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Abstract

Next-generation sequencing (NGS), also known as high-throughput sequencing, is changing the 

field of microbial genomics research. NGS allows for a more comprehensive analysis of the 

diversity, structure and composition of microbial genes and genomes compared to the traditional 

automated Sanger capillary sequencing at a lower cost. NGS strategies have expanded the 

versatility of standard and widely used typing approaches based on nucleotide variation in several 

hundred DNA sequences and a few gene fragments (MLST, MLVA, rMLST and cgMLST). NGS 

can now accommodate variation in thousands or millions of sequences from selected amplicons to 

full genomes (WGS, NGMLST and HiMLST). To extract signals from high-dimensional NGS 

data and make valid statistical inferences, novel analytic and statistical techniques are needed. In 

this review, we describe standard and new approaches for microbial sequence typing at gene and 

genome levels and guidelines for subsequent analysis, including methods and computational 

frameworks. We also present several applications of these approaches to some disciplines, namely 

genotyping, phylogenetics and molecular epidemiology.
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1. Introduction

Microbial typing techniques are greatly enhancing our insights into microbial population 

epidemiology and microbial diversity and are widely used in diagnostics, genomics and 

pathogenesis related with microbiology research (Boers et al., 2012; Van Belkum, 2002). In 

fact, our ability to accurately distinguish among strains of infectious pathogens is crucial for 

efficient epidemiological and surveillance analysis, studying microbial population structure 

and dynamics and, ultimately, developing improved public health control strategies (Cooper 

and Feil, 2004). To achieve these goals, several molecular typing methods have been 

proposed that can identify isolates worldwide (global epidemiology) and/or in localized 

disease outbreaks (local epidemiology); see (Foley et al., 2009) for a review.

Since 1998, the established standard for molecular typing is Multilocus Sequence Typing 

(MLST) (Maiden et al., 1998), which has proven to be an effective method for 

characterizing bacterial Isolates. However, next-generation sequencing (NGS) technologies 

are drastically changing the field of microbial genomics research (Forde and O’Toole, 2013). 

These new sequencing methods supply a range of applications (Glenn, 2011), allowing for a 

more comprehensive and in depth analysis of the diversity, structure and content of 

microbial genomes compared to traditional automated Sanger capillary sequencers at a 

substantially lower cost (Mardis, 2008; Metzker, 2010). The reader is referred to the 

following reviews for further information about NGS technologies (Goodwin et al., 2016; 

Mardis, 2013, 2017; Metzker, 2010). As a consequence, in March 2017, a total of 246,189 

(complete and draft) bacterial and 6,615 viral genomes have been deposited in the genomes 

online database GOLD (Mukherjee et al., 2017), of which 1,041 correspond to metagenomic 

studies (i.e., the study of microbial communities directly in their natural environments). 

NGS platforms have proven to be effective tools for the re-sequencing and de novo 
sequencing reference microbial species and strains (pathogens and underrepresented taxa), 

but also assembling genomes of entire microbial communities of unculturable microbes 

(microbiotas) (Kyrpides et al., 2014; Sangwan et al., 2016; Sharon and Banfield, 2013).

Non-cultured organisms represent the vast majority of the total microbial diversity which 

exists in the world (Pace, 2009). Microbial genomic studies usually focus on microbial 

diversity and structure at the species (or strain) and community levels through targeted 

sequencing of gene amplicons (e.g., housekeeping genes, 16S/18S rRNA, ITS) or shotgun 

sequencing of (nearly) full genomes (Caporaso et al., 2012; Chun and Rainey, 2014; Kwong 

et al., 2015; MacCannell, 2013; Petrosino et al., 2009; Vincent et al., 2016).

NGS strategies have expanded the versatility of widely used typing approaches, such as 

MLST, to accommodate high-throughput data (e.g., NGMLST and HiMLST). The drawback 

is that this massive amount of data comes in the form of short reads with relatively high 

sequencing errors; hence one needs to invest heavily in computational analysis. Additionally, 

novel analytic and statistical techniques that can handle these data had to be developed. Over 

the last five years new typing approaches that take advantage of parallel amplicon and whole 

genome sequencing have been proposed.
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In this review, we describe and compare classical (e.g., MLST) and recent (e.g., HiMLST) 

DNA typing approaches (Section 2) of microbial sequence typing. Then we present 

statistical methods and computational tools for the analysis of nucleotide, locus, and genome 

data generated via Sanger and NGS platforms (Section 3). In the last section (Section 4), we 

present several applications of these DNA-based approaches to the fields of genotyping, 

phylogenetics and molecular epidemiology. We also refer the reader to other reviews on 

MLST for complementary information (Boers et al., 2012; Cooper and Feil, 2004; Jolley et 

al., 2012; Jolley and Maiden, 2014; Larsen et al., 2012; Maiden, 2006; Pérez-Losada et al., 

2017; Pérez-Losada et al., 2006; Pérez-Losada et al., 2013; Sullivan et al., 2005; Urwin and 

Maiden, 2003).

2. DNA-based typing approaches

2.1 Standard typing approaches: MLST and MLVA

Multilocus Sequence Typing (MLST) examines nucleotide variation in sequences of internal 

fragments of usually seven housekeeping genes, i.e., those encoding fundamental metabolic 

functions; although the number of genes may vary in dependence of the strains, species, and 

other particularities of the studied sample. For each gene, then the different sequences 

present within a species are assigned as distinct alleles and, for each isolate, the alleles at 

each of the seven loci define the allelic profile or sequence type (ST). Each isolate is 

therefore unambiguously characterized by a series of seven integers, which correspond to the 

alleles at the seven housekeeping loci.

MLST is widely used for molecular typing (Jolley and Maiden, 2014; Maiden, 2006; 

Maiden et al., 2013; Pérez-Losada et al., 2013). This was made possible by three advances in 

molecular microbiology (Maiden, 2006) involving: 1) bacterial evolution and population 

biology knowledge; 2) high-throughput nucleotide sequencing; and 3) genetic sequence 

databases. The bacterial population studies undertaken from the 1980s onwards were central 

to the development of MLST. Those studies showed that genetic exchange among bacteria 

was more common than previously thought, leading to a reassessment of the role of sexual 

processes in the structuring of bacterial populations. Using sequence data, it has been shown 

that recombination (mosaic genes) was not only frequent in genes under diversifying 

selection (e.g., antigen-encoding and antibiotic resistant genes), but also in genes under 

purifying selection (housekeeping genes) (see Maiden, 2006). This suggested that the clonal 

model (variation can only arise by mutation) was not universal and led to the proposal of 

new non-clonal or panmictic (variation is mainly generated by recombination) and partially 

clonal models of bacterial population structure (Feil and Enright, 2004; Spratt and Maiden, 

1999). Consequently, typing methods needed to accommodate and distinguish among a 

broader spectrum of population structures, hence providing not only discriminatory power 

but also information about the clonal structure of the organism under study. Therefore, only 

molecular techniques that can contrast results across independent markers (such as MLST) 

would be adequate for bacterial typing and population genetic analyses.

The length of the nucleotide sequence amplified for each locus is generally in the range of 

400–600 bp and is determined largely by the parameters of automated sequencing 

instruments available at the time. Most MLST nucleotide sequence data are generated by 
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Sanger sequencing, however this technology is being replaced by high-throughput 

technologies such as pyrosequencing (Boers et al., 2012; Margulies et al., 2005), 

sequencing-by-synthesis (Illumina/Ion Torrent) and single-molecule sequencing (PacBio/

Nanopore) (Chen et al., 2015; Pérez-Losada et al., 2013) for targeted-amplicon and whole-

genome sequencing. These technologies can generate accurate read lengths of ~150 bp to 10 

kb (Illumina and PacBio, respectively) and up to 25–50 million paired-end reads (Illumina 

MiniSeq/MiSeq platforms) per run. Moreover, the design of barcoded primers allows 

simultaneous and efficient sequencing of homologous products from hundreds of samples in 

the same run (Kozich et al., 2013; Rao et al., 2016; Taylor et al., 2016).

One of the goals of the MLST approach was the development of online platforms containing 

MLST databases to which public health officials and researchers could both have access and 

contribute and from which clinical, epidemiological and population studies could benefit 

(Maiden, 2006; Maiden et al., 1998; Urwin and Maiden, 2003). The first MLST online 

platforms were based on single databases implemented in the MLSTdB software (Chan et 

al., 2001), but as MLST schemes began to expand several limitations became apparent: 

redundant information (each record contained the ST designation and the allelic profile), 

isolate bias (single databases were dominated by specific studies), and access (all databases 

were stored at a single location). To overcome these limitations, a new network-based 

database software, MLSTdBNet (Jolley et al., 2004) was developed and implemented on the 

PubMLST site (http://pubmlst.org/). This site includes two databases: i) a profiles database 

with the sequences of each MLST allele for each locus linked to an allele number, and ii) an 

allelic profiles database with the corresponding ST designations. The profile database can 

then interact with other isolate databases. For each scheme on the PubMLST site there is a 

PubMLST isolate database that aims to include at least one isolate for each ST. MLST 

databases are hence different to other repository databases such as GenBank, not only in 

organization but also in active curation for accuracy. It is important to highlight that MLST 

databases do not embody the global diversity of an organism but the extent of its diversity at 

the time of access. Moreover, stored data are unstructured and do not necessarily represent 

natural populations either. As high-throughput sequencing becomes more affordable, 

PubMLST is increasingly including whole genome sequences, e.g., BIGSdb (Jolley and 

Maiden, 2010; Larsen et al., 2012).

As the number of schemes available has increased, MLST has become the most commonly 

used method of pathogen typing. In comparison to older methods (serotyping; multilocus 

enzyme electrophoresis analysis), the use of genetic variation gives MLST the advantage of 

producing variable data (more resolution) that are universally comparable (within schemes), 

easily validated, and readily shared across laboratories. The use of sequencing makes MLST 

a broadly applicable methodology that can be fully automated and scalable from single 

isolates to thousands of samples. Importantly, the material needed for MLST analysis – 

DNA or dead cells – is easily transported among labs, without the problems associated with 

infective materials. Furthermore, the use of online databases to store and curate MLST 

schemes makes them a globally and highly accessible resource.

The number of loci that should be evaluated to confidently assign a ST has been minimized 

to reduce the expense and time required for characterization, with most studies using 6 – 10 
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loci. If performed manually, evaluating even these many loci can be time consuming. 

However, fully automated systems, e.g., robotics (Jefferies et al., 2003; Sullivan et al., 2006) 

provide a high-throughput pipeline for data collection that can run large volumes of samples 

with increased reliability. Likewise, commercial solutions such as Ion Torrent AmpliSeq 

panels targeting MLST schemes (www.ampliseq.com) can reduce costs down to cents per 

marker. As sequencing technology progresses, we expect the cost of automation to decrease, 

thus data interpretation rather than data generation will be the likely limiting factor in our 

understanding of pathogen population dynamics.

By focusing on sequence variation, MLST provides a highly replicable and reproducible 

typing method. Additionally, the focus on housekeeping-genes provides significant amounts 

of genetic data that can be used to calculate pathogen population genetic parameters at both 

local and global scales. Those parameters can then be used to construct more sophisticated 

models of pathogen evolution and epidemiology that will improve our understanding about 

the spread of disease. However, there is no single set of universal housekeeping genes that 

can be used for all pathogens as the recombination rates, substitution rates, and levels of 

selection vary across loci and species (Pérez-Losada et al., 2006). Therefore, a unique set of 

loci must be identified for each novel, un-typed pathogen under study. The rapid increase of 

available microbial genomes will make data mining for housekeeping genes more feasible, 

reducing the time and cost required for constructing new MLST schemes.

Currently, the main drawback of the MLST method is that the selection of housekeeping loci 

requires reference genomes (Parkhill et al., 2003). Moreover, not all pathogens are suitable 

for MLST methods. Some pathogens (e.g., M. tuberculosis, Y. pestis) exhibit very little 

variation throughout their entire genome, most likely representing “evolutionarily young” 

pathogens that have not yet accumulated sufficient genetic variation to differentiate strains. 

For typing these pathogens, more rapidly evolving loci (e.g., insertion sequences or 

antibiotic-resistance determinants) or more markers (e.g., genome-wide single nucleotide 

polymorphisms or SNPs) are needed. Conversely, some bacterial genomes have accumulated 

so much variation that MLST housekeeping genes do not provide adequate information for 

typing. As we advance MLST schemes in the genomic era, we should be able to combine 

information-rich and widely adopted MLST schemes with cost-effective whole-genome 

sequencing.

Given the above limitations of MLST, over the last few years other typing approaches have 

been developed based on similar principles. Multilocus Variable number of tandem repeats 
Analysis (MLVA) uses polymorphic repeated sequences (VNTR) instead of housekeeping 

genes. Comparative studies between MLVA and MLST have yielded similar results (e.g., 

van Cuyck et al., 2012) and in recently evolved species, the MLVA approach can provide 

higher discriminatory power (Marsh et al., 2010). Finally, to achieve even greater resolution, 

other approaches have been developed based on core/accessory genes or distributed genes 

among bacterial species with the same MLST profile (Hall et al., 2010; Leekitcharoenphon 

et al., 2012). This new approach could skip the laborious and time-consuming steps needed 

to develop bacteria-specific MLST schemes; this is, however, replaced by in-silico work.
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2.2 NGS-based approaches: WGS, SNP, rMLST, cgMLST, HiMLST, NGMLST and metaMLST

Whole-genome sequencing (WGS) has emerged as a powerful technology for the 

comparison of isolates in outbreak analysis. The applications of WGS in clinical and public 

health microbiology have already been demonstrated in proof-of-concept studies conducted 

retrospectively or in response to an emerging outbreak (Didelot et al., 2012; Walker et al., 

2013). Few studies so far have used WGS in prospective surveillance and in typing of 

bacteria (Dallman et al., 2015; den Bakker et al., 2014). Salipante et al. (2015) explored the 

utility of WGS as a strain typing approach for the clinical laboratory using a single, 

universal protocol (encompassing library preparation, sequencing, and data analysis) for 3 

distinct bacterial species: methicillin-resistant Staphylococcus aureus, vancomycin-resistant 

Enterococcus, and multidrug-resistant Acinetobacter baumannii. They showed that WGS 

was highly reproducible, which enabled a functional, quantitative definition for determining 

clonality. Then, Kwong et al. (2016b) compared routine prospective WGS to other 

conventional typing methods, including MLST and MLVA, for the national epidemiologic 

surveillance of Listeria monocytogenes. MLST inferred in silico from the WGS data was 

highly concordant (>99%) with laboratory typing performed in parallel. However, WGS 

could identify distinct nested clusters within groups of isolates that were otherwise 

indistinguishable using traditional typing methods. As in previous studies, WGS provided a 

greater level of discrimination, than that from conventional typing, for surveillance or 

inferring linkage to point source outbreaks.

Single nucleotide polymorphism (SNP) is a variation in a single nucleotide that occurs at a 

specific position in the genome, where each variation is present to some appreciable degree 

within a population. SNP-typing is widely used for bacteria and has also been improved 

through using genome sequences. When coupled with NGS of DNA, genome-wide 

screening of SNPs is a powerful discriminatory technique that enables the identification of 

strain-specific genetic markers. This approach is Genome-wide SNP typing has been, for 

example, applied to the genotyping of strains and species of Bacillus anthracis and B. cereus 
(Kuroda et al., 2010), Streptococcus suis (Chen et al., 2013) or Coxiella burnetii (Huijsmans 

et al., 2011) among others, outbreak attribution (e.g., Hendriksen et al., 2011), 

phylogeography of recently emerged diseases (e.g., Keim and Wagner, 2009), or genome-

wide association studies of SNPs associated with acquisition of bacteremia in healthcare 

settings (e.g., Nelson et al., 2014). Pipelines for phylogenetic typing of SNP genotypes have 

also been developed to identify bacterial strains including metagenomic samples (Sahl et al., 

2015).

Although MLST genotyping is a superb approach to characterize microbial species and 

strains, their methodological implementation can be costly, time-consuming, and laborious. 

To accelerate automation and expand the versatility of the current MLST method, other 

approaches that take advantage of NGS technology have been developed to produce millions 

of high-quality bases at low cost within a single sequence run. The Ribosomal Multilocus 
Sequence Typing method (rMLST) has been proposed to index the molecular variation of 53 

genes encoding bacterial ribosome protein subunits (Jolley et al., 2012). This method 

pursues the integration of a taxonomic and typing method in a similar curated MLST 

scheme. Although more expensive, the rMLST is likely to provide better resolution than 
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standard MLST methodologies. Likewise, core-genome (cg) MLST has been developed to 

overcome a lack of resolution of MLST schemes for certain taxa. By collecting a sample of 

genome sequences representing extant diversity, the cgMLST scheme applies more than 

1,000 genes to create sequence types with increased resolution for clonal populations of 

bacteria (de Been et al., 2015).

Boers et al. (2012) developed High-throughput MLST (HiMLST), which uses the Genome 

Sequencer Junior (Roche) and generates up to 70,000 amplicon reads with average read 

lengths of around 400–500 bases. This long-read sequencing performance, in combination 

with a sample pooling strategy that uses “bar-coded” amplicons for parallel analysis of 

pooled samples, allow the generation of MLST profiles from multiple bacterial isolates in a 

single NGS-run. They then demonstrate the successful parallel sequencing of MLST alleles 

that were amplified by PCR from 96 bacterial isolates from four species in single NGS-runs. 

Roche 454 sequencing (pyrosequencing) technology has been discontinued and replaced by 

the Illumina MiSeq platform (sequencing-by-synthesis). The latest Illumina MiSeq 

chemistry enables up to 15 Gb of output with 25 million sequencing reads and 2×300 bp 

read lengths (i.e., partially overlapping contigs of 400–500 bp). Such a vast improvement in 

sequencing depth promises a substantial reduction of labor and costs compared to traditional 

Sanger and Roche 454 approaches for amplicon sequencing.

More recently, Chen et al. (2015) developed a high-throughput Next-Generation sequencing 
MLST (NGMLST) approach and an automated software program for data analysis, 

MLSTEZ. Essentially, they coupled an efficient multiplex PCR approach with PacBio 

circular consensus sequencing technology, which can generate relatively inexpensive single-

molecule consensus reads of 1–2 kbp with lower error rates (after multiple sequencing 

cycles). The software MLSTEZ can then automatically identify the barcodes and primers 

used in the PCR, correct sequencing errors, generate the MLST profile for each isolate, and 

predict potentially heterozygous loci. Next, they compared NGMLST to conventional 

MLST. The major advantages of the NGMLST approach at the time of analyses were: (i) the 

employment of multiplex PCR greatly reduces the amount of labor; (ii) PacBio greatly 

extends the maximum read length of target loci or genes from 500-bp to 2-kb without 

requiring fragmentation into shorter sequences; (iii) the NGMLST workflow is optimized to 

reduce unnecessary steps; (iv) MLSTEZ can be easily implemented and does not require 

technical expertise or a background in bioinformatics; and (v) for analysis of hybrid isolates, 

unlike most programs, MLSTEZ can detect heterozygous loci and sequence their alleles.

Finally, Zolfo et al. (2017) developed a software tool for microbial typing of haploid 

organisms called MetaMLST that combines the effectiveness of the MLST approach with 

the high throughput of metagenomics. MetaMLST overcomes the computational limitations 

and lowers the limit of detection (i.e., strain level) compared to metagenomic assembly. The 

authors then tested the pipeline on synthetic and spiked-in real metagenome datasets and 

showed that MetaMLST reconstructed the MLST sequences with high accuracy at low 

coverage (as low as 1×). When applied to real biological samples, MetaMLST also showed 

higher sensitivity than assembly-based approaches allowing the identification of pathogenic 

strains in epidemic outbreaks.
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3. DNA-based typing analysis

The analysis of MLST data is usually based on two main strategies (Fig. 1). The first one 

relies on the consideration of allele and ST designations to estimate relatedness among 

isolates (allele-based methods), hence nucleotide differences among alleles are considered as 

an ST unit. The other one relies on the direct application of nucleotide sequences to estimate 

relatedness and population parameters (nucleotide-based methods). The allele-based 

approach has been adopted from the analysis of Multilocus Enzyme Electrophoresis data 

and therefore, these were the first methods applied to the analysis of MLST data (Enright 

and Spratt, 1999; Maiden et al., 1998). The allele-based approach is thought to work well in 

non-clonal organisms (e.g., Helicobacter pylori), while nucleotide-based approaches are 

preferable for clonal organisms (e.g., Escherichia coli) (Maiden, 2006). In practice, most 

microbes show some degree of clonality (clonal complex) in their populations and, 

therefore, we suggest that both types of analysis should be considered in population and 

epidemiological studies (e.g., Loubna et al., 2010). In this section, we present a brief 

description of the most commonly used approaches for analyzing MLST data, including 

allele, nucleotide, SNP and WGS data.

3.1 Allele-based methods

Allele-based methods consider the allele as the unit of analysis and, consequently, these 

methods first require assigning an allele number to each DNA sequence from each locus 

(Fig. 1). This is done by matching the study sequences against those stored in public MLST 

databases. If no match is found a number is assigned following the order of discovery. 

Several computational programs have been developed to perform this task, although 

Sequence Typing Analysis and Retrieval System (STARS) seems to be the most functional 

and popular (Sullivan et al., 2005). The STARS interface was specifically designed for 

typing and allows the assembly of many sequences at once.

Once alleles have been assigned, data are entered in MLST sites of curated databases 

(Aanensen and Spratt, 2005; Jolley et al., 2004; Jolley and Maiden, 2006) to acquire an ST 

profile. At this point, exploratory analysis (e.g., allele and profile frequencies, polymorphism 

estimates, codon usage) of the data can be performed. The software package Sequence Type 

Analysis and Recombinational Tests (START2) can perform all of these tasks (Jolley et al., 

2001). Next, relatedness among STs can be displayed with heuristic approaches of cluster 

reconstruction such as Based Upon Related Sequences Types (eBURST) (Feil et al., 2004), 

the simple Unweighted Pair Group Method with Arithmetic Mean (UPGMA) or network-

based methods such as NeighborNet (Bryant and Moulton, 2004) or split decomposition 

(Bandelt and Dress, 1992).

The method eBURST is based on a simple model of clonal expansion and diversification 

(Feil et al., 2004). It first identifies mutually exclusive groups of related STs and next, it tries 

to identify the founding ST of each group. Bootstrap estimates can also be calculated to 

assess confidence in the grouping. The algorithm then predicts the descent from the 

predicted founding ST to the other STs in the group and finally displays a radial diagram 

centered on the predicted founding ST. A globally optimized version (goeBURST) identifies 

alternative patterns of descent using a graphic matroid approach (Francisco et al., 2009). 
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Recently, a new approach (PHYLOViZ) allows for the integration of allelic profiles from 

MLST or MLVA methods (although SNP data can also be included) and the associated 

epidemiological data (Francisco et al., 2012). PHYLOViZ uses goeBURST for representing 

the estimated evolutionary relationships among strains.

The traditional UPGMA method relies on a matrix of distances to estimate isolate 

relatedness. Distances are calculated for each pair of STs considering the number of allelic 

differences and next, groups can be sequentially clustered in order of similarity (i.e., allelic 

matches) to generate a phylogenetic tree. Other distance-based methods, such as 

NeighborNet and split decomposition, provide clustering through phylogenetic networks, 

considering conflicting signatures or alternative evolutionary histories (Fitch, 1997). Today 

these networks are widely used to analyze MLST data (e.g., Jolley and Maiden, 2014; 

Maiden et al., 2013). Additional distance and parsimony methods have been proposed to 

estimate relatedness based on allele frequencies, but note that distance methods generally 

outperform parsimony methods (Wiens, 2000).

Allele-based methods have the advantage of simplicity and speed (especially relevant when 

dealing with large datasets), which are crucial for efficient epidemiological surveillance and 

public health management, but disregard much of the evolutionary information contained at 

the nucleotide level. A larger and more sophisticated plethora of nucleotide-based methods 

exist to estimate isolate relationships and key parameters of population genetics.

3.2 Nucleotide-based methods

The first step for the analysis of nucleotide data is usually the generation of a multiple 

sequence alignment (MSA) (identification and phasing of the homologous nucleotide sites). 

Since the loci used for MLST usually evolve slowly and code for proteins, this step becomes 

straightforward, especially at the amino acid level (Fig. 1). If needed, several fast, accurate 

and user-friendly aligning methods are implemented in MAFFT (Katoh and Standley, 2013), 

MUSCLE (Edgar, 2004), and TranslatorX for translated-alignment of coding sequences 

(Abascal et al., 2010).

Once an MSA has been generated, the substitution model of evolution that best fits the data 

can be determined. Over the past two decades, substitution models have increased in 

complexity by incorporating more informative parameters to better fit with real observations 

(Arenas, 2015b). The consideration of the best fitting substitution model is critical because it 

can affect diverse subsequent phylogenetic and population analyses (Lemmon and Moriarty, 

2004). Therefore, substitution model choice is required and is usually assessed with 

evolutionary frameworks such as jModelTest2 (Darriba et al., 2012). This framework 

implements confidence sets of models (model averaging) (Posada and Buckley, 2004) and 

several criteria for model selection such as Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC), Decision Theory (DT) and hierarchical Likelihood Ratio Test 

(hLRT). Although AIC is the most broadly used criterion for evaluating model fit, BIC and 

DT should be preferred (Luo et al., 2010). Additionally, methods for co-inferring nucleotide 

partitions and substitution models (Lanfear et al., 2016), as well as for inferring substitution 

models under a Bayesian framework (Bouckaert and Drummond, 2017) have been 

developed.
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3.2.1 Phylogenetic relatedness—Phylogenetic reconstruction methods can be 

classified into two categories, those that proceed algorithmically through distances (e.g., 

UPGMA and Neighbor-joining -NJ) and those based on optimality criteria. Here we focus 

on methods that implement maximum likelihood and Bayesian optimality criteria and allow 

for the consideration of multiple data partitions each under a best-fit model, a feature 

particularly important for analyzing MLST data and that can improve the accuracy of 

phylogenetic inferences (Zoller et al., 2015).

Maximum likelihood (ML) inference attempts to identify the topology that explains the 

evolution of the aligned sequences, under a given substitution model of evolution, with the 

highest likelihood (Felsenstein, 1981). Several evolutionary frameworks implement 

phylogenetic tree inference (Yang and Rannala, 2012), but only a few consider partitions 

evolving under different substitution models. RAxML (Stamatakis, 2006) implements the 

ML criterion efficiently and can handle large datasets (more than 1,000 taxa with more than 

20,000,000 bp) (Stamatakis et al., 2012). Confidence in the estimated relationships (i.e., 

clade support) is usually assessed with a non-parametric bootstrap procedure (Felsenstein, 

1985), which should be repeated more than 1,000 times to achieve reasonable precision. 

Thus, RAxML is widely used to analyze MLST data (e.g., Zolfo et al., 2017). Another ML 

framework oriented to analyzing large datasets and heterogeneous evolution among 

partitions is FastTree2 (Price et al., 2010). This program can internally optimize 

phylogenetic tree inferences through the joint application of several approaches (NJ, 

minimum-evolution and ML) and it is also frequently considered to analyze MLST data 

(Kwong et al., 2016b; Skarp-de Haan et al., 2014). Interestingly, FastTree can infer 

phylogenetic trees with similar accuracy to RAxML but several orders of magnitude faster 

(Liu et al., 2011).

Bayesian inference (BI) combines the prior probability of a phylogeny with the likelihood of 

it producing a posterior probability distribution of trees, which can be interpreted as the 

probability of those trees (or tree) being correct (Huelsenbeck et al., 2001). Clade support is 

estimated by summarizing this distribution of trees through consensus analysis. Bayesian 

phylogenies are inferred using Metropolis-coupled Markov chain Monte Carlo (MCMC) 

methods and are implemented in programs such as MrBayes (Ronquist et al., 2012), 

RevBayes (Höhna et al., 2016), and BEAST (Bouckaert et al., 2014; Drummond et al., 

2012). The output of the BI analysis must be evaluated to assure that the MCMC chains are 

well mixed and converged; such tasks can be performed with Tracer (Rambaut and 

Drummond, 2009). Importantly, the best fitting substitution model can vary across partitions. 

For this concern, an interesting program is PhyloBayes (Lartillot et al., 2009), which 

implements priors for the internal assignment of across-partition heterogeneity (Lartillot and 

Philippe, 2004). Importantly for many datasets, Bayesian approaches can perform 

phylogenetic inferences accounting for longitudinal sampling (Navascués et al., 2010; Rieux 

and Balloux, 2016) and relaxed molecular clocks, considering much more realistic 

evolutionary scenarios (Drummond et al., 2006).

Often gene trees differ even when sampled from the same population. This can be the result 

of molecular processes (e.g., recombination) or stochastic variation (e.g., lineage sorting). 

Whatever the case, it may be necessary to check if individual gene topologies are 
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significantly different as ignoring these processes may lead to biased evolutionary inferences 

(Arenas and Posada, 2010b; Mallo et al., 2015; Schierup and Hein, 2000b). Multiple ML 

topological tests have been developed for such purposes and several are implemented in 

CONSEL (Shimodaira and Hasegawa, 2001). In the subsection WGS-based analyses, we 

describe the inference of phylogenetic trees from genome-scale data (i.e., accounting for 

genomic evolutionary events).

3.2.2 Population dynamics—The evolution of DNA sequences in natural populations 

can be described with parameters such as recombination, mutation, population growth and 

selection rates. Consequently, the accurate estimation of these parameters is key for 

understanding the dynamics and evolutionary process of populations, epidemiology, the 

potential and mode for obtaining antibiotic and immune system resistance, and ultimately 

the design of efficient public health control strategies (Omenn, 2010). Population parameters 

are efficiently estimated with explicit statistical models of evolution such as the coalescence 

(Kingman, 1982) and, therefore, most well-established evolutionary frameworks are based 

on such models, although programs vary in how they handle these parameters.

The rate of evolution quantifies the extent of genetic change over time. Traditionally, this 

parameter was assumed to be constant over time (strict molecular clock); however, recently, 

various data have been collected that violate this assumption (e.g., Bello et al., 2007). The 

rate of evolution can be accurately estimated with Bayesian approaches (i.e., implemented in 

BEAST) that account for variation through time with models of a relaxed molecular clock 

(Drummond et al., 2006).

Genetic recombination influences biological evolution at many levels (i.e., by increasing 

genetic diversity Spencer et al., 2006) and affects the estimation of other evolutionary 

parameters and processes (i.e., selection (Anisimova et al., 2003; Arenas and Posada, 2010a) 

or ancestral sequence reconstruction (Arenas and Posada, 2010b). Comprehensive 

assessments of statistical methods for detecting and estimating recombination rates were 

presented in Martin et al. (2011) and Posada et al. (2002). These studies concluded that one 

should not rely on a single method to detect or estimate recombination. With this in mind, 

software packages such as RDP (Martin et al., 2015) have been developed to implement a 

variety of methods for the same dataset. RDP includes 12 methods to estimate 

recombination and allows the user to draw conclusions based on the outcome of all those 

analyses. Another ML method to detect recombination is GARD (Kosakovsky Pond et al., 

2006), which outperformed previously developed methods. GARD is implemented in the 

HYPHY package (Pond and Muse, 2005) and in the Datamonkey webserver (Delport et al., 

2010). In HYPHY, GARD requires a multiprocessor machine and in Datamonkey, it can 

only analyze small datasets. Other programs such as LAMARC (Kuhner, 2006), LDhat 

(McVean et al., 2004), CodABC (Arenas et al., 2015), and OmegaMap (Wilson and 

McVean, 2006) can be used to estimate recombination rates and, therefore, quantify the 

amount of observed recombination (Pérez-Losada et al., 2007). Conveniently, these methods 

can also estimate the substitution rate because of the relationships between the population 

recombination rate (ρ = 2nNrl, where n = 1 or 2 for haploid or diploid populations, N is the 

effective population size, r is the recombination rate per site per generation and l is the 

alignment length) and the population substitution rate (θ = 2nNμl, where μ is substitution 
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rate per site per generation) through the effective population size. Note also that the 

observed recombination can be influenced by the substitution rate –under low substitution 

levels, recombination can be underestimated due to lack of genetic information (Posada and 

Crandall, 2001).

Another key parameter for characterizing microbial population dynamics is the population 

growth rate, which influences the variation of genetic diversity over time. Population growth 

rate can be estimated under a certain demographic model (e.g., exponential) or without 

dependence on a model (e.g., Minin et al., 2008). The latter approach is implemented in 

BEAST. Exponential growth rate can also be estimated with LAMARC (under both ML and 

Bayesian approaches) and approximate Bayesian computation (ABC) approaches (e.g., 

Alves et al., 2016). ABC is a statistical approach to perform model selection and parameter 

estimation. Essentially, it performs computer simulations according to user-specified prior 

distributions, calculation of descriptive summary statistics from real and simulated data (to 

summarize the data) and a rejection or a multiple regression analysis to obtain a posterior 

distribution for each studied model or parameter. ABC is widely used in population genetics 

(Beaumont et al., 2002) but it can also be applied to other areas such as ecology (Beaumont, 

2010). Advantages of using ABC are: 1) user-specified evolutionary models that can be 

more realistic than those considered in ML or Bayesian methods; 2) not need to compute a 

likelihood function, which for many scenarios cannot be designed or be computationally 

intractable; and 3) co-estimation of several parameters (Arenas, 2015a; Beaumont, 2010; 

Bertorelle et al., 2010). A disadvantage is that ABC assumes the internally performed 

computer simulations are realistic. Interestingly, ABC can outperform ML methods (Lopes 

et al., 2014) if it is correctly designed (i.e., incorporating informative summary statistics, 

realistic computer simulations or narrow prior distributions that include the “true” value). In 

pathogen populations, selection is usually estimated from protein-coding sequences with the 

nonsynonymous (dN) to synonymous (dS) substitution ratio dN/dS (ω). Here, ω > 1 indicates 

positive or diversifying selection, ω < 1 indicates negative or purifying selection and, ω ≈ 1 

indicates lack of selection (neutral evolution). Accurate estimation of ω can be obtained with 

ML (e.g., Pond and Frost, 2005b), Bayesian (e.g., Wilson and McVean, 2006) and ABC 

(e.g., Lopes et al., 2014) approaches under the assumption of an explicit model of codon 

substitution. Such codon models can be very complex, allowing, for example, ω to vary 

across codon sites and/or tree branches under diverse probability distributions (Pond and 

Frost, 2005a; Yang and Nielsen, 2002). In this concern, ω can be estimated per site (Pond 

and Frost, 2005b) or branch (Pond and Frost, 2005a), although these estimates require many 

taxa to provide enough information (Pond and Frost, 2005b). The estimation of ω is 

implemented in a variety of computational frameworks such as PAML (Yang, 2007), 

HYPHY or CodABC. Importantly, if recombination is suspected in the data, it should be 

incorporated when estimating ω to avoid identifying false positively selected sites 

(Anisimova et al., 2003; Arenas and Posada, 2010a, 2014a). If recombination is detected, it 

is possible to co-estimate recombination and selection rates simultaneously with frameworks 

such as OmegaMap or CodABC, or account for the former while estimating the latter (e.g., 

HYPHY).

Other key aspects in microbial dynamics include time of emergence (e.g., pathogen 

outbreaks) and geographical distribution of pathogens. New probabilistic models based on 
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the Bayesian approaches have recently been developed for inference and hypothesis testing 

of divergence times, ancestral locations and historical patterns of migration (i.e., 

phylogeographic history) (Lemey et al., 2010). Such models are implemented in BEAST and 

SPREAD (Bielejec et al., 2011) and the outputs can be visualized with virtual globe 

software such as Google Earth (www.google.com/earth/).

3.3 SNPs-based analyses

Typing data can also be presented as strings of SNPs (Maiden et al., 2013). These strings can 

be used to obtain evolutionary relatedness and to analyze the evolution and dynamics of 

populations by the estimation of population genetics parameters (Fig. 2). The main 

disadvantage from using SNPs instead of nucleotide sequences is the amount of information. 

With nucleotide sequences we have four character states (A, C, G and T), while for SNPs we 

only have two states (0 and 1). Although any genomic region can be presented as a sequence 

of nucleotides or a string of SNPs, one should consider that more information usually leads 

to more accurate results. The methods applied to the analysis of SNPs are not better or worse 

than the methods applied to DNA, the key point is the amount of information available from 

the data. For example, four states data allow for the implementation of more realistic 

substitution models of evolution than those based on two states data, thus leading to more 

accurate inferences. Advantages of working with two-state SNP data include fast 

computational time of analysis and potentially less homoplasy (Pearson et al., 2009). 

However, SNPs can present low mutation rates and therefore accurate analyses may require 

large sequences (Pearson et al., 2009).

NGS has transformed microbiology, making genomic analyses possible for a huge number 

of species and pathogenic strains. However, converting millions of sequencing reads per 

sample into meaningful data is not trivial, and analytical choices made for genome assembly, 

sequence alignment, and SNP calling will impact final outcomes. SNP calling from 

microbial genomes includes some major challenges, such as reference genome selection, 

presence of rare polymorphisms within a culture, and use of de novo genome assemblies 

(Olson et al., 2015). Given the plethora of methods available to call SNPs from microbial 

genomes (for a review see Nielsen et al., 2011), optimization of bioinformatics pipelines for 

specific organisms and/or experiments is frequently required (Olson et al., 2015). A first step 

for any evolutionary analysis based on SNP data consists of sequence alignment with a 

reference sequence (i.e., by mapping read sequences to a reference genome with tools such 

as Snippy (Kwong et al., 2016b) and a posterior refinement of the alignment (Chang et al., 

2009; Wegrzyn et al., 2009). However, some pipelines can infer SNPs directly from K-mers 

without the use of genomic references (Gardner et al., 2015). These tasks are crucial and 

errors can lead to biased estimates (Castro-Nallar et al., 2015; Pettengill et al., 2014).

3.3.1 Phylogenetic relatedness—To perform phylogenetic inferences, SNP sequences 

can be used to construct a distance matrix that generates (i.e., with hierarchical clustering) a 

phylogenetic tree (e.g., Gardy et al., 2011; Hendriksen et al., 2011). Commonly used 

frameworks to perform this inference are GARLI (Bazinet et al., 2014), RAxML, FastTree, 

SplitsTree (Huson and Bryant, 2006) and MrBayes. Another interesting program is SNAPP 

(Bryant et al., 2012), which performs phylogenetic inferences from SNP data under a 
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Bayesian approach similar to that implemented in BEAST for DNA sequences. 

Alternatively, researchers use substitution models originally designed for analysis of 

morphological data such as the MK model (Lewis, 2001). Interestingly, the program 

BioNumerics (http://www.applied-maths.com) implements the different steps to properly 

analyze SNP data including align with a reference sequence, filter out SNPs and create a 

phylogenetic inference. Additional packages (Fig. 2) for performing phylogenetic inference 

from SNP data are NASP, which is useful for phylogenomic data and supports a variety of 

input formats (Sahl et al., 2016), REALPHY, which is useful for raw sequencing reads 

(Bertels et al., 2014), kSNP, which can analyze genomes without requiring a genome 

alignment or a reference genome (Gardner et al., 2015) and Harvest, which uses genomic 

data while accounting for core-genome alignment, variant calls and recombination 

(Treangen et al., 2014).

3.3.2 Population dynamics—Genetic diversity can easily be estimated from SNP data 

with traditional programs such as Arlequin (Excoffier and Lischer, 2010) and DNAsp 

(Rozas, 2009). Note that these programs implement different summary statistics to measure 

genetic diversity (i.e., number of alleles, heterozygosity and pairwise differences) and 

genetic differentiation (i.e., FST and FCT).

Population genetics parameters such as effective population size, population growth rate and 

migration rate can also be estimated from SNP data. The traditional procedure to estimate 

the effective population size was based on estimates of linkage disequilibrium (LD; the non-

random association between alleles at different loci in a population) (Do et al., 2014; Hill, 

1981). However, some evolutionary processes, such as admixture and genetic drift (Wang, 

2005), hitchhiking during selective sweeps and background selection (Charlesworth et al., 

1997), can affect the estimation of LD. Consequently, computer programs that consider 

these processes are recommended, e.g., SNeP (Barbato et al., 2015). Additionally, ML and 

Bayesian approaches can be used to estimate population parameters such as population 

growth rate, recombination rate and migration rate (Kuhner, 2006), e.g., the program 

LAMARC estimates all three parameters from SNP data.

ABC can also be applied to estimate population parameters from SNP data (Cornuet et al., 

2014; Theunert et al., 2012). A variety of computer simulators (i.e., SIMCOAL2 (Laval and 

Excoffier, 2004) and SPLATCHE2 (Ray et al., 2010)) implement the simulation of SNPs 

under diverse evolutionary scenarios (i.e., complex demographics or migration) that the user 

has to specify. Indeed, as noted above, summary statistics required for ABC can be obtained 

from SNP data with programs such as Arlequin.

3.4 GWS-based analyses

Genome-wide sequences can help resolve complex evolutionary problems. However, large 

datasets can enhance systematic errors leading to statistically well-supported incorrect 

estimates (Kumar et al., 2011; Phillips et al., 2004; Rodríguez-Ezpeleta et al., 2007). 

Importantly, the impact of various evolutionary processes specific to GWS evolution (i.e., 

horizontal gene transfer (HGT), gene duplication and loss (GDL), incomplete lineage sorting 

(ILS) or heterogeneous evolution among genomic regions) should be examined as otherwise 
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they may bias analyses (Galtier and Daubin, 2008; Jeffroy et al., 2006; Mallo et al., 2015). 

We next describe potential ways to explore the effect of these processes on analyses (see Fig. 

2).

3.4.1 Phylogenetic relatedness—A variety of coalescent approaches have been 

developed to deal with stochastic variation in gene trees from multilocus molecular data and 

to infer species trees (Fig. 2). Among these, BEST (Liu, 2008) and *BEAST (Heled and 

Drummond, 2010) incorporate the effect of ILS by implementing multispecies coalescent 

into a Bayesian hierarchical model. Unfortunately, these programs require extensive 

computational time (Ogilvie et al., 2016). Concatenation methods, that assume all recovered 

gene trees share a common evolutionary history (DeGiorgio and Degnan, 2010; Larget et al., 

2010), can be an alternative; however, subsampled datasets analyzed with *BEAST yielded 

more reliable results than full datasets analyzed with concatenation methods (Ogilvie et al., 

2016). A few algorithms have also explored additional processes occurring in phylogenomic 

datasets (ILS, GDL or HGT) (Rasmussen and Kellis, 2012; Szöllősi et al., 2012; Yu et al., 

2013) although they have not been implemented in analytical programs. To this end, a 

hierarchical Bayesian model that jointly considers ILS, GDL and HGT was recently 

developed (Martins et al., 2016) and implemented in the program GUENOMU (de Oliveira 

Martins and Posada, 2017). This framework has the benefits of not requiring identification 

of orthologs and allows incorporation of multiple individuals from the same species.

When estimating evolutionary relationships among microbes using long DNA sequences, the 

impact of recombination becomes a significant issue. If recombination is substantial, the 

evolutionary history of those sequences is no longer captured by a bifurcating model, and 

therefore a tree representation may fail to accurately portray the genealogy (Schierup and 

Hein, 2000a). Under such circumstances, two strategies can be considered:

1. Inference of a phylogenetic network (Huson and Bryant, 2006). Woolley et al. 

(2008) have revised the most common algorithms for building phylogenetic 

networks and concluded that the union of maximum parsimonious (UMP) trees 

(Cassens et al., 2005) performed the best. The computer programs TCS 

(Templeton et al., 1992) and SplitsTree also performed well for inferring network 

genealogies. Finally, Didelot and Falush (2007) have developed a Bayesian 

coalescent approach (ClonalFrame) that takes homologous recombination into 

account while inferring clonal relationships between the members of a sample. 

Phylogenetic networks are also useful for identifying the presence of clusters and 

their genetic relationships (Huson and Bryant, 2006).

2. Inference of a phylogenetic tree for each recombinant fragment (Arenas and 

Posada, 2010b). This methodology is based on two steps. First, recombination 

breakpoints are detected using programs such as RDP or Hyphy (with GARD, 

see above). Second, a specific phylogenetic tree is inferred for each recombinant 

fragment. This strategy is especially useful for performing posterior evolutionary 

analyses, such as ancestral sequence reconstruction (e.g., Arenas and Posada, 

2010b) or molecular adaptation (e.g., Pérez-Losada et al., 2011; Pérez-Losada et 

al., 2009) accounting for recombination.

Pérez-Losada et al. Page 15

Infect Genet Evol. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The substitution process along the genome can be highly heterogeneous where different 

genomic regions fit with different substitution models of evolution (Arbiza et al., 2011). 

Since the selection of the best fitting substitution model is crucial for accurate phylogenetic 

inferences (Lemmon and Moriarty, 2004), phylogenetic programs (e.g., RAxML, MrBayes 

and PhyloBayes) that consider heterogeneous substitution across sites or regions are 

preferable.

3.4.2 Population dynamics—The methods above described for analyzing population 

dynamics data based on short nucleotide sequences could be extended to analyze GWS data. 

However, genomes can experience unique evolutionary events such as duplications, 

insertions, deletions, inversions, translocations or gene-gene interactions. These events are 

difficult to model, leading to inefficient or intractable ML functions (Marjoram et al., 2003; 

Wegmann et al., 2009). To deal with complex evolutionary scenarios, ABC can serve as an 

alternative (Arenas, 2015a). Fortunately, some frameworks (see Fig. 2) have recently been 

developed to simulate GWS data accounting for complex evolutionary genomic events: 1) 

the program ALF, for example, can simulate genome evolution accounting for GDL, gene 

fusion and fission, lateral gene transfer (LGT), genome rearrangement and speciation under 

a birth-death process (Dalquen et al., 2012); 2) the program SGWE can simulate genome 

evolution accounting for heterogeneous recombination and substitution rates and combine 

different gene trees into a species tree (Arenas and Posada, 2014b); 3) prior distributions and 

summary statistics for the ABC analysis could be used for the whole genome but also for 

specific genomic regions (Arenas, 2015a). Unfortunately, there is not yet an ABC 

framework available to analyze GWS data, but it is possible to design an ABC method by 

combining simulations of GWS data, estimation of summary statistics and rejection or 

multiple regression approaches (e.g., Csilléry et al., 2012; Wegmann et al., 2010).

4. Microbial sequence typing applications

Most contemporary studies use more than one approach to typing, epidemiology, and 

phylogenetic inference, with the aim of maximizing compatibility with current and past data 

and genetic resolution down to the strain level (e.g., MLST, SNPs, and WGS Castro-Nallar 

et al., 2015). Moreover, considering the current antibiotic crises highlighted by recent 

reports by the World Health Organization, researchers are also turning to in silico MLST 

schemes from whole-genome sequences to assign new sequence types to clinically important 

isolates while appreciating the value of genome sequences to typing. Additionally, with 

constantly decreasing sequencing costs, genome-scale microbial typing studies are 

becoming more affordable. The analysis of WGS data tends to lead to high statistical 

confidence (P value). However, as indicated above, increasing reports are showing highly 

significant P values for contrasting phylogenetic hypotheses depending on the evolutionary 

model and inference method used. Additionally, genomes can experience unique 

evolutionary events (e.g., duplications, translocations, etc) that can also bias epidemiological 

and phylogenetic inferences. Therefore, when applying WGS-base typing approaches, 

emphasizing effect size and biological relevance, rather than the P value, may help to 

alleviate systematic error (Kumar et al., 2011). Similarly, using ABC methods instead of ML 

functions to estimate population parameters may also help to accommodate complex 
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evolutionary scenarios. Since the use of genome wide sequence data is a trend that will 

likely continue, we want to highlight here again that the application of standard methods for 

phylogenetic and population dynamics analysis to WGS data is potentially problematic 

given the intrinsic limitations of these gene-based approaches.

In the following sections, we show current examples of modern use of molecular typing for 

both epidemiology and phylogenetic inference. Other examples can be found in previous 

studies cited in the Introduction of this review.

4.1 Molecular epidemiology

There has been increasing attention paid to tracking and identifying sources of 

(opportunistic) pathogens in hospital-based settings in the last few years. One such 

opportunistic pathogen is Klebsiella pneumoniae, a human commensal whose hyper-virulent 

and multidrug resistance members have emerged worldwide. Recently, Yang et al. (2017) 

studied the short-term evolution and transmission of K. pneumoniae over a 40-week period 

in a hospital from the US, finding that isolates showed low intra-host diversity (up to 15 

single nucleotide variants). This level of resolution proved sufficient for following the 

transmission chain back to its source (endoscopic device); this was only possible due to the 

use of WGS, with the added benefit of detecting the blaCTX-M-15 gene (involved in 

Carbapenem resistance) in 27 out of 32 isolates. Other studies compared the power of 

electrophoresis-based methods to WGS making evident that previously clonal isolates are 

distinguishable through WGS (Salipante et al., 2015). Similarly, Mathers et al. (2015) 

presented a five-year single-institution outbreak investigation revealing the molecular 

epidemiology of K. pneumoniae and where they could follow isolates both by sequence type 

(in silico determined) and SNP dataset derived from the core genome. The authors 

highlighted the practicality of linking MLST types with antimicrobial resistance 

determinants and the power of a whole-genome SNP dataset for increased phylogenetic 

resolution. The combined use of WGS and MLST can provide valuable information 

regarding origin, clinical phenotype, and potential treatment of nosocomial infectious 

disease.

K. pneumoniae is one of six pathogens which are leading cause of nosocomial infections 

throughout the world (Pendleton et al., 2013). Although K. pneumoniae is traditionally 

acquired through nosocomial infection, it has elicited the interest of researchers to unravel 

potential zoonotic transmission pathways. Davis et al. (2015) compared K. pneumoniae 
isolated from retail meat from grocery stores and from human urine and blood specimens 

(both sources from Flagstaff, AZ). By combining traditional MLST and WGS, they observed 

that meat source isolates were more likely multidrug resistant than clinical isolates, even 

though isolates from both sources shared MLST profiles and were phylogenetically 

intermingled. Their results suggested potential food-borne transmission routes that carry the 

risk of spreading multidrug resistance into the general population. For a review on K. 
pneumoniae population genomics see Wyres and Holt (2016) and for a review on food 

animal production and antibiotic resistance, see Silbergeld et al. (2008).

The spread of multidrug resistance (MDR) has also been studied for old foes including the 

causative agent of Typhoid Fever. Wong et al. (2015) explored the intra- and inter-
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continental spread of a H58 MDR Salmonella Typhi clade using WGS. Based on a dataset 

with more than 20 thousand SNPs, the authors showed that multiple transfers from Asia to 

Africa have occurred and are still occurring and that MDR isolates are replacing drug 

sensitive isolates. Interestingly, another study by the same group did not find this clade in 

Nigeria, where multiple introductions could better explain the Salmonella genotypes present 

(Wong et al., 2016b). Overall, these and other similar studies highlight the need for unbiased 

sampling in molecular epidemiology studies, as often studies select isolates for sequencing 

and typing based on pathogenicity and convenience, which tend to overlook much of the 

variation needed for informed public health policy decisions (Holt et al., 2008).

Another Enterobacteriaceae that has been studied by modern typing methods is Escherichia 
coli, like in the German outbreak of May–July 2011 (Rohde et al., 2011). Within 24 hours, 

the DNA sequences of E. coli infecting patient zero (TY2482) were assembled and MLST 

genes identified, which allowed researchers to rapidly genotype the causative strain and find 

the close phylogenetic relationship between this new strain and a previous one reported in 

2001 in Germany. Later whole-genome comparisons showed that TY2482 was nearly 

identical to an African strain that may (or may not) harbor the Shiga toxin gene (Mossoro et 

al., 2002). While traditional typing approaches pointed to the outbreak strain as being 

enterohemorrhagic E. coli, it was only after more detailed whole-genome inspection that 

researchers discovered it corresponded to an enteroaggregative E. coli harboring two 

conjugative plasmids, a small plasmid, and a stx2 prophage (Rohde et al., 2011). Along 

these same lines, linking outbreaks from different localities has been possible due to the 

increased resolution that WGS allows. For example, a small E. coli outbreak was reported in 

southwest France in June 2011, which was indistinguishable from the German one by 

traditional methods. Researchers could only separate the two variants by WGS, revealing 

that the German outbreak isolates were limited in genetic diversity (2 SNPs from four 

individuals) compared to the French isolates (19 SNPs from seven individuals) (Grad et al., 

2012). Therefore, slow-evolving pathogens or pathogen outbreaks over short periods of time 

are difficult to type and present challenges for traditional MLST approaches.

Similarly, Neisseria gonorrhea represents an extremely slow-evolving pathogen. De Silva et 

al. (2016) studied patients infected with N. gonorrhea from diverse UK locations and found 

that in 26% of the infections, N. gonorrhea isolates differed by zero nucleotide substitutions 

at the genome level; however, in 76% of the infections, contact-tracing demonstrated local, 

national, and international transmissions. Epidemiological and population dynamic patterns 

have also been inferred from MLST data, where a combination of several housekeeping and 

hypervariable genes were used for increased resolution at the local level (Pérez-Losada et 

al., 2005). Other studies have contrasted traditional typing with WGS for populations from 

different localities but also different epidemiological properties. For instance, Didelot et al. 
(2016) analyzed 237 isolates from predominantly heterosexual men from populations in 

Sheffield and London, respectively. Interestingly, all isolates resolved into a single sequence 

type per population (ST12 and ST225, respectively) by the most widely used tool for N. 
gonorrhea detection, multi-antigen sequence typing (for in silico version see Kwong et al., 

2016a). In contrast, WGS could resolve relationships among isolates at the intra- and inter-

specific levels (less than 200 substitutions genome-wide) (Didelot et al., 2016).
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4.2 Genotyping and phylogenetic inference

Molecular markers can be used for both genotyping and inferring evolutionary relationships. 

More comprehensive genotyping frameworks link genetic variation with phylogenetic 

placement to obtain more information regarding origin and pathogenicity. For pathogens 

with limited genetic diversity such as Salmonella Typhi, new genotyping frameworks have 

been developed where researchers have identified genome-wide SNPs that link isolates to 

geographic source populations (Roumagnac et al., 2006; Wong et al., 2016a). Wong et al. 

(2016a) used nearly 2,000 isolates from over 60 countries to identify 68 phylogenetically 

informative SNPs. Using this framework, the authors predicted geographic origin at the 

country level for a subset of novel isolates, paving the way for future developments aimed at 

increasing accuracy and empowering clinicians and public health officials.

Another group of enteric pathogens, Shigella spp., have been studied regarding their 

evolutionary history and adaptation to human hosts. Four species exist that cause dysentery: 

S. sonnei, S. flexneri, S. boydii, and S. dysenteriae, all of which are phylogenetically nested 

within the E. coli clade. Yang et al. (2007) tested the monophyly and phylogenetic 

relationships of Shigella spp. by using up to 23 housekeeping chromosomal genes from 

Shigella and E. coli. Their results supported the hypothesis of multiple independent origins 

(probably four) of Shigella members from diverse E. coli strains. This would explain why 

Shigella spp. harbor diverse genomes but a similar phenotype.

In particular, S. sonnei is a human pathogen that diverged less than 500 years ago (Holt et 

al., 2012). The researchers collected samples from four continents and sequenced 132 

genomes from S. sonnei isolates from 1943 to 2008, which allowed them to detect more than 

10,000 SNPs for increased phylogenetic resolution. Interestingly, the authors defined four 

lineages from the SNP phylogeny that correlated with more traditional typing methods such 

as Biotypes and CRISPR types (Nastasi et al., 1993; Touchon et al., 2011), suggesting that 

for S. sonnei, traditional typing methods provide sufficient resolution to distinguish lineages 

even over short periods of time.

Similar approaches have been applied to S. dysenteriae type 1 (dysenteriae bacillus), a 

pathogen responsible for major epidemics during the 20th century. Njamkepo et al. (2016) 

reconstructed the historical spread and geographic distribution of S. dysenteriae by 

sequencing 331 isolates collected from 1915 to 2011 (66 countries) and found that the global 

spread of the bacterium predates the First World War and the global expansion of S. sonnei 
(Holt et al., 2012; Njamkepo et al., 2016). While these studies cannot establish causal 

relationships, the major expansions from Europe to the rest of the world coincide with 

periods of intense European migration due to colonialism. It is important to note that while 

traditional typing techniques and WGS were congruent in S. sonnei, the opposite was true 

for S. dysenteriae, where single lineages were separated by tens or hundreds of SNPs. See 

(The et al., 2016) for a review of Shigella spp. evolution, adaptation, and historical 

geographic spread.

Phylogenetic relationships of other globally important pathogens have also been elucidated 

using molecular typing methods. Vibrio cholerae epidemics have been characterized by 

several waves of global transmission with the latest Haiti outbreak belonging to the seventh 
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cholera pandemic (caused by V. cholerae El Tor biotype of serogroup O1). In the Fall of 

2010, the Haiti outbreak was reported and initial Pulse-Field Gel Electrophoresis (PFGE; a 

technique used for the separation of large DNA molecules by applying to a gel matrix an 

electric field that periodically changes direction) typing indicated that different Haiti isolates 

were indistinguishable. Using WGS, the authors concluded that Haiti isolates were related 

and were not identical to isolates from India and Cameroon (Reimer et al., 2011). Then, 

Chin et al. (2011) established an association between Haiti and Bangladesh isolates by 

means of WGS. More importantly, Chin et al. refuted the hypothesis that the Haiti outbreak 

was related to indigenous V. cholerae, as it was presented by Hasan et al. (2012), who 

reported both V. cholerae O1 and non-O1/O139 early in the Haiti cholera epidemic with 

samples collected from victims of 18 towns of Haiti. Katz et al. (2013) sequenced 

longitudinal samples from the Haiti outbreak and concluded that it corresponded to a single 

source introduction. Hendriksen et al. (2011) demonstrated that the Nepalese isolates formed 

a monophyletic group with other isolates from Haiti and Bangladesh, findings that were 

consistent with PFGE patterns and antibiotic susceptibility tests. We refer the reader to other 

reviews on the Haiti outbreak (Frerichs et al., 2012; Orata et al., 2014).

As V. cholerae remains a highly relevant human pathogen, the development of higher 

resolution tools and more comprehensive sampling will aid researchers in establishing 

global routes of transmission and large-scale patterns of gene flow. For instance, Mutreja et 

al. (2011) collected global genomic data on V. cholerae and developed high-resolution 

markers (SNPs) to genotype V. cholerae lineages. Using phylogenetic inference and SNP 

markers, they showed that the seventh V. cholerae pandemic has spread from the Bay of 

Bengal on multiple overlapping waves, some of which reached such faraway places as Haiti.

5. Conclusions and future prospects

MLST is a flexible approach for characterizing bacteria and some eukaryotes. It has become 

a standard mainly due to the existence of comprehensive databases and its broad 

implementation in clinical practice and molecular diagnostics. MLST is widely used in basic 

research labs (PCR + Sanger) and core sequencing facilities performing genome sequencing. 

MLST has broadened its basic scheme from using housekeeping genes to incorporate more 

and new molecular markers, such as ribosomal proteins (rMLST) and polymorphic repeated 

sequences (MLVA); most recently, it has begun integrating draft and full genomes 

(cgMLST).

Over the last five years, whole-genome sequencing (WGS) has emerged as a powerful 

technology for microbial sequence typing and is increasingly applied in clinical and public 

health microbiology. New MLST-genome strategies that take advantage of NGS technology 

to accelerate and automate WGS will expand the power and versatility of DNA typing. Such 

strategies will also allow for calculations of more accurate and robust estimates of 

phylogenies and population genetic parameters under more complex (realistic) statistical 

models using, for example, Bayesian phylogenomics and approximate Bayesian 

computation. Those statistical frameworks will also integrate epidemiologic and geographic 

information, allowing the estimation of the spatial and temporal dynamics of pathogens. 

Several examples of WGS typing have already been published assessing the time of 
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emergence, origin, and dissemination of pathogen outbreaks and the spread of antibiotic 

resistance.

While the exploitation of WGS for typing microbial diversity presents great opportunities, it 

also brings major challenges; some of these challenges are computational, such as genome 

data analysis, sharing and storage, but others are conceptual, such as relating WGS data to 

typing and microbial taxonomy. The genomic era opens the door to new types of holistic 

microbiology research, i.e., a systems biology (aka ecology) framework, in which 

taxonomic, epidemiological and evolutionary information are integrated with other Omic 
information from both the microbial communities and the host. In coming years, one can 

only assume that classical or expanded forms of MLST will remain a key component of the 

microbial genomicist’s toolkit used for understanding the diversity and dynamics of 

infectious diseases.
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Highlights

• Next-generation sequencing (NGS) is changing the field of microbial 

genomics research.

• NGS strategies have expanded the versatility of MLST typing approaches.

• We describe standard and new approaches of DNA sequence typing in 

microbiology.

• We provide guidelines for DNA sequence typing analysis, including methods 

and computational frameworks.

• We present several applications of standard and new typing approaches to 

microbiology.
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Figure 1. 
Proposed workflow for typing analysis of microbial DNA sequences using allele- and 

nucleotide-base approaches. The workflow shows data and tasks in boxes, and databases and 

computer programs in circles. We have highlighted in light red our preferred approach and 

computer programs.
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Figure 2. 
Proposed workflow for typing analysis of microbial DNA sequences using Whole-Genome 

Shotgun sequences (WGS). Current methods can take either SNPs or gene regions (contigs) 

for assessing phylogenetic relatedness and/or population dynamic patterns. The workflow 

shows data and tasks in boxes, and databases and computer programs in circles. We have 

highlighted in light red our preferred computer programs.
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