documented Durvillaea clades/species from the

southern NZ region: D. poha, D. antarctica ‘subantarctic’ and

D. antarctica ‘NZ South’ (figure 4).

Genetic data revealed that the easterly storm of April 2017

led to the landfall of kelp specimens that were predominantly

of southeastern NZ origin. Specifically, of the 38 D. antarctica
specimens, 36 (95%) were genetically assigned to southern

NZ (NZ-Sth) populations, whereas only 2 (5%) originated

from the NZ sub-Antarctic (Auckland Islands or Snares).
These rare sub-Antarctic specimens were detected only at the

eastern-most beaches (Victory Beach, Allans Beach), relatively

close to the STF (figure 4a). By contrast, the proportion of

sub-Antarctic-origin specimens driven ashore by the July

2017 southerly storm was substantially larger (14 (15%) of 94

D. antactica sequenced) (table 1; figure 4), with most (10) of

these sub-Antartic specimens carrying haplotype ‘Subant1’,

a circumpolar lineage originating from relatively remote,

high-latitude source populations.

These contrasting storm-driven landfall events are further

emphasized by the size of L. australis barnacles associated

with the July 2017 storm specimens, which were on average

twice as large (mean 9.3 mm; max 30.8 mm) as those

from the April 2017 storm samples (mean 4.7 mm; max

17.2 mm). The long rafting duration of the July 2017 sub-

Antarctic-origin kelp specimens was further highlighted by

the significantly larger ( p ¼ 0.01) L. australis specimens associ-

ated with them (mean 14.7 mm) relative to the NZ-origin

specimens (mean 8.8 mm) from the same event (figure 4). On

average, sub-Antarctic origin kelp specimens from the July

storm event were estimated to have been at sea for at least

33 days, with some L. australis on sub-Antarctic specimens

estimated to be at least 48 days old.

3.2. Contrasting geological origins of April versus July
kelp-transported rocks

Rocks sourced from the relatively nearby Murihiku metagrey-

wacke terrane (figure 5a; [20]) were the most far-travelled of the

transported rocks found in the April 2017 storm. The largest of
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these rafted rocks weighed greater than 7 kg [20]. These April

kelp-transported geological clasts were associated with rela-

tively small dispersal distances (figure 5a; red-dashed line)

and small Lepas barnacles (max 5 mm), indicating dispersal

timeframes of approximately 2 weeks. By contrast, rocks col-

lected from kelp beached in the July 2017 storm had been

transported from much further afield. The longer dispersal

timeframes are indicated by the finding that July geological

clasts were associated with substantially larger Lepas barnacles

(8.3–11.5 mm) than the April rock clasts (figure 5a).

The most distinctive and distal of the July rocks was fine-

grained chalky limestone with fossil foraminifera and authigenic

minerals glauconite, pyrite and calcite (figure 5b,c). The only

known coastal localities of this type of rock occur in SW South

Island (figure 5a) and Campbell Island [26]. The limestone is

unlikely to have come from the latter locality as the hosting

kelp genetically matched the ‘NZSth’ mtDNA clade (whereas

Campbell Island populations belong to the ‘Subant’ clade),

and attached barnacles indicate a moderate drift time

(figure 5a). Similarly, distinctive granitoid rocks (figure 5d,e)
could have come only from Fiordland, Stewart Island or

Snares Islands (figure 5a; [27,28]), in accord with the kelp

genetics (NZSth) and moderate barnacle size.

Geological data similarly show a relatively strong southerly

New Zealand component in the July storm samples (figure 5),

with many ‘NZSth’ specimens showing geological origins

consistent with Stewart Island and/or Fiordland origins

(the remote south/southwest of NZ; figure 5), compared to

the prevalence of clasts sourced from the relatively nearby

Murihiku terrain (figure 5; [20]) in the April 2017 event.

3.3. Contrasting Lepas size associated with
coastal geometry

Data from both storms suggest a possible interaction between

coastal geometry and landfall of rafting specimens. Specifi-

cally, April 2017 (easterly storm) Lepas specimens on kelp

collected from the single east-facing beach (mean 5.4 mm)

were significantly ( p ¼ 0.03) larger than those on kelp collected

from the three south-facing beaches (mean 4.5 mm). By con-

trast, these patterns were reversed in the southerly storm of

July 2017, in which samples from south-facing beaches had

substantially ( p ¼ 0.006) larger Lepas (mean 9.8 mm) than

those from the sole east-facing beach (mean 6.3 mm).
4. Discussion
Rafting is thought to be an important ecological and evolution-

ary process for coastal ecosystems [4,5,29], yet relatively little is

known about the effects of anomalous storm events on such

passive marine dispersal. Our genetic analysis of approxi-

mately 200 beach-cast kelp specimens provides evidence of

strongly contrasting dispersal and landfall patterns associated

with distinct storm events in southern New Zealand. Specifi-

cally, while the easterly storm of April 2017 led to landfall of

rafted material almost entirely of NZ mainland origin, the

stronger southerly storm of July 2017 led to the landfall of

more substantial numbers of sub-Antarctic specimens from

across the STF oceanographic barrier (hypothesis 1; figure 4).

Many of the sub-Antarctic D. antarctica specimens that

made landfall on mainland NZ (figure 4) during the July

storm share a circumpolar sub-Antarctic haplotype ‘Subant1’

[30], which has previously been detected in just one of
greater than 1000 beach-cast specimens from New Zealand

analysed to date [21]. Although New Zealand sub-Antarctic

(e.g. Auckland Islands) D. antarctica has previously been

found washed ashore on mainland beaches [5,21], this study

represents the first occasion on which substantial numbers

of more remotely sourced rafts of southern sub-Antarctic

origin (e.g. Macquarie Island) have been detected on the main-

land. This ‘Subant1’ haplotype is widespread in the Southern

Ocean, occurring at many sub-Antarctic islands and in

southern Chile, but is absent from mainland New Zealand

sites, and has previously only been detected on two island

groups in the New Zealand/Australian sub-Antarctic

region—the Antipodes Islands and Macquarie Island. Based

on oceanographic models (figure 3; see also [15]), we suggest

that Macquarie Island is a far more plausible source for these

specimens than the Antipodes Islands (figure 4). The potential

for dispersal of specimens from the Macquarie Island region

(approximately 1200 km away) to southeastern NZ is further

highlighted by strong NE flow-velocity in the oceanographic

model for July 2017 (figure 3b—bottom left). Lepas goose-bar-

nacle age estimates for these specimens suggest a substantial

rafting duration, consistent with a distant origin such as

Macquarie Island. Waters & Craw [20] recently estimated

that rafting Durvillaea in southeastern New Zealand might

travel approximately 10–15 km per day under prevailing

weather conditions. Further south, research has calculated

that drift surface material can travel faster, at up to 0.3 ms21

(26 km per day) in the path of the Antarctic Circumpolar cur-

rent [31], and at that speed the distance between Macquarie

Island and southeastern New Zealand (figure 4) could com-

fortably be traversed within the at least 48-day estimated

age of the largest Lepas found in this study (48 days at

0.3 ms21 ¼ 1244 km).

In the current study, we infer that the permeability of an

oceanographic boundary (in this case the STF) is probably influ-

enced by the extent, longevity and direction of a storm event

(hypothesis 1). While southern New Zealand experienced two

such storms in 2017, these events are comparatively rare (e.g.

a few per decade), with equivalent storms having occurred,

for instance, in February 2009 and May 2010 [5]. These data

further highlight the capacity of strong storms [1], in addition

to other major earth-history events (e.g. [32]), to disrupt prevail-

ing oceanographic dispersal patterns and promote dispersal

across oceanographic barriers. While the current study does

not assess the direct ecological or population-genetic conse-

quences of these particular storm-driven dispersal events,

recent molecular studies have suggested that rafting across

the STF may indeed occur with sufficient regularity to prevent

substantial genetic divergence between some sub-Antarctic and

mainland NZ epifaunal invertebrate populations [11]. When

considering the biological consequences of particular rafting

events, however, many factors should be considered. In

addition to the reproductive status of beach-cast individuals

[33], the numbers of specimens arriving simultaneously, and

the site of landfall (e.g. rocky versus sandy shores; ecological

and physiological constraints), the strength of high-density

blocking (‘founder takes all’ [34]) presented by already-estab-

lished coastal populations is likely to further constrain the

colonization and/or geneflow outcomes of such dispersal

events [30]. Indeed, the apparent failure of rafting sub-Antarctic

D. antarctica lineages to successfully establish in mainland New

Zealand likely reflects blocking by established dense Durvillaea
populations [5,34].
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On small geographical scales, these spatio-temporal data

lend some support to the suggestion that coastal geometry

may interact with meteorological and oceanographic con-

ditions to influence landfall of passively drifting objects in

the marine environment [7,8]. North-blown material, for

instance, is apparently more likely to be intercepted by a

south-facing beach. Our analysis of Lepas size and kelp-genetic

data provide preliminary evidence for an association between

beach orientation and the contrasting origins and composition

of beach-cast material associated with distinct beaches and

distinct storm events (figure 4). The suggested interaction

between topography, oceanography and kelp-stranding

dynamics, concurs with recent analyses of beach-cast

Durvillaea in the southeastern Pacific [33].

In terms of geological dispersal driven by storm events,

our combined analyses further indicate that substantial

amounts of coastal geological material can be transported at

sea by buoyant biological vectors [35]. These data, at the

interface of biological and physical sciences, further highlight

the potential for long-distance oceanic dispersal of rocks in

the absence of sea ice [20].
Finally, we anticipate that increased focus on interactions

between extreme weather events and oceanic dispersal will

further enhance understanding of interactions between physical

and biological processes in the marine environment.
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