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ABSTRACT
Purpose An item response theory (IRT) pharmacometric
framework is presented to characterize Functional Assessment
of Cancer Therapy-Breast (FACT-B) data in locally-advanced
or metastatic breast cancer patients treated with ado-
trastuzumab emtansine (T-DM1) or capecitabine-plus-lapatinib.
Methods In the IRT model, four latent well-being variables,
based on FACT-B general subscales, were used to describe the
physical, social/family, emotional and functional well-being.
Each breast cancer subscale item was reassigned to one of the
other subscales. Longitudinal changes in FACT-B responses
and covariate effects were investigated.
Results The IRT model could describe both item-level and
subscale-level FACT-B data. Non-Asian patients showed bet-
ter baseline social/family and functional well-being than
Asian patients. Moreover, patients with Eastern Cooperative
Oncology Group performance status of 0 had better baseline
physical and functional well-being. Well-being was described
as initially increasing or decreasing before reaching a steady-
state, which varied substantially between patients and sub-
scales. T-DM1 exposure was not related to any of the latent
variables. Physical well-being worsening was identified in
capecitabine-plus-lapatinib-treated patients, whereas T-
DM1-treated patients typically stayed stable.
Conclusion The developed framework provides a thor-
ough description of FACT-B longitudinal data. It

acknowledges the multi-dimensional nature of the ques-
tionnaire and allows covariate and exposure effects to
be evaluated on responses.
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ABBREVIATIONS
AUCcycle 1 Cycle 1 area under the curve
BCS Breast cancer subscale
CI Confidence interval
Cmin,cycle1 Cycle 1 minimum concentration
dOFV Difference in objective function value
EBE Empirical Bayes estimate
ECOG Eastern Cooperative Oncology Group
FACT-B Functional assessment of cancer therapy-breast
FACT-G Functional assessment of cancer therapy-

general
HER2 Human epidermal growth factor receptor 2
HRQoL Health related quality of life
ICC Item characteristic curve
IIV Inter-individual variability
IRT Item response theory
OFV Objective function value
PRO Patient-reported outcome
RSE Relative standard error
SCM Stepwise covariate model building strategy
T-DM1 Ado-trastuzumab emtansine
VPC Visual predictive check
W Well-being

INTRODUCTION

In the era of targeted therapies, metastatic cancers are becom-
ing chronic-like diseases, for which a goal of treatments is to
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maintain functioning and improve quality of life. While tradi-
tional outcome measures focusing on overall survival and
progression-free survival are essential in cancer decision mak-
ing, there has been growing evidence that patient-reported out-
come (PRO) measures convey additional information for
assessing the overall burden of cancer, tolerability, and effec-
tiveness of interventions over long treatment durations, where
applicable (1,2). PROmeasures are reports about how a patient
feels and functions in relation to a disease and its treatment, that
come directly from the patient without interpretation of the
response by a clinician or any third party (3). PRO measures
are usually collected through questionnaires consisting of sev-
eral items (questions). While some PRO measures focus on
single aspects of health-related quality of life (HRQoL) (e.g.
the diarrhoea assessment scale), others are designed to evaluate
multiple elements of HRQoL (e.g. the European Organisation
for Research and Treatment of Cancer Quality of Life
Questionnaire (EORTC QLQ-C30), the Functional
Assessment of Cancer Therapy-General (FACT-G)), including
disease symptoms, drug-related toxicities, physical functioning,
and social and psychological well-being. These aspects of
HRQoL are important for multiple stakeholders, including
sponsors, regulatory agencies, payers, prescribers and patients.
Interestingly, patients have been shown to report symptoms
earlier and more frequently than clinicians. However, clinician
reports of fatigue, nausea, constipation, and performance status
were associated with death and emergency room admissions,
whereas no association was identified when patients reported
those items. Moreover, patient-reported symptoms were more
often in agreement with measures of daily health status than
clinician-reported symptoms (4,5). Multi-item PRO question-
naires are therefore likely to provide a comprehensive picture of
a patient’s well-being.

Multi-item PRO data are traditionally analysed by calcu-
lating the sum of the item scores, and criteria based on expert
opinion, such as time to symptom worsening, are then de-
rived. Despite quick computing and easy interpretation, the
use of these composite scores results in a loss of information (at
both longitudinal and item level) and involves technical chal-
lenges, including missing data imputation. Alternatively, item-
response theory (IRT), used extensively in educational testing
applications, has gained in popularity and acceptance in PRO
research. IRT can help address these practical problems and
provide richer and more accurate description of item-level
PRO questionnaire data (6,7). IRT consists of a statistical
framework in which a set of mathematical models are used
to describe the relationship between patients’ Blatent^ (i.e.
unobservable) status and how they respond to items. This
relationship can be visualized on item characteristic curves
(ICCs). IRT models have recently been applied in a
pharmacometric framework (8) to various disease areas such
as Alzheimer’s disease (9), multiple sclerosis (10), schizophre-
nia (11), Parkinson’s disease (12,13) and cognition in the

elderly (14). IRT pharmacometric models were shown to have
an increased statistical power to detect drug effect when com-
pared to composite scores (9,13).

Ado-trastuzumab emtansine (T-DM1), an antibody-drug
conjugate that combines the antitumor properties of the human
epidermal growth factor receptor 2 (HER2)-targeted antibody
trastuzumab with the cytotoxic activity of the microtubule in-
hibitor emtansine (DM1), was granted regulatory approval in
the United States, Europe and elsewhere for the treatment of
HER2-positive metastatic breast cancer previously treated with
trastuzumab and taxane chemotherapy (15). Approval was
based on the results from the phase III EMILIA trial, which
demonstrated a better safety profile and an improved
progression-free and overall survival in HER2-positive locally
advanced or metastatic breast cancer patients treated with T-
DM1 when compared to lapatinib plus capecitabine, a stan-
dard of care chemotherapy-based treatment (16). Previous find-
ings from exposure-response analyses of EMILIA overall sur-
vival and progression-free survival data have suggested that
there may be an opportunity to optimize the dose in the sub-
group of patients displaying low T-DM1 exposure for im-
proved efficacy with acceptable tolerability (17).

PRO data are increasingly being implemented in oncology
clinical trial research, and we therefore aimed to develop of a
methodology that combines IRT and pharmacometric ap-
proaches to describe longitudinal PRO data in cancer pa-
tients, using FACT-Breast (FACT-B) data fromEMILIA trial.
Specific aims were to characterize the time-course of item-
level FACT-B questionnaire data using IRT methods follow-
ing treatment with T-DM1, to investigate potential exposure-
response relationships, and to compare the PRO responses to
T-DM1 and capecitabine-plus-lapatinib treatment for locally
advanced/metastatic breast cancer. Methodological aspects
for the development and implementation of the model, as well
as parameters defining the ICCs, are presented.

METHODS

Study Design

Data from the EMILIA clinical trial (NTC00829166) were in-
cluded in this analysis. EMILIA was a randomized, open-label,
international pivotal phase III study, involving patients with
HER2-positive, unresectable locally advanced or metastatic
breast cancer, previously treated with trastuzumab and a taxane
(16). A total of 991 patients were randomized in a 1:1 ratio to T-
DM1 (3.6 mg/kg intravenously every three weeks (q3w)) or
capecitabine-plus-lapatinib (active control treatment) until dis-
ease progression or unmanageable toxicity (Fig. 1). Both treat-
ments were given in three-week cycles. The EMILIA study was
conducted in accordance with the Declaration of Helsinki and
Good Clinical Practice guidelines. Written informed consent
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was obtained from all patients and with the relevant institutional
review board and/or independent ethics committee at each
study site approving the study protocol.

FACT-B and Pharmacokinetic Assessments

The FACT-B questionnaire (version 4) consists of 36 items
with ordered categorical answers. Possible responses to each
item are BNot at all^, BA little bit^, BSomewhat^, BQuite a
bit^ and BVery much^. As per FACT-B scoring guidelines
(http://www.facit.org/FACITOrg/Questionnaires), for non-
reversed items (e.g. BI feel close to my friends^, BI am sleeping
well^) these answers correspond to scores of 0, 1, 2, 3 and 4,
respectively, whereas for reverse items (e.g. BI have nausea^,
BI feel sad^) they correspond to scores of 4, 3, 2, 1 and 0,
respectively (i.e. the higher the score the better the quality of
life). A list of all FACT-B items is provided in Supplementary
Table S1. FACT-B items are grouped into five subscales: the
physical, social/family, emotional and functional well-being
subscales, which form the FACT-General scale, and an addi-
tional breast cancer-specific subscale (BCS). Item-level
FACT-B data considered in this modeling analysis were col-
lected before the start of treatment (baseline, day 1 of cycle 1)
and on day 1 of every odd cycle (i.e. every 6 weeks), and
excluded the study completion visit (Fig. 1). A total of 2655
FACT-B responses were available from 484 female patients in
the T-DM1 arm (out of 495 patients randomized to this arm),
with a median follow-up duration of 24 weeks (range, 0–117).
In the capecitabine-plus-lapatinib arm, 2192 questionnaire
data were collected from 478 female patients followed up for
a median duration of 18 weeks (range, 0–130). The percent-
age of missing answers ranged from 0.1–4% for all items,
except for one item (BSex life^) with 43% of missing data.

Pharmacokinetic data were available for a subset of 331
patients in the T-DM1 treated group. Cycle 1 area under
the concentration-time curve (AUCcycle1) and cycle 1

minimum concentration (Cmin,cycle1, at a nominal time of
504 h) were obtained from a published population pharma-
cokinetic model (18). For patients on T-DM1 missing phar-
macokinetic data (N= 153), AUCcycle1 and Cmin,cycle1 were
calculated based on the typical pharmacokinetic parameters
corrected for individual covariates.

IRTand Longitudinal Well-Being Modeling

The IRTmodel was developed in three steps, which included:
1) a base IRTmodel, where the probability of each item score
was linked to a latent variable, 2) a longitudinal well-being
model, where the trajectory of the latent variable was
modelled as a function of explanatory variables (time, covar-
iates), and 3) a longitudinal IRT model, where models from
the two previous steps were combined to describe longitudinal
changes in the probability of each item score, including po-
tential covariate effects. Each step is detailed below.

Base IRT Model

Themodel was developed using T-DM1 arm data. It was then
evaluated on capecitabine-plus-lapatinib arm data.

The IRT model describes the probability of each score for
any given item as a function of a patient’s well-being (W),
which is a latent variable. Since each FACT-B subscale relates
to a specific aspect of well-being, the IRT model included
several latent variables (Wi, l specific to patient i and subscale
l). Each item was modeled using a proportional odds model,
known as graded response model in the IRT literature (7,19),
where the probability (P) of rating a score of at least k (k = 0 to
4) was described as in Equation 1, and the probability of rating
exactly score k derived as in Equation 2.

P Y ij≥k
� � ¼ 1

1þ e−a j W i;l−b j;kð Þ ð1Þ

Fig. 1 Overview of EMILIA study
design and functional assessment of
cancer therapy-breast (FACT-B)
data considered in the modeling
analysis. HER2+: human epidermal
growth factor receptor 2-positive;
N: number of patients randomized;
LABC: locally advanced breast
cancer; MBC: metastatic breast
cancer; IV: intravenous; q3w: every
three weeks; bid: twice daily; qd:
once daily. Figure adapted from
Welslau et al.

Pharm Res (2018) 35: 122 Page 3 of 14 122

http://www.facit.org/FACITOrg/Questionnaires


P Y ij ¼ k
� � ¼ P Y ij ≥k

� �
−P Y ij≥k þ 1

� � ð2Þ

where aj and bj, k are, respectively, the discrimination and
difficulty parameters specific to item j, treated as fixed effects
in the model. bj, m are constrained to be non-decreasing for
increasing scores of the same item (i.e. bj, k+ 1 ≥ bj, k). Wi, l is
modeled as a random variable on an arbitrary scale (from –∞
to +∞), where higher values denote better well-being. To de-
velop the base IRT model, FACT-B data from each patient
and visit were treated independently (assuming no intra-
patient correlation between visits). This was done to facilitate
the estimation of item-specific parameters, as described below,
without having to assume any specific shape of well-being
time-course.Wi, l was assumed to follow a normal distribution
with mean of 0 and variance of 1 at baseline in the T-DM1
arm, and estimated mean and variance at later observations.
To account for the possibility that the different aspects of the
well-being vary in relation to each other, correlations between
Wi, l of the different subscales were estimated. Potential devi-
ation from the normality assumption were to be investigated if
indicated by the distribution of empirical Bayes estimates
(EBEs). Item characteristic curves (ICCs) were generated to
illustrate how a patient with a given level of well-being is likely
to give a particular answer to each FACT-B item (for each
item the probability of each score is plotted against well-being
Wl). The shape of ICCs is influenced by the item-specific pa-
rameters aj and bj, k.

When examining the FACT-B questionnaire, it appeared
that BCS items only share their specificity to breast cancer,
but each item could be better placed in one of the other sub-
scales (physical, social/family, emotional or functional). In or-
der to explore this hypothesis, an attempt to reassign BCS
items to other subscales was made: 1) all FACT-B data were
fitted by an IRT model with five Wl variables corresponding
to the original FACT-B subscales, 2) the EBEs ofWl obtained
from Step 1 for the physical, social/family, emotional and
functional subscales were retrieved and incorporated into
the dataset, 3) data of each separate BCS item were fitted
using Equations 1 and 2, and sequentially using the EBEs of
Wl from each of the other subscales, i.e. only estimating aj and
bj, k, 4) each BCS item was reassigned to the subscale for which
the EBEs of Wl provided the best model fit in step 3 (lowest
objective function value, OFV) and all items were modelled
simultaneously, estimating all parameters (Wl, aj and bj, k).

Longitudinal Well-Being Model

A model was developed to describe well-being change over
time for each subscale, using the EBEs of Wi, l obtained from
the base IRT model as dependent variables. Data from differ-
ent visits were grouped by patient. Linear, power, exponen-
tial, Weibull and non-monotonic functions over time were
investigated to characterize well-being time-course. Inter-

individual variability (IIV) was implemented additively on un-
constrained parameters and exponentially on non-negative
parameters. In addition, correlations between parameters
were explored. In cases where correlations between the same
type of parameter on the different subscales were large, a
common IIV was estimated for all subscales, together with
an additional inter-subscale variability term. Finally, residual
unexplained variability in Wi, l was described by an additive
model. T-DM1 arm data were used to develop the structural
model. Capecitabine-plus-lapatinib arm data were then
added and the model was refined.

A covariate analysis was thereafter performed to evaluate
the effect of potential predictive factors on relevant model
parameters. Investigated baseline covariates included patient
demographics (age, ethnicity and race), treatment line,
Eastern Cooperative Oncology Group (ECOG) performance
status, and disease-related factors, including tumor burden
category (non-measurable disease versus measurable disease
with tumor burden < median versus measurable disease with
tumor burden ≥ median), site of disease involvement (visceral
versus non-visceral), number of disease sites (≤2 versus >2), hor-
mone receptor status (estrogen and/or progesterone receptor
positive versus both negative), and presence of liver, bone, lung
and brain metastases. Additionally, the effect of T-DM1 cycle
1 exposure (AUCcycle1 and Cmin,cycle1, treated as continuous or
categorized into quartiles) on longitudinal model parameters
was evaluated. Covariate analysis was performed using the
stepwise covariate model building procedure (SCM), with a
significance level of p < 0.01 in the forward selection and
p< 0.001 in the backward elimination. All covariates were
first tested on parameters using linear relationships, as de-
scribed in Equations 3 and 4 for categorical covariates, and
Equation 5 for continuous covariates. Piece-wise linear rela-
tionships were evaluated for continuous covariates upon in-
clusion of a linear relationship by the SCM.

PRM ¼ θPRM þ θCOV ð3Þ

θCOV ¼
0 if reference category

θCOV ;1 if category 1
θCOV ;2 if category 2

…

8>><
>>:

ð4Þ

PRM ¼ θPRM þ θCOV � COV−COV medianð Þ ð5Þ
where θPRM is the typical value of the unconstrained model
parameter PRM, θCOV is the coefficient for the effect of the
covariate (COV) on PRM, and COVmedian is the median
value of COV in the data set. Given the large number of
relations to be investigated, and to reduce computation time,
sequential SCMs were performed. First, covariate effects on
baseline model parameters were investigated, assuming the
same covariate effect in both arms and all subscales; this
allowed to significantly reduce the number of evaluated rela-
tions at each SCM steps compared to testing arm- or subscale-
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specific effects. Second, statistically significant covariates were
tested for additional subscale-specific effects, and all relations
were reevaluated in a backward elimination. Third, additional
disease-related covariate effects were explored on longitudinal
model parameters in an arm-dependent manner. Finally, T-
DM1 exposure metrics were tested on longitudinal model
parameters in the T-DM1 arm.

Longitudinal IRT Model

The base IRT and longitudinal well-being models were com-
bined without re-estimation into a longitudinal IRT model
that describes the temporal change in the probability of each
score for each item, including potential covariate effects iden-
tified in the longitudinal well-being model. Simulation-based
diagnostics were computed as detailed in the next section. For
each item and covariate value of interest, the typical probabil-
ities of each score were predicted by the model. Moreover, the
typical expected score was calculated as the sum of the scores,
weighted by their probability.

Model Building and Evaluation

Data analysis and simulations were performed using the nonlin-
ear mixed effect software NONMEM version 7.3 (20). The first-
order conditional estimation method was used for parameter
estimation of the longitudinal well-being model and the
second-order conditional estimation with Laplacian approxima-
tion for parameter estimation of IRT models. Data pre- and
post-processing, model diagnostics and graphical visualization
were assisted by R software version 3.1.1, Perl-speaks-
NONMEM (PsN) toolkit version 4 and Pirana version 2.9.0 (21).

Model selection was based on graphical diagnostic plots,
relative standard errors (RSE) of model parameters from the
NONMEM variance-covariance matrix, and OFV used in
likelihood ratio tests. For nested models, an OFV difference
corresponding to a significance level of p< 0.01 was used for
model discrimination (6.63 points for models that differ by one
parameter). To diagnose the relationship between the latent
variable and the response in the IRT model, the estimated
cumulative probability curve of each score versus the latent
variable was compared to the fit of a generalized additive
model (GAM) to the data versus the EBEs of the latent variable,
using a cross-validated cubic spline as a smoothing function
(22). The predictive performance of the longitudinal IRT
model was assessed through visual predictive checks (VPCs),
where for each item the 95% confidence interval (CI) for the
average score, obtained from 200 Monte Carlo simulations
using the original study design, was compared to the observed
average score. Additionally, VPCs of the proportion of each
score for each item were examined. Finally, VPCs of the sum
of scores for each subscale (calculated as per FACT-B scoring
guidelines) were generated, where the 95% CI for the 2.5th,

50th and 97.5th percentiles of the simulated sum of scores
were compared to the corresponding observed percentiles.

RESULTS

Data

The distribution of observed items’ scores at baseline in the T-
DM1 arm showed a variety of patterns, with some items being
skewed towards high scores (most items in the physical and
social/family subscales), and others being more evenly distrib-
uted (most items in emotional and functional subscales)
(Supplementary Fig. S1).

IRT Model

Base IRT Model

In the base IRTmodel, 180 item-specific parameters (aj and bj,
k) were estimated using T-DM1 data. The use of four latent
well-being variables (Wphysical, Wsocial, Wemotional and Wfunctional),
with each BCS item reassigned to one of the four other sub-
scales as described in the Methods section, resulted in an im-
proved model fit despite the use of fewer model parameters
(1138 points OFV reduction compared to the model with five
well-being variables that includedWbreast cancer). Two items were
reassigned to the physical well-being subscale (BShort of
breath^ and BArms swollen or tender^), five items to the emo-
tional well-being subscale (BSelf-conscious about way I dress^,
BBothered by hair loss^, BWorry that family members get the
same illness^, BWorry about effect of stress on illness^,
BBothered by change in weight^) and two items to the func-
tional well-being subscale (BFeel sexually attractive^, BFeel like
a woman^). OFVs obtained for each item and alternative
subscale are provided in Supplementary Table S2. Visual
inspection of the distribution of the EBEs of Wl for all four
subscales showed no particular deviation from the standard
normal distribution; therefore no alternative distributions
were considered.

Item-specific parameter estimates are summarized in
Supplementary Table S3. As illustrated by the ICCs
(Supplementary Fig. S2), the items differed in their relation
to the latent well-being. Some ICCs were steeper (e.g.
BUsually do for fun^), suggesting that the information content
is larger than for items with flatter ICCs (e.g. BSleeping well^)
in a given well-being range. Moreover, items with flatter ICCs
are less sensitive to changes in well-being. Finally, for some
items such as BEmotional support from family^, all curves are
located towards low well-being values, meaning that those
items will enable to differentiate among patients with poor
well-being but not among those with better well-being.
GAM-ba s ed d i a gno s t i c p l o t s a r e p ro v i d ed i n
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Supplementary Fig. S3. Eta-shrinkage for all four well-being
variables ranged 8.8–16%.

Mean score distributions obtained from simulations from
the base IRT model developed on T-DM1 data were com-
pared to observed baseline mean scores in the capecitabine-
plus-lapatinib arm (Supplementary Fig. S4). Overall, all
items’ mean scores were well described, despite a slight
underprediction for BSex life^, BSexually attractive^ and
BBothered by hair loss^.

Longitudinal Well-Being Model

On all four subscales, the time-course of well-being (Wl(t)) was
best described by an asymptotic function of time (Equation 6):

W i;l tð Þ ¼ W 0;i;l þWss;i;l⋅ 1−e
− ln 2ð Þ

T 1=2;i;l
⋅t

� �
ð6Þ

Where for each individual i and subscale l,W0, i, l is the base-
line latent well-being,Wss, i, l the difference in latent well-being
from baseline at steady-state and T 1=2;i;l the progression half-
life, i.e. the time to reachW0, i, l plus half ofWss, i, l. Well-being
could improve (Wss, i, l> 0), remain stable (Wss, i, l= 0) or
worsen (Wss, i, l< 0) over time. Of note, Weibull models could
fit the data of all subscales statistically significantly better than
exponential models (dOFV= 29.9 for four additional param-
eters) but were numerically unstable and therefore not
retained. Fixing W0, physical, W0, emotional and W0, functional typical
values to zero improved numerical stability without worsening
model fit. All fixed and random effects were shared between
T-DM1 and capecitabine-plus-lapatinib arms, except Wss,

physical and Wss, social/family typical values which had arm-
specific estimates. Additionally, correlations between Wss, i, l

were estimated to be large (62–96%); hence, a common IIV
term was estimated for all subscales (ω= 0.59), together with
an inter-subscale variability term (ω = 0.16). The latter
allowed patients to progress differently on each subscale.
The largest difference between study arms was obtained for
Wss, physical, which was not significantly different from zero, and
therefore fixed to zero, in the T-DM1 arm (i.e. well-being
typically stayed stable), but was estimated to −0.251 (95%
CI: -0.303;-0.199) in the capecitabine-plus-lapatinib arm.
The latter value indicates that physical well-being typically
worsens from baseline by 0.251 standard deviation.
Similarly, Wss, social/family worsened in both arms, with a more
pronounced progression in T-DM1 arm (−0.244, 95% CI: -
0.315; −0.173) compared to capecitabine-plus-lapatinib arm
(−0.137, 95% CI: -0.223; −0.0514). In both arms, emotional
well-being typically improved over time (Wss, emotional estimated
to 0.295, 95% CI: 0.256; 0.334), whereas functional well-
being typically stayed stable (Wss, functional was not significantly
different from zero and was therefore fixed to zero). Subscale-
specific T1/2, l estimates were in the range of 30.7–48.9 days

for all subscales except for social/family well-being where it
was longer (117 days). A large IIV in T1/2, l was estimated
(121% CV), common to all subscales. Correlations between
individual W0 on different subscales ranged between 44 and
81%. Finally, negative correlations between the IIV in W0, l

and the IIV in Wss, l were estimated (−23 to −33%).
In the covariate analysis, statistically significant effects of

race (Asian versus non-Asian) and ECOG were identified for
baseline well-being W0. Asian patients and patients with
ECOGof 1 typically had less favourable well-being at baseline
than non-Asian patients and patients with ECOGof 0, respec-
tively. When evaluated on a subscale level, Asian patients
typically had worse baseline social/family (dOFV=−73.6,
estimated coefficient of −0.441) and functional (dOFV =
−22.7, estimated coefficient of −0.181) well-being compared
to non-Asian patients. Estimated coefficients can be
interpreted in standard deviation terms on the well-being
scale, e.g. a typical Asian patient has a social/family well-
being value that is 0.441 standard deviation away toward less
favorable well-being as compared to a typical non-Asian pa-
tient. The ECOG effect was retained onW0, physical (dOFV=
−97.3) and W0, functional (dOFV=−64.2), with a shared esti-
mated coefficient of −0.268. None of the other covariate ef-
fects was statistically significant onW0 orWss upon inclusion of
race and ECOG in the model.

Finally, none of the investigated relations between T-DM1
exposure (AUCcycle 1 and Cmin, cycle 1 treated as continuous or
binned by quartiles) and well-being progression (subscale-spe-
cific Wss) was statistically significant (all p> 0.1).

Table I provides the parameter estimates and their uncer-
tainty. All parameters were estimated with reasonable uncer-
tainty (RSE ≤32%).

Longitudinal IRT Model

The longitudinal well-being model was integrated into the
IRT framework. As shown by the item-level VPCs, the final
longitudinal IRT model was able to satisfactorily predict the
average item scores in both the T-DM1 arm (Fig. 2) and in the
capecitabine-plus- lapat inib arm (Fig. 3) , despite
underprediction of BHaving pain^ item in the capecitabine-
plus-lapatinib arm. In addition, VPCs of the sum of scores in
each original FACT-B subscale (Fig. 4) indicate that themodel
adequately predicts the median trend over time and the var-
iability in both treatment arms, although at some early time
points the 2.5th percentile tends to be overpredicted in the
physical and breast cancer subscale. Figure 5 illustrates the
difference in steady-state probabilities and expected scores
between the two arms. These differences were largest for items
in the physical well-being subscale. In addition, to illustrate the
effect of race and ECOG on the items’ scores at baseline,
typical expected scores are provided in Supplementary Figs.
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Table I Parameter Estimates and Their Uncertainty (Relative Standard Error, RSE %) from the Final Longitudinal Item-Response Theory Model

Parameter T-DM1 arm Capecitabine-plus-lapatinib arm

W0, physical (unitless) 0 fixeda 0 fixeda

W0, social/family (unitless) −0.0901 (23)a −0.0901 (23)a

W0, emotional (unitless) 0 fixeda 0 fixeda

W0, functional (unitless) 0 fixeda 0 fixeda

Wss, physical (unitless) 0 fixed −0.251 (11)

Wss, social/family (unitless) −0.244 (15) −0.137 (32)

Wss, emotional (unitless) 0.295 (6.8)a 0.295 (6.8)a

Wss, functional (unitless) 0 fixed 0 fixed

T1/2,physical (days) 30.7 (9.0)a 30.7 (9.0)a

T1/2,social/family (days) 117 (18)a 117 (18)a

T1/2,emotional (days) 35.1 (12)a 35.1 (12)a

T1/2,functional (days) 48.9 (7.4)a 48.9 (7.4)a

ωW 0;physical (unitless)
0.76 (2.5)a 0.76 (2.5)a

ωW 0;social=family (unitless)
0.69 (2.5)a 0.69 (2.5)a

ωW 0;emotional (unitless)
0.81 (2.6)a 0.81 (2.6)a

ωW 0;functional (unitless)
0.79 (2.5)a 0.79 (2.5)a

ωWss;IIV
(unitless)

0.59 (4.9)a 0.59 (4.9)a

ωWss;ISV
(unitless)

0.16 (14)a 0.16 (14)a

ωT1=2;IIV (% CV)
121 (4.2)a 121 (4.2)a

ρ ηW0;physical
; ηW0;social

� �
(%)

44 (4.7)a 44 (4.7)a

ρ ηW0;physical
; ηW0;emotional

� �
(%)

79 (2.9)a 79 (2.9)a

ρ ηW0;physical
; ηW0;functional

� �
(%)

81 (2.8)a 81 (2.8)a

ρ ηW0;social=family
; ηW0;emotional

� �
(%)

51 (4.2)a 51 (4.2)a

ρ ηW0;social=family
; ηW0;functional

� �
(%)

77 (3.0)a 77 (3.0)a

ρ ηW0;emotional
; ηW0;functional

� �
(%)

69 (3.2)a 69 (3.2)a

ρ ηW0;physical
; ηWss;;IIV

� �
(%)

−33 (8.1)a −33 (8.1)a

ρ ηW0;social=family
; ηWss;;IIV

� �
(%)

−23 (11)a −23 (11)a

ρ ηW0;emotional
; ηWss;;IIV

� �
(%)

−29 (8.6)a −29 (8.6)a

ρ ηW0;functional
; ηWss;;IIV

� �
(%)

−30 (8.4)a −30 (8.4)a

Asian on W0, social/family −0.441 (12)a −0.441 (12)a

Asian on W0, functional −0.181 (21)a −0.181 (21)a

ECOG 1 on W0, physical and W0, functional −0.268 (11)a −0.268 (11)a

W0, subscale, subscale-specific baseline latent well-being; Wss, subscale, difference in subscale-specific latent well-being from baseline at steady-state (progression
asymptote), T1/2, progression half-life, i.e. the time to reach baseline well-being plus half of the steady-state well-being; ω, standard deviation of the random
effects; ρ, correlation; IIV, inter-individual variability; ISV, inter-subscale variability; ECOG, Eastern Cooperative Oncology Group functional status
a Common parameter estimated for both study arms
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S5 and S6. The NONMEM code and an example data set is
provided as supplementary material.

DISCUSSION

The presented analysis is the first application of an IRT
pharmacometric approach to describe PRO data collected
in a cancer clinical study. To ease model building and facili-
tate parameter estimation, a new stepwise approach was
adopted, where the latent well-being estimates obtained from
each patient’s visit in a first step were used as dependent var-
iables to build the longitudinal model. The developed IRT
model adequately described the time-course of FACT-B in
T-DM1 and capecitabine-plus-lapatinib arms from a phase
III clinical trial. It could characterize FACT-B data both at
the item level and the subscale level. To our knowledge, this is
also the first attempt to relate drug exposure to PRO.

For PROs, IRT has previously been described as a useful
tool to improve the development and refinement of question-
naires. Mixed models from item response theory have also
been shown to be particularly suitable for the analysis of lon-
gitudinal HRQoL questionnaire data from cancer clinical tri-
als (23). When integrated into a pharmacometric framework,

IRT has demonstrated superior power in detecting drug effect
when compared to the analysis of composite scores (e.g. sum
of scores) for several neurological diseases (9,13). Using the
IRT pharmacometric approach to assess T-DM1, no statisti-
cally significant relationship was identified in the T-DM1 arm
between FACT-B response and any of the investigated expo-
sure metrics (model-derived cycle 1 Cmin or AUC, treated as
continuous or categorized into quartiles) at the investigated
dosing schedule of 3.6 mg/kg q3w. These results are consis-
tent with a previous analysis of the EMILIA study data by Li
et al., where no meaningful exposure-response relationship
was observed for any safety endpoints (any grade ≥ 3
treatment-related adverse event, grade ≥ 3 thrombocytopenia
and grade ≥ 3 hepatotoxicity) (24). In contrast, an exposure-
response trend was identified for platelet count and liver en-
zyme time-courses when modelled on a continuous scale in T-
DM1-treated metastatic breast cancer patients (25), but both
thrombocytopenia and hepatotoxicity are generally asymp-
tomatic. In addition, in the analysis of efficacy by Li et al., a
higher model-predicted cycle 1 Cmin was associated with lon-
ger median overall survival and progression-free survival,
findings which were in line with findings by the US FDA
during the biologic license application review (17). However,
these relationships were not consistent across exposure metrics

Fig. 2 Visual predictive checks of the average score from the final longitudinal item response theory model, stratified by FACT-B items, in the ado-trastuzumab
emtansine (T-DM1) arm. The observed average score (solid line) is compared to the 95% confidence interval (shaded area) of the average score over time,
obtained from 200 simulations. Scores for reverse items have been reverse-scaled (i.e. higher score indicates better outcome). Panels’ color corresponds to the
item subscale: blue for physical, green for social/family, purple for emotional and orange for functional. * Items originally belonging to the breast-cancer subscale.
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and were thought to be confounded by baseline disease risk
factors. These previous findings suggested that dose adjust-
ment in patients with low exposure at the approved starting
dose is not warranted. Our results indicate that lower T-DM1
exposure in the range of evaluated doses would not come at
the expense of patient’s well-being, as measured by FACT-B.

The suggested IRT pharmacometric approach has multi-
ple advantages over statistical analysis based on sum of scores.
IRT focuses on the individual items, whereas a summary
score-based approach typically disregards data at the item-
level, resulting in a loss of information. Summing item scores
is legitimate when the items contain a similar proportion of
information concerning the underlying construct being mea-
sured (26). As suggested by the item characteristic curves,
FACT-B items contained varying information with regard to
the latent well-being and IRT analysis is therefore considered
advantageous. Importantly, IRT allows predictors, such as
patient characteristics and drug exposure, to affect all items
within a subscale through a unique effect on the latent vari-
able. The extent to which each item is affected depends on its
relationship to the latent variable (visualized on item charac-
teristic curves) in the latent variable range of interest. IRT
models are therefore halfway between methods based on

sum of scores and those considering separate predictor effects
on each item, which are not practically applicable to scales
with large number of items (8).

In addition, by pooling data from multiple subjects in a
non-linear mixed effect framework, the present approach
has advantages over traditional statistical methods when ana-
lyzing data for fixed time points (scheduled visits), which are
particularly sensitive to missed or delayed assessments (27). In
our analysis, missing data (i.e. missing visits) were assumed to
occur at random or completely at random and therefore ig-
norable. In cases where informative dropout is suspected and
missing data are not at random, the IRT model may be com-
bined with logistic regression models that would describe
dropout patterns (11,28). Additionally, item responses that
are missing completely at random can be ignored with no
need for imputation; more advanced techniques to model
non-ignorable missingness are available in IRT literature
(29). Finally, in cases where exposure-response relationships
are identified, IRT pharmacometric models allow for simula-
tions to be performed to guide selection of dosing regimens
that would maximize PROs. While IRT pharmacometric
models are promising tools to address limitations of commonly
used statistical methods, mathematical complexity may be

Fig. 3 Visual predictive checks of the average score from the final longitudinal item-response theory model, stratified by FACT-B items, in the capecitabine-plus-
lapatinib arm. The observed average score (solid line) is compared to the 95% confidence interval (shaded area) of the average score over time, obtained from
200 simulations. Scores for reverse items have been reverse-scaled (i.e. higher score indicates better outcome). Panels’ color corresponds to the item subscale:
blue for physical, green for social/family, purple for emotional and orange for functional. * Items originally belonging to the breast-cancer subscale.
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perceived as limiting factors to their application. However, it is
expected that community efforts to share technical knowledge
(e.g. model codes) will ease their application in the future.

The simultaneous analysis of all items in FACT-B in pres-
ent work also increased our understanding of the structure of
the questionnaire. The FACT-B questionnaire consists of the
multidimensional FACT-General questionnaire and the BCS,
which is meant to complement the general scale by addressing
concerns relevant and specific to breast cancer patients. BCS
was reported in the literature to have lower internal consisten-
cy (as measured by the Cronbach’s alpha coefficient ranging
0.26 to 0.67 in factor analyses) than the other FACT-B sub-
scales, meaning that the BCS is somewhat heterogeneous
(30–34). Yoo et al. identified three factors in the BCS, namely
psychological distress (five items), feminine satisfaction (two
items) and physical complaints (two items), thus confirming
the multidimensional nature of BCS (31). In our analysis, we
reassigned each BCS item to one of the other subscales in a
systematic manner, based on objective goodness of fit criteria
(OFV). Reassignment was important to satisfy the IRT

prerequisite that all items in a subscale should measure a single
common underlying construct. Two items were reassigned to
the physical well-being, five items to the emotional well-being
and two items to the functional well-being subscale, while no
item was reassigned to the social/family well-being subscale.
These findings are in agreement with results from statistical
analyses of the English and the Korean version of FACT-B,
both showing statistically significant correlations between
BCS score and the scores on physical, emotional and func-
tional subscale scores (0.39–0.61), but lower correlation be-
tween BCS and social/family subscale (0.09–0.37)
(30,31,33). In addition, while correlations between items with-
in a subscale are inherently accounted for through the latent
well-being variable, additional correlations between well-
being in the different subscale were estimated. The estimated
values (44–81%) are in agreement with previous reports, with
the lowest correlation being between physical and social/
family subscales (30).

In the covariate analysis, Asian patients were found to ex-
hibit less favorable baseline social/family and functional well-

Fig. 4 Visual predictive checks of
the total subscale score time-course
from the final longitudinal item-
response theory model, stratified by
study arm and subscale (as defined
in FACT-B). The median (solid line),
2.5th and 97.5th percentiles
(dashed lines) of the observed data
are compared to the 95%
confidence intervals (shaded areas)
for the corresponding percentiles of
the simulated data (based on 200
simulations). T-DM1: ado-
trastuzumab emtansine.
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being than non-Asian patients. One could argue that differ-
ences may exist in the way patients with different cultural
background answer the questions (also known as differential
item functioning). However, good psychometric properties
have generally been proven for FACT-B English version
and several of its translations, including Chinese, Korean,
Malayalam and Thai versions. All versions underwent rigor-
ous linguistic validation to ensure content and conceptual
equivalence (30–32,34–36). Hence, racial variations in
FACT-B are not likely attributable to different item properties
across populations, but rather to factors that would affect the
underlying well-being, for instance differences in socio-
economic status or in seeking social support. Additionally,
the current analysis showed that lower ECOG performance
status (0 versus 1) was associated with better baseline physical
and functional well-being, while no relationship was found

between ECOG and emotional or social/family well-being.
Likewise, Brady et al. showed that correlations between
ECOG and FACT-B scores were the strongest in the physical
and functional domains. Interestingly, the current analysis
showed no correlation between well-being and baseline
disease-related factors, including tumor burden, number of
disease sites, sites of disease involvement and metastases loca-
tion. In accordance with these results, two separate studies
showed that quality of life was not affected by stage of cancer
and extent of disease (37,38).

In the longitudinal IRT model, the asymptotic exponential
progression function allowed patients’ well-being to improve,
worsen or stay stable during the course of therapy. Negative
correlations were estimated between the IIV term for baseline
and steady-state well-being, indicating that patients with
poorer well-being at baseline tend to progress toward better

Fig. 5 Schematic representation of
the item score probabilities and
expected score at steady-state for a
typical non-Asian patient with
baseline ECOG of 0, as predicted
by the final longitudinal item-
response theory model and
differentiated by treatment arm.
Circle surface areas are proportional
to the score probability. Cross
symbols represent expected scores,

calculated as ∑
4

k¼0
P Y ¼ kð Þ �k.

Scores for reverse items have been
reverse-scaled (i.e. higher score
indicates better outcome). For
items where no difference
between treatment arms was
identified, circles overlap and only
one circle can be seen. T-DM1:
ado-trastuzumab emtansine.
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well-being, and vice-versa. A covariate search was undertaken
to explain the substantial variability estimated on steady-state
well-being, both between patients and between subscales.
None of the baseline disease-related factors was found statis-
tically significant (p> 0.01). There was however a signal in the
data that a larger number of disease sites at baseline was as-
sociated with a more favorable well-being progression (p=
0.012). In addition, we investigated differences in steady-
state well-being between treatment arms. Functional well-
being typically stayed stable, whereas emotional well-being
improved to the same extent in both arms. Differences were
identified in steady-state physical well-being, with more favor-
able progression in the T-DM1 arm, which translated into
worse expected scores in the capecitabine-plus lapatinib
arm, as illustrated in Fig. 5 for a typical patient. In an explor-
atory analysis of EMILIA FACT-B data, Welslau et al. found
that T-DM1-treated patients were less bothered by side effects
of treatment than capecitabine-plus-lapatinib-treated patients
through week 24, while differences in other physical items
were not statistically or clinically significant (39). Finally, we
also found that social/family well-being typically worsened
less in patients in the capecitabine-plus-lapatinib arm com-
pared to those in the T-DM1 arm. Reasons for this finding
are unclear. Noticeably, social/family well-being progression
(estimated half-life of approximately 5.6 cycles) was typically
much slower than on other subscales; social/family well-being
steady-state estimates should be interpreted with caution as
steady-state might occur beyond the observed time-frame.

Potential limitations related to EMILIA study design
should be considered when interpreting the results. The dif-
ferences identified between T-DM1 and capecitabine-plus-
lapatinib arms should be interpreted with caution as PRO
reporting might have been affected by the open-label nature
of the study (40). However, due to practical and ethical rea-
sons open-label designs are very common in oncology, and to
date no evidence exists that such bias exists (41). Moreover,
differences in the dosing schedule and pharmacokinetic prop-
erties between T-DM1 and active control treatment may re-
sult in temporal differences in occurrence of adverse effects
and symptoms. PRO-time profiles may therefore be sensitive
to the timing of reporting (here on day 1 of every odd cycle,
before drug administration). In addition, some limitations of
the present exposure-response analysis should be noted. First,
the range of exposure (AUCcycle 1 and Cmin,cycle 1) was limited
due to the single dosing regimen of T-DM1 (3.6 mg/kg q3w),
which may limit the ability of the model to detect an exposure-
response relationship. Cycle 1 maximum concentration was
not included in this analysis since it was associated with less
variability than Cmin,cycle 1 (18) and was occurring 3 weeks
before FACT-B assessment. Second, even though cycle 1 ex-
posure may be considered to be at steady-state given T-DM1
elimination half-life of approximately four days (18), it does
not account for potential dose adjustments at later cycles, and

underestimation of longitudinal pharmacokinetic variability
may be possible. Finally, limitations of the stepwise approach,
where EBEs of well-being from the first step were used to build
the longitudinal well-being and IRT models, should be noted.
Similar to sequential PK-PD approaches, this approachmight
suffer from higher bias and imprecision compared to simulta-
neous modeling (42,43). In our analysis, data were rich and
eta-shrinkage in the first step was low for all latent well-being
variables (≤16%) which likely limit those risks.

CONCLUSION

The developed longitudinal IRT model adequately described
FACT-B questionnaire data in metastatic and locally advanced
breast cancer patients treated with T-DM1 or capecitabine-
plus-lapatinib. Through the use of four correlated latent well-
being variables, it acknowledges themulti-dimensional nature of
the questionnaire and allows a thorough description of the data,
not only at the subscale level but also at the item level. No
relationship was identified between T-DM1 exposure and any
of the latent variables, but differences between treatment arms
were observed in the physical and social/family well-being do-
mains. This modeling framework can complement summary
score-based approaches, and may be adapted to analyze data
from other PRO instruments commonly used in clinical trials or
routine clinical practice. The analysis of PRO data combined
with traditional efficacy and safety analyses offer all healthcare
stakeholders a patient-centric assessment of the impact of a dis-
ease and therapy and evidence regarding the overall patient
experience of a new drug.
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