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Abstract

Cardiac resynchronization therapy (CRT) is an effective treatment for heart failure (HF) patients with an electrical substrate
pathology causing ventricular dyssynchrony. However 40—50% of patients do not respond to treatment. Cardiac modeling of the
electrophysiology, electromechanics, and hemodynamics of the heart has been used to study mechanisms behind HF pathology
and CRT response. Recently, multi-scale dyssynchronous HF models have been used to study optimal device settings and optimal
lead locations, investigate the underlying cardiac pathophysiology, as well as investigate emerging technologies proposed to treat
cardiac dyssynchrony. However the breadth of patient and experimental data required to create and parameterize these models
and the computational resources required currently limits the use of these models to small patient numbers. In the future, once
these technical challenges are overcome, biophysically based models of the heart have the potential to become a clinical tool to

aid in the diagnosis and treatment of HF.
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Introduction

Heart failure (HF) is a complex and varied disease which
results from structural or functional abnormalities impairing
the ability of the heart to pump blood and deliver sufficient
oxygen to meet the body’s metabolic needs. Pathological re-
modeling occurs with the progression of HF and refers to the
macroscale changes in the mass and shape of the heart as well
as the microscale changes in the myocyte cellular structure
and ionic channel distribution and density which detrimentally
affect cardiac function over time. Conceptually “reverse
remodeling” is the reversal of this progressive deterioration,
and is indicated with surrogate markers such as a reduction in
ventricular volume and mass, as well as improvements in the
contractile function of the heart. Reverse remodeling has been
shown to be correlated with better therapeutic outcomes for
patients [1].

Large clinical trials (REVERSE, MADIT-CRT, and RAFT)
have found cardiac resynchronization therapy (CRT) to be an
effective treatment which possibly promotes reverse remodel-
ing for patients with drug refractory mild to severe HF with
prolonged QRS duration [2—4]. Prolongation of the QRS dura-
tion is a sign of abnormal electrical activation across the ven-
tricles, such as with the left bundle branch block (LBBB), lead-
ing to mechanical dyssynchrony in the contraction of the heart.
In a normal heartbeat, the electrical activation spreads through-
out the atria, passes slowly through the AV node, before rapidly
spreading through the bundle of His, down though the right and
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left bundle branches and into the Purkinje fibers to activate the
normal myocardium. In LBBB, as per the name, an electrical
blockage occurs in the left bundle branch, causing a
dyssynchronous electrical activation of the ventricles. In CRT,
the heart is artificially paced in the right atrium, right ventricle
(RV), and left ventricle (LV) to resynchronize the electrical
activation and mechanical contraction of the heart. Device set-
tings allow for clinicians to set the time delay between activa-
tion at the atria and then subsequently the ventricles (AVD) and
the time delay between the ventricles (VVD), with a positive
VVD indicating RV-first pacing.

Multicenter studies have shown that CRT reduces mortality
and morbidity and reduces HF hospitalizations [4]. Clinical
studies have observed that the ventricular function improves
both acutely and over the longer term with CRT, with the latter
possibly due to reverse remodeling [5]. Despite the benefits of
CRT, within the cohort of HF patients that are indicated for
implant, there remains 40-50% of patients that do not respond
positively to treatment [6, 7]. This lack of response to treat-
ment has been posited to be due to suboptimal lead location or
suboptimal device settings (AVD/VVD) or whether the pa-
tients underlying pathology was amenable to CRT. Previous
studies have found that in a large proportion of non-re-
sponders, the device settings or the lead positions were sub-
optimal [8]. Computer models of the heart have thus been
used to identify the optimal lead location and pacing settings
of'the heart to predict the response of the heart to CRT, as well
as to better understand the underlying pathologies that give
rise to cardiac dyssynchrony.

The goal of CRT is to stop or reverse the progression of HF
by resynchronizing the electrical activation and mechanical
contraction of the ventricles of the heart leading to a functional
improvement in the pumping of blood throughout the circula-
tory system. Computer models can be used to simulate the
electrical activity on the heart from the cellular level through
to the tissue level (electrophysiology models), giving rise to
contraction of the ventricles (mechanical models), as well as
the pumping of the blood throughout the cardiac system (cir-
culatory models).

A schematic of how these models relate to each other is
shown in Fig. 1. Medical images and prior knowledge are
used as inputs to generate anatomical models of the heart that
are patient or subject specific. Patient-specific anatomical
models are then used to study the electrophysiology and
electromechanics of the heart. Electrical measurements are
used to parameterize and validate the electrophysiology
models of the heart. Functional measurements are used as
inputs to the circulatory and mechanical models of the heart.
Prior knowledge from literature is used to constrain the
models to physiologically plausible conditions. The outcomes
from the models include changes the mechanical, electrical,
hemodynamic, and anatomical responses to LBBB and CRT.
In this review, we will focus on the contribution of

electrophysiology, mechanics, and circulatory computer
models of the heart to understanding LBBB and CRT
response.

Modeling Anatomy
Geometry

The first electromechanical model investigating LBBB and
CRT was based on a generic idealized shape of the heart [9].
Though generic shape models are still useful in providing
mechanistic insights into the underlying substrate [10], be-
cause of the importance of scar location [11] and burden [12,
13], pacing settings and pacing location [14], the general trend
in computer models of LBBB and CRT has been towards
personalized shape models. Segmentations of non-invasive
medical imaging techniques (CT, MR, X-ray, and echo) of
the heart provide the anatomical information required to build
subject-specific canine models [15, 16] or patient-specific
models [17-20]. Computational meshes can then be built from
segmentations of the heart models for electrophysiological
and mechanical simulations. Patient-specific anatomical
meshes used in electrophysiology and electromechanical sim-
ulations of the heart have focused on the electrical activation
and mechanical deformation of the ventricles. The other car-
diac structures are typically ignored in these models. In future
studies, the importance of the atria and other cardiac structures
such as the pericardium, valves as well as the blood vessels in
simulating CRT and LBBB will need to be determined.

Fibers

Myofiber orientation plays an important role in electrical and
mechanical properties of cardiac tissue. The electrical activa-
tion in the heart spreads two- to sevenfold faster along the
fiber rather than transverse to the fiber direction [21-23].
Furthermore, biaxial tests on cubic samples of mammal myo-
cardium found that cardiac tissue has an increased stiffness in
the fiber direction [24], while active contraction acts predom-
inantly in the fiber direction. For these reasons, a physiologi-
cal representation of local myofiber orientation throughout the
myocardium is fundamental.

A large number of studies of heart biomechanics [9, 10,
18-20, 25-32] have used rule-based methods [26] based on
measurements of the fiber angles [33—35] to define the fiber
orientation. Recently, there has been increasing interest in per-
sonalizing the fiber orientation of the heart using in vivo [36—42]
or ex vivo diffusion tensor MRI (DT-MRI) [34, 43, 44].

Currently, in vivo DT-MRI has been performed on healthy
volunteers’ scans [40, 45] and patients with hypertrophic car-
diomyopathy [46] with a maximum of three high-resolution
image slices acquired after multiple breath holds. Though DT-
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Fig. 1T Schematic of the modeling pipeline for biophysical simulations of
LBBB and CRT response. Patient data and prior knowledge can be used to
create and parameterize the anatomical, electrophysiology, biomechanical,
circulatory, or growth models of the heart. The model outputs can be used to
infer and integrate information regarding the diseased heart, generate

MRI is a promising technology for personalizing the fiber
orientation, the clinical translation of DT-MRI remains elu-
sive. Until such technical challenges regarding the signal-to-
noise ratio, long acquisition times requiring multiple breath
holds, and the bulk motion of the heart obscuring the fiber
structure measurements are solved, imaging the whole heart
and incorporating patient-specific fiber orientations into com-
puter models of the heart is unfeasible. The spread of the
electrical activity with rule-based fiber orientation and those
derived from DT-MRI in rat [47] and canine models [26] have
also been found to be comparable, justifying the continuing
use of rule-based methods.

Scar
The importance of scar in response to CRT has been consistent-
ly observed in clinical studies, where pacing within scar regions

has a detrimental effect on the response to CRT [48]. In addi-
tion, the total scar burden has been found to correlate to the
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hypotheses, and predict responses to LBBB and CRT. Current state-of-the-
art models do not encompass this entire theoretical framework, but rather
only aspects of it depending on the availability of data, computational
resources, and clinical question of interest

response for CRT [49]. In scar tissue, the fiber orientations have
been found to be disordered with a higher mechanical stiffness
and reduced electrical conductivity [50, 51]. This has been rep-
resented in models of HF and LBBB, with reduced electrical
conductivity, less anisotropic material laws, and increased pas-
sive stiffness values [25, 27], and changes in the active tension
models to reflect the contraction force in scarred regions [12].
Computer models of CRT have found that, excluding infarcted
regions as prospective pacing sites, the optimal pacing site de-
pends based on the location of the scar [11].

In the clinical setting, scar regions are typically segmented
from contrast-enhanced cardiac MRI using signal intensity
thresholding techniques. Typically, the ventricular wall is
manually or automatically delineated and the signal intensity
within the wall is used to define regions of scar. The most
widely used methods are the full-width-half-max [52] and
standard deviation [53] methods. In the former, image regions
with signal intensity larger than the 50% of the maximum
intensity within the wall are selected as scar. In the latter, a
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region of healthy myocardium is manually selected, the mean
and standard deviation of the signal intensities within this
region are computed and scar is defined as the region with
signal intensity above the mean healthy intensity plus 2 or 3
standard deviations. Although there is currently no consensus
on which scar segmentation technique should be used [54],
the full-width-half-max model has been shown to be more
reproducible [55], as it does not require manual selection of
a region of healthy myocardium.

Different scar segmentation methods yield differences in
scar size, shape, and distribution [54], which could affect
CRT modeling studies. Scar location plays a significant role
in pacing site choice, as pacing adjacent to a scar has been
shown to yield poor CRT response [56]. Thus, inaccurate scar
identification could affect results when using models to identify
optimal pacing sites. However, to the best of our knowledge, a
comparison of simulation outcomes in this scenario using dif-
ferent scar segmentation methods has not yet been done.

An outline of typical workflow for generating the anatom-
ical models used in electrophysiology and electromechanical
cardiac simulations is shown in Fig. 2. Image segmentation of
the anatomical medical images (such as from MR or CT)
identifies the patient-specific geometry of the ventricles, from
which anatomical meshes for electrophysiology or mechani-
cal modeling are generated. The locations of scar tissue can be
segmented from contrast-enhanced MRI. Image registration
of the contrast-enhanced MR with the anatomical image al-
lows the scar segmentations to be mapped onto the anatomical
mesh. The fiber orientations in the ventricles can then be
assigned from rule-based methods derived from prior knowl-
edge or potentially from diffusion tensor imaging.

Clinical Measurements
Electrical Measurements

Computer models need to reflect the changes in the electrical
activation pattern that HF or CRT induces. In the typical clin-
ical setting, electrical dyssynchrony in the heart is measured
using 12-lead electrocardiograms (ECG). The duration and
morphology of the QRS from the 12-lead ECG are used as
guidelines for patient selection for CRT. However, the limita-
tion of this widely used clinical tool is that the small number of
leads recording at a distance from the heart may not fully
capture the electrical activation of the heart. In computer
models, the QRS duration is often used as a surrogate for time
taken for the electrical activation to pass through the ventricles
to parameterize the conduction velocity [20, 28-30, 57-59].
A more comprehensive picture of the electrical activation
across the torso can be achieved with non-invasive body sur-
face potential mapping (BSPM). BSPM captures many more
ECGs across the torso via a multi-clectrode vest (with

commercial versions recording up to 256 ECGs). Though
the diagnostic value of BSPM can be larger than that of 12-
lead ECG [60, 61], the difficulty of interpretation of BSPM
and limited access means that BSPM has yet to be adopted
into widespread clinical use for CRT patients. Invasive
electro-anatomical maps (EAM) of the LV endocardium and
the coronary veins provide more accurate and direct measure-
ments of changing electrical patterns in the ventricles.
However, the invasive nature of these measurements mean
that this data can only be collected intra-procedurally and thus,
the progression of the changes in the heart in response to CRT
is not tracked using these measurements. To date, only one
research group has used BSPM to parameterize electrophysi-
ology models of the heart [62], while mostly the QRS duration
and/or EAM have been used to parameterize and validate
cardiac computer models [18, 20, 28, 29, 57-59, 63].

Functional Measurements

Computer models also need to reflect the functional changes
in the heart due to LBBB and CRT response. Non-invasive
imaging (Cine MRI or echocardiography) can capture the de-
formation of the heart throughout the cardiac cycle. Clinical
measures such as LV volume transient (absolute and regional),
end-diastolic volume, end-systolic volume, ejection fraction
(calculated as the percent of blood ejected from the ventricles),
LV mass, and LV motion dyssynchrony indices can be derived
from these images. Wall motion measurements from tagged
MRI can be used to validate deformations predicted by the
model [28, 64].

Pressure measurements can be both invasive (pressure
catheters measuring the change in LV pressure intra-
procedurally) or non-invasive (via arterial pressure measure-
ments). The pressure and/or volume transients are used to
adapt the geometry parameters (in the circulatory models
[64-66]) and the active and passive material parameters (in
the biomechanical models [18, 20, 27-30, 57] of the heart.

Electrophysiology Models

In the section “Modeling Geometry,” we described a typical
workflow to generate geometrical models of the heart based
on patient-specific anatomy. Such patient-specific anatomical
models may be combined with electrophysiological models to
simulate activation sequences and study a patient’s electrical
response to CRT. To accurately simulate a patient’s activation
sequence, model parameters must be fitted to electrical mea-
surements, such as ECG, EAM, and BSPM, and validated. A
typical workflow for electrophysiology personalization is
shown in Fig. 3. Different types of electrophysiology models
have been employed in CRT studies, such as the Monodomain
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patient-specific meshes. Scar segmentations (from contrast-
enhanced MR) and fiber information (from rule-based or image-
based methods) can then be mapped onto the mesh

intracellular space, the Bidomain model also includes the ex-
tracellular domain. The Bidomain model is the more complete
electrophysiology model of the two and as such, also more
computationally expensive. Thus, most CRT studies employ
the Monodomain model [10, 32, 58, 67].

Although the monodomain model is computationally
cheaper than the bidomain model, solving the monodomain
model still requires significant computational effort to resolve
the steep wave-front of activation. To overcome this limita-
tion, the Eikonal model has also been used in CRT modeling
studies [68] to simulate activation sequences. This model de-
scribes the location of the activation upstroke without resolv-
ing the complex action potential kinetics, rendering it compu-
tationally very efficient.

With a similar goal, cellular automaton models [69] have
also been employed in recent CRT studies [70—73]. In this
model, instead of explicitly solving the complex current flow
interaction between the intracellular and extracellular do-
mains, action potentials are pre-calculated based on ionic cur-
rent equations. These are then stored and applied as a set of
rules allowing fast computation of ventricular activation and
repolarization sequences.

A type of surface source model called the Equivalent
Dipole Layer model, which computes body surface potentials
from the transmembrane potential on the myocardial surface
(source) based on the Bidomain formulation [74, 75], has also
been employed in CRT studies [76].

At the organ scale, the cardiac bioelectric behavior is con-
trolled by a cardiac conduction system. In the ventricles, this
system is typically referred to as the Purkinje system (PS), and
is composed of the bundle of His, the left and right bundle
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branches, and an extensive Purkinje network, which connects
to the myocardium at the Purkinje-ventricular junctions.
Propagation in the PS is two to three times faster than in the
myocardium, allowing fast distribution of impulses over the
endocardium and ensuring ventricular synchrony. Thus, when
modeling the activation sequence at the organ scale, it is im-
portant to include the PS properties into the model, as it sig-
nificantly affects the activation pattern in the heart.

In CRT models of realistic ventricular anatomy, the PS has
been modeled as a tree of one-dimensional elements coupled
to the myocardium [32, 68] or as a fast conducting endocardial
layer, which approximates the PS by assigning tissue conduc-
tivities to the endocardium that match the conduction velocity
in the PS [10, 67]. Models with the PS represented as a tree of
one-dimensional elements have been used to investigate the
effect of AVD on the distribution of activation times in the
myocardium during CRT and demonstrated that a 30-ms AVD
yields an activation pattern more similar to healthy activation
than a 0-ms AVD [68].

A similar approach was used to investigate the role of elec-
trical conduction in the PS during CRT pacing in failing hearts
[32]. Motivated by experimental evidence of retrograde activa-
tion in the PS [77, 78], Romero et al. [32] compared a realistic
PS represented by a tree of one-dimensional elements with a
fast endocardial layer. Their results show that retrograde con-
duction in the PS is key to accurately estimate VVD and that a
fast endocardial layer cannot accurately capture this effect [32].
However, a fast endocardial layer was employed in a
biventricular (BiV) model to study the effect of endocardial
versus epicardial pacing during CRT and showed good agree-
ment with experimental results [10]. Their results demonstrated
that early access to fast-conducting endocardial tissue reduces
ventricular activation time during endocardial pacing, provid-
ing a physiological explanation for the observed benefit of en-
docardial pacing compared with epicardial pacing [79, 80].
They also showed that patients with concentric anatomical re-
modeling are more likely to benefit from endocardial pacing
than patients with eccentric remodeling.

Computer models have been used to study the effect of
CRT on electrical activation in the presence of the ECG char-
acteristic of LBBB [58], which can be caused by conduction
block in the left branch of the His bundle due to damage to the
His fibers or due to myocardial uncoupling caused by reduced
expression of connexins (gap junctions) in its vicinity. Their
results show that myocardium uncoupling can mimic LBBB
and account for an LBBB ECG pattern. In addition, they
showed that CRT improves ventricular activation in the pres-
ence of LBBB but not in the case of myocardium uncoupling
mimicking LBBB.

Electrophysiology simulations have also been used to op-
timize lead location, AVD, and VVD during CRT. These
models offer the opportunity to carry out non-invasive, auto-
matic optimization of CRT in silico. Briefly, the approach

consists of simulating electrical activation in a realistic BiV
anatomy for different AVD and VVD as well as several dif-
ferent lead locations and minimizing the error between the
obtained activation sequences for each case against a simulat-
ed physiological case to determine which combination of
AVD, VVD, and lead location yields the best acute response
to CRT [70-73, 81]. Such models have demonstrated that
patient-specific optimization of lead location and AVD and
VVD can improve CRT efficacy and impact treatment success
[31, 70, 73] and that the use of body surface potential maps
can further improve in-silico CRT optimization [82].

Although computer models have been useful to simulate
complex electrophysiological properties during CRT, tuning
these models to accurately simulate a patient’s ventricular elec-
trophysiology is challenging due to the high number of param-
eters involved. Therefore, Sanchez et al. [67] investigated the
role of myocardial properties in the activation sequence on the
LV endocardial surface and the ECG morphology in HF pa-
tients. Specifically, they analyzed intracellular and extracellular
tissue conductivities and cellular membrane ionic properties.
Their results show that the QRS complex and LV activation
times are mainly determined by the sodium current and tissue
conductivities; that the T-wave is mainly modulated by the cal-
cium and rectifier-potassium currents; and that the cell surface-
to-volume ratio affects all three properties. Moreover, the effects
of changes in tissue properties vary between ECG leads, where-
as ionic changes entail similar effects in all ECG leads.

The ECGSIM approach was used by van Huysduynen et al.
[76]. ECGSIM is an ECG simulation program based on the
equivalent dipole layer model, as previously described. The
model incorporates heart and thorax geometry based on MRI,
conduction heterogeneity, and transmural dispersion of repo-
larization (TDR). The approach was used to investigate if BiV
pacing in CRT increases transmural dispersion of repolariza-
tion in comparison with conventional right ventricular (RV)
pacing. Their results show that both pacing strategies increase
TDR compared with healthy intrinsic activation, but that TDR
during BiV pacing is not significantly larger than during RV
pacing. Thus, increased TDR does not explain possible
proarrhythmic effects of CRT.

Mechanical Models

Dyssynchrony in the electrical activation of the heart naturally
leads to mechanical dyssynchrony in the heart. However, clin-
ical studies have shown that resolving the electrical
dyssynchrony does not necessarily improve the mechanical
dyssynchrony [83—85]. For this reason, mechanical deforma-
tion throughout the cardiac cycle needs to be simulated as
well. A typical workflow of electromechanics modeling of
the heart is shown in Fig. 4. Generic or personalized shape
models of the heart with mapped fiber orientation (from rule-
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Fig. 4 A schematic of representation of the electromechanical workflow
is shown. Personalized shape models of the heart, electrophysiology
models, and circulatory models are used as inputs into the
biomechanical models of the heart which use finite elasticity equations
to model dynamic cardiac deformations. Mechano-electric feedback via

based or image-based methods) and encompassing structural
and functional heterogeneities (from regions such as scar) can
be used to simulate the mechanical deformation of the heart
using continuum mechanics equations solved in a Lagrangian
reference frame [86].

To model the substantial deformation that the heart un-
dergoes throughout the cardiac cycle, three components are
required: a constitutive law for passive material properties
of the myocardium, an active contraction model to repre-
sent active tension generation along myofibers, and a cou-
pling method between the electrophysiology simulation
and the mechanics simulation.

Passive material properties of the myocardium can be
modeled using anisotropic (along the fiber, sheet, normal di-
rections of the fiber field), hyperelastic (or viscoelastic) con-
stitutive equations [87—89], or more typically using trans-
versely isotropic [90, 91] material laws. In the context of
patient-specific models, parameters of the constitutive equa-
tion are fitted and validated using functional clinical measure-
ments, such as the passive pressure-volume relationship dur-
ing ventricular filling [57].

The electrical activity throughout the myocardium leads to
the mechanical contraction and relaxation of the heart through
excitation-contraction coupling (ECC) [92]. On a cellular lev-
el, the depolarization of the myocyte gives rise to a Ca”* signal
that activates the sarcomeres, causing tension generation and
contraction of the myocyte, which at the organ scale translates
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stretch activated ionic channels feedback into the electrophysiology
modeling of the electrical activation time input into the mechanical
model simulations. The model outcomes can be evaluated in terms of
the mechanical and hemodynamic responses, and potentially the
anatomical response (mediated with growth models)

into pumping of blood in the heart. However, the mechanical
contraction of heart can also effect the electrophysiology of
the cardiac cells through mechano-electric feedback (MEF)
[93], such as via stretch-activated ion channels [94, 95] to
change the ionic currents in the cell.

Active tension generated along myofibers as a consequence
of cellular excitation during systole is included in the mechanics
model as an additional tension component in the fiber direction.
There are three ways to model ECC in electromechanics
models. The majority of electromechanical models of the heart
have focused on phenomenological coupling [25, 96] by means
of electrical activation time only and weakly coupled models
[97, 98] by means of intracellular calcium transient. These two
modeling strategies are based on the common assumption that
the electrophysiology affects the mechanical contraction of the
heart through ECC but any effect of the mechanical deforma-
tion on electrical propagation is negligible and can be ignored.
In contrast, limited work being done with strongly coupled
models which take into account the MEF [99, 100].

To date, computer models investigating CRT have done so
with phenomenological and weakly coupled models, due to the
large computational costs of implementing strongly coupled
electromechanical models. In personalized models, parameters
defining the active tension transient are fitted to match available
clinical measurements for cardiac deformation during systole
such as systolic pressure, volume transients, or cardiac motion
from cine-MRI. The simulated mechanical deformation of the
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heart models can then be further analyzed to determine mechan-
ical and hemodynamic response outcomes.

Most of the cardiac models studying LBBB and CRT re-
sponse have neglected the longer-terms effect of pathological
remodeling and reverse remodeling associated with the two
states. Incorporation of growth models allows for simulations
of the dynamic anatomical changes in the heart with the pro-
gression of LBBB or CRT response. In [101], the effects of
myocyte shape changes in response to the strain on the cell
were investigated on a canine model of LBBB. A later study
by [102] investigated the effect of growth models on a human
model with myocardial infarction. The general anatomical ef-
fects of pathological remodeling were captured in modeling
studies (increase in LV mass, LV dilation, reduction in EF).
However, cardiac remodeling encompasses changes to the
electrics, mechanics, and function of the heart as well as vol-
umetric changes. The effects of electrophysiology changes,
alterations in the fiber orientations, and mechanical model
material properties on pathological remodeling should also
be investigated in future studies. Reversal of the growth model
to capture the reverse remodeling effects associated with CRT
still needs to be determined in order to model the chronic
effects of CRT response.

Electromechanical models of the failing heart have been
used to investigate optimizing the acute CRT response. One
strategy for optimizing CRT is to maximize the acute hemo-
dynamic response (AHR), given as the maximal rate of sys-
tolic left ventricular pressure rise [103, 104]. However, prior
to achieving the lofty goal of translation of the biomechanical
models of the heart to the CRT clinic, models need to prove
their ability to accurately simulate clinical measurements.

In recent studies, patient-specific biomechanical models
developed from extensive and rich clinical data were used to
predict the acute hemodynamic effects of pacing protocols
[20, 27,29, 30, 105] and were able to achieve good agreement
with hemodynamic measures. In these studies, small patient
numbers were modeled (1-9 patients). This is in part due to
the extensive data requirements (such as the invasive LV pres-
sure recordings and electro-anatomical maps) and significant
computational costs of creating and parameterizing personal-
ized biophysically based cardiac models. To parameterize
computer models, multiple simulations with different input
parameters need to be run. Supercomputing resources allow
for the simulation of cardiac electrophysiology at clinical time
scales, allowing for the simulation of a single heart beat at
6.7 s [106] and 4 min [107]; however, this required computa-
tional resources on the order of 1.6 million cores and 16,384
cores, respectively. The large computational expense of com-
puter models, requiring access to high performance computer
facilities, limits the clinical usefulness of such methods.

The location of the LV pacing lead has been shown to have
an effect on CRT response [108, 109], and suboptimal lead
placement has been identified as a cause in 21% of CRT non-

responders. Therefore, predicting the optimal LV pacing loca-
tion is one of the goals of CRT electromechanical modeling.
Constantino et al. [110] used a canine model, Pluijmert et al.
[14] used a stylized human shape model, while patient-
specific models were used in [28, 29] to identify the optimal
LV pacing site. In these electromechanical modeling studies of
CRT, the optimal LV pacing location based on maximizing
AHR [14, 28, 29], maximizing stroke work [14], minimizing
the electromechanical delay [110], or reducing the LV electri-
cal activation time [28]) was found to be in the lateral LV free
wall, which is broadly consistent with experimental canine
[109, 111] and clinical studies [108, 112].

Optimizing the device settings (AVD/VVD) has been
shown to improve the acute functional response, such as
AHR and EF, to CRT in the clinical setting [113—117]. In
contrast to the electrophysiological models discussed in the
previous section, electromechanical models optimizing the
AV/VV delay focus on measures of mechanical synchrony
rather than electrical synchrony [29, 105]. Consistent with
the literature [116, 118], electromechanical models have found
that the optimal AV/VV delay is highly personalized [28, 31,
105] and that it changes with chronic CRT [29]. Although AV/
VYV delay optimization can improve response to CRT, in real-
world practice, patients may be left with suboptimal device
settings post-CRT due to lack of time and qualified staff [117,
119]. Computer models offer the potential to systemically
evaluate optimal AV/VV delay settings outside the clinic.

In addition to using models to optimize CRT response to
existing treatment methods, computer models of the heart
have also been used to evaluate emerging technologies for
delivering pacing to the heart [105]. Conventional CRT aims
to resynchronize the heart by artificially pacing the heart in the
RV and on the LV epicardium via the coronary sinus. Multisite
pacing (MSP) stimulates multiple LV sites via leads placed in
multiple CS tributary veins or with a multipolar LV pacing
lead. Preliminary studies have shown MSP can improve CRT
response in both the acute [120—125] and chronic time scales
[126, 127]. Electromechanical models have shown that pa-
tients with ischemia have an improved response to MSP
CRT in comparison to conventional CRT [105]. As ischemic
patients are a subgroup of patients that have the poorest re-
sponse to conventional CRT [128], MSP CRT is a promising
new technology in improving response rates to CRT.

Limitations of Electromechanical Models

Electromechanical models looking at optimizing the AV delay
settings are ventricular models of the heart, neglecting the atria
[29, 105]. In the normal heart, the time delay between the atria
and ventricular electrical activation allows for atrial contribu-
tion to the ventricular preload. Recent work on canine heart
modeling included the atrial contribution to the ventricular
preload via alterations of a lumped parameter model of the
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circulatory system [129]. Though this model was able to ac-
count for the hemodynamic effects of the atria in AV optimi-
zation, the anatomical effects of the atria on the activation
pattern is still disregarded. Four-chamber heart models
[130], containing the atria and ventricles, have the potential
to address this problem. The change in the atrial contribution
with AV optimization is currently not evaluated in the human
models and the consequence of neglecting the effects of the
atria will need to be investigated in future studies.

Most published electromechanical models predicting CRT
response have used the AHR as an outcome measure. Clinical
studies have shown poor reproducibility of AHR due to bio-
logical variability, especially when only measured once [131].
In [131], it was suggested that repeated measurements (six or
more) and relative measurements improves the reliability of
AHR measurements. Increasingly, models have adopted the
prediction of the more reliable relative measure of AHR; how-
ever, few clinical groups are making recordings with six re-
peats due to the inherent constraints in the clinic.

The predictability of AHR with regards to long-term ther-
apeutic response is still controversial, with some studies find-
ing no correlation to chronic remodeling (which is linked to
better clinical outcomes) [132] and others finding a positive
correlation to chronic remodeling [133]. Other measures of
acute improvement such as diastolic parameters and pressure
volume loop have also been proposed; however, they have yet
to be linked to long-term clinical response [ 134, 135]. Despite
clinical efforts to identify an acute response measure that pre-
dicts the long-term response to CRT, it remains elusive and
continues to be a challenge for clinical research.

Ventricular models have tended to focus on the simulation
of a single beat with boundary conditions being represented
by Windkessel models. Contraction models connected to the
circulatory models [110, 136, 137] have linked organ scale
models to closed loop cardiovascular models. As the heart
operates as two pumps in series, the blood leaving the right
ventricle must equal the blood entering the left ventricle with
each beat. To account for these hemodynamic effects requires
modeling not only the ventricles but the closed loop circula-
tory system within which the heart operates. In a later study,
additional growth models were further incorporated into the
models described in [136] to investigate the long-term effects
of LBBB [101]. The changes observed in the model were in
line with experimental observations of the pathological re-
modeling effects of the progression of LBBB, such as LV
dilation, reduction in LV ejection fraction, and occurrence of
septal flash [138].

Circulatory Models

The multi-scale approach of three-dimensional computational
electromechanics models offers a highly detailed simulation of
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microscopic and macroscopic phenomena. However, clinical
translation is limited by the large computational efforts required
to solve the model, especially when dealing with electrome-
chanical coupling. High computational costs also restrict the
simulation to cardiac chambers and often the simulation of a
single beat, even though ventricular filling from the pulmonary
and systemic venous systems through the atria and resistance to
ejection through the aorta and pulmonary artery are likely to
play a role in CRT response and optimization.

An alternative model strategy is to discard or significantly
reduce the representation of the patient anatomy and employ a
zero-dimensional or reduced dimensional approach. This di-
mensionality reduction allows for much faster simulations
(from several hours to seconds or minutes), therefore allowing
additional components to be included in the model, such as the
systemic and the pulmonary circulation, and to simulate the
circulatory system as a closed loop over multiple beats
[139-141].

The increased speed of these simulations does have limita-
tions. Lumped-parameter models, together with the loss of
spatial information, require additional parameters for the cir-
culatory system that need to be estimated. This issue has been
partially addressed by Arts et al. with the CircAdapt model
[65]. Figure 5 gives a schematic representation of CircAdapt,
which includes cardiac chambers linked to the systemic and
the pulmonary circulation through cardiac valves. Geometry
parameters for the components simulated by the model are
adapted on the base of known physiological adaptation mech-
anisms to match measurements of systemic pressure and flow
and, at the same time, to take into account such compensatory
mechanisms. This framework relies on efficient simulations,
with less parameters to estimate, and enables the simulation of
a wide range of physiological and pathophysiological condi-
tions [65]. This allows quantifying anatomical response, mac-
roscopic hemodynamics as pressure-volume relationship, and
clinical indices for pumping efficiency as ejection fraction and
cardiac output.

Despite its high degree of flexibility, the original CircAdapt
model is unable to account for intraventricular interaction,
which plays an important role in HF and CRT, as the pump
function of one ventricle is directly affected by the function of
the other [142—145]. The TriSeg model was thus designed as
an extension of the CircAdapt model to account for heteroge-
neity of electrical activation and wall tension of the three ven-
tricular wall segments (left and right ventricular free walls and
intraventricular septum) [66], as shown in Fig. 5. This frame-
work was also used to simulate the effect of LBBB on ven-
tricular pump function [146]. Results of this study agree with
clinical observations on asynchronous hearts, with additional
insight into LBBB consequences on other components of the
circulatory system. The model is indeed able to predict func-
tional mitral valve regurgitation as a direct consequence of
LBBB, consistent with clinical observations [147].
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Fig. 5 A schematic representation of the CircAdapt model together with
the TriSeg and the MultiPatch models as its extensions is given in the
orange box. Known physiological adaptation rules are used to adapt
geometry parameters with the aim to match clinical measurements for
mean systemic pressure and flow given in input to the model. The

In a further refinement to provide information about local
deformation, the TriSeg model was further extended in the
MultiPatch model [64]. The three ventricular wall segments
were divided into an arbitrary number of patches assigned
with an individual activation time from patient-specific mea-
surements derived from endocardial EAM, allowing the mod-
el to simulate electrical activation heterogeneities and conse-
quent local changes in the distribution of stress, strain, and
work within a single wall. The MultiPatch model was used
to simulate CRT delivery by means of LV and BiV pacing
[148]. In this study, parameters of the model were tuned to
match electrical activation maps measured in LBBB canine
and HF patients’ hearts. Simulations showed that even though
electrical activations consequent to LV and BiV pacing proto-
cols are different, both pacing strategies lead to similarly im-
proved cardiac pump function. This was explained by the
similar increase in myocardial work, which was found to be
linearly related to LV systolic function. The MultiPatch model
also provides information about local deformations within the
ventricular walls in agreement with animal data and tagged-
MRI strain patterns. As already mentioned, the structure of the
MultiPatch model allows to simulate heterogeneity of electri-
cal activation as well as mechanical heterogeneity within a
single ventricular wall segment [11]. Furthermore, each patch
can be assigned with an individual activation time together

model gives in output hemodynamic and anatomical response in the
form of geometry parameters as a consequence of adaptation, and
pressure-volume relationships. When extended to the MultiPatch
model, local electrical activation is needed as an additional input to
provide information about stress, strain, and work within ventricular walls

with individual mechanical properties to simulate low contrac-
tility and stiff regions such as scar. Simulations of different LV
pacing lead position in both ischemic and non-ischemic HF
confirmed results reported in previous clinical studies [149,
150], with novel insight into the physiology at the base of
these findings [11].

The CircAdapt model and its extensions described so far
simulate macroscopic adaptation of cardiac chambers, with a
limited representation of microscopic dynamics. When deal-
ing with HF and CRT, the understanding of microscopic com-
pensatory mechanisms may be important. The modular struc-
ture of CircAdapt makes it relatively easy to couple it with
models for microscopic electrical activation and sarcomere
contraction [151]. By coupling the TriSeg model with models
for cellular excitation and sarcomere contraction for ventricu-
lar myocytes, Kuijpers et al. analyzed how microscopic mech-
anisms affect macroscopic cardiac function. The efficiency of
the simulations offered by such framework allowed to simu-
late the dynamics of interest for several heart beats, thus rep-
licating what happens in case of both acute and sustained
LBBB, together with CRT delivery [151].

In summary, the CircAdapt model constitutes a valuable
alternative to computationally intense three-dimensional
models. Its modular structure makes CircAdapt easy to couple
with more detailed frameworks for the dynamics of interest
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needed to address a specific clinical problem. The TriSeg and
the MultiPatch model as extensions of CircAdapt partially
overcome the lack of local information about electrical acti-
vation and mechanical deformation in ventricular walls, mak-
ing these frameworks more suitable for LBBB and CRT sim-
ulations. The efficient simulations offered by CircAdapt also
lead to a fast clinical translation compared to three-
dimensional models for cardiac electromechanics. In future
work, the coupling of these two modeling frameworks could
prove invaluable in modeling changes in LBBB and reverse
remodeling due to CRT in HF patients.

Conclusion

In this review, we have discussed cardiac computer models
used to investigate cardiac dysfunction, especially focusing on
LBBB and CRT. Electrophysiology, electromechanical, and
circulatory models have been used to identify the optimal
pacing location and intracardiac timings to improve response
to CRT, investigate the cardiac substrate (endocardial layers,
scar burden or location) to provide insight into the pathologies
in the heart that cause the electrical and mechanical
dyssynchrony in LBBB and the response due to CRT, as well
as to study new technologies such as multisite pacing or en-
docardial LV pacing.

The electromechanical models discussed in this review re-
quire extensive clinical information, oftentimes including in-
vasive measurements. Future work requires the development
of pipelines that allow for the autogeneration of models and
parameters from non-invasive data, as well as methods to
reduce the computational costs or improvements in the paral-
lel scalability of the simulations.

Patient-specific models for CRT are often very complex
with many free parameters. At the same time the large patient
variability in the CRT patient populations motivates personal-
izing model parameters to each individual patient. However,
efficiently and uniquely constraining model parameters re-
mains a significant challenge in model creation. The inability
to uniquely constrain parameters using available clinical data
will in some cases limit the predictive ability of the model.
However, in biological systems, not all parameters will have
equal impact on all model predictions [152], allowing some
parameters to be set at representative values, without
compromising the models predictive capacity. Further, when
models fail to make accurate predictions, we can identify im-
portant parameters that were not well constrained by available
measurements. We can then use this information to identify
measurements that need to be made to achieve better predic-
tions for future patients. Finally, as models move from re-
search techniques to clinical tools, there will need to be a
greater emphasis placed on uncertainty quantification so that
the effect of unknown or poorly constrained parameters on

@ Springer

model predictions can be included in estimated confidence
intervals that can in turn guide a clinician in the reliability of
the model predictions.

This is especially true in light of the heterogeneous pa-
tient population within a standard CRT cohort, where ques-
tions remain unanswered regarding the accuracy and reli-
ability of model predictions. The uncertainties inherent in
the models due to reliability and robustness of data mea-
surements (such as AHR) and modeling assumptions need
to be addressed upfront when presenting biophysical
models of the heart to clinicians. Computational modeling
offer an additional tool to make clinical decisions; howev-
er, diagnostic and treatment decisions based on model sim-
ulations need to be made with the full knowledge of the
errors and confidence in the models.

The current state of the computational modeling of
LBBB and CRT patients rely on expertise in image pro-
cessing, numerical analysis, mesh generation, and cardiac
electrophysiology, mechanics and circulatory response
which presents another barrier to clinical translation. The
development of user-friendly tools that allow the non-
expert model to model the electrical, functional, and ana-
tomical response of the patient to CRT within a clinically
useful timeframe remains a challenge for the community.
The development of these tools requires close collabora-
tion and feedback from clinical stakeholders.

To date, clinical translation of biophysical tools to model
dyssynchrony and CRT response remain out of reach with
current frameworks for creating and parameterizing patient-
specific models requiring (1) substantial amount of informa-
tion and (2) large amount of computational resources to sim-
ulate a single heartbeat. In addition, the robustness and accu-
racy of the measurements as well as the resulting model
simulations/predictions need to be demonstrated.

Once these challenges have been met, dyssynchronous
heart models can be used to: examine interventions in-silico;
aid in clinical decisions of disease prognosis and prospective
treatment plans; predict the long-term response to CRT for
further classification of patients who would/would not benefit
from CRT, thus reducing the need for unnecessary procedures
impacting the health of patients; as well as provide a testing
ground for emerging technologies.
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