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Inverse Relationship between Soluble RAGE and Risk
for Bronchopulmonary Dysplasia

To the Editor:

Bronchopulmonary dysplasia (BPD), the most common form of
chronic lung disease during childhood, leads to substantial
morbidity in premature infants (1). Inflammation is a major
antecedent risk factor for BPD, yet the molecular mechanisms that
regulate the inflammatory cascade in the preterm lung are not well

described (2). Further, biomarkers that accurately identify infants
at high risk for BPD are also not well defined.

RAGE (receptor for advanced glycation end products) is a
membrane-spanning receptor that mediates inflammatory
signaling in multiple organs. In the lung, RAGE is predominantly
expressed on alveolar epithelial cells, where it binds a variety of
ligands, including AGEs (advanced glycation end products),
resulting in activation of inflammatory signaling pathways (3).
Along with its full-length form, RAGE also exists in soluble forms
(sRAGE [soluble RAGE]) produced by alternate splicing
(esRAGE [endogenous sRAGE]) or by proteolytic cleavage of the
extracellular portion of RAGE (cleaved sRAGE). Soluble forms of
RAGE possess a ligand-binding domain but lack transmembrane
and cytoplasmic domains, which prevents them from activating
intracellular signaling (4). Thus, sRAGE functions as a “decoy”
to bind and sequester RAGE ligands, thereby attenuating
inflammation.

Reduced levels of sRAGE are found in chronic pulmonary
conditions such as chronic obstructive pulmonary disease (COPD)
and neutrophilic asthma (5). Expression of sRAGE in the
preterm lung and its relationship with BPD have not been well
characterized. Therefore, we performed a study in which we
quantified the levels of sRAGE in the lungs of intubated
preterm infants and examined the association between these
measurements and subsequent development of severe BPD. Some
of the results of these studies have been previously published as an
abstract (6).

Methods
Preterm infants born between the ages of 23 0/7 and 28 6/7 weeks
were prospectively enrolled in the PROP (Prematurity and
Respiratory Outcome Program) study at Vanderbilt University
Medical Center from September 2011 to December 2014 (7).
Infants who remained intubated at 1 week of age and had tracheal
aspirate (TA) samples collected at that time were eligible for
inclusion in this single-center study. Concentrations of esRAGE
and total sRAGE in TA samples were measured using
commercially available ELISA kits (B-Bridge International
[esRAGE] and R&D Systems [sRAGE]) and normalized to the
total protein content of each sample.

Results
Forty-nine eligible preterm infants had an archived week 1 TA
sample of sufficient volume. One infant with a congenital airway
anomaly and three infants with TA samples containing low
protein content (,0.1 mg/ml) were excluded. Of the remaining
45 infants, 15 were diagnosed with severe BPD, defined as the
need for mechanical ventilation or significant noninvasive
positive pressure support (.2 L/min Vapotherm [Vapotherm]
or continuous positive airway pressure with an FIO2

. 0.3) at 36
weeks postmenstrual age (PMA). Four infants who died before 36
weeks PMA were included in the severe-BPD group. Twenty-six
premature infants without severe BPD or death comprised the
control group. Table 1 displays the distribution of clinical variables
for infants in the two groups.

Levels of esRAGE and total sRAGE were lower in the TAs
of infants with severe BPD compared with controls (Figures 1A
and 1B), irrespective of whether the four infants who died before
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36 weeks PMA were included in the analysis. In both groups,
esRAGE accounted for the majority of measured sRAGE, and levels
of esRAGE and total sRAGE were highly correlated (r = 0.7,
P, 0.001). Levels of esRAGE and total sRAGE did not correlate

with gestational age (GA) (r =20.03, P = 0.83; and r = 0.09,
P = 0.57, respectively).

As GA is a known predictor of BPD/death, we estimated the
association of esRAGE or total sRAGE with BPD/death when
controlling for GA using separate logistic regression models. A
twofold increase in esRAGE or total sRAGE was associated with
decreased adjusted odds of severe BPD/death (odds ratio [OR], 0.61;
95% confidence interval [CI], 0.44–0.84; and OR, 0.60; 95% CI,
0.42–0.86, respectively). Likelihood ratio tests were used to
determine whether a model using GA and esRAGE (or total
sRAGE) was better than GA alone for predicting severe BPD/death.
We found that the area under the curve (AUC) was significantly
greater for the GA1 esRAGE model than for the GA-alone
model (0.81 vs. 0.73, P = 0.03). The AUC for GA1 total sRAGE
was also significantly higher than that for the model with GA alone
(0.83 vs. 0.73, P = 0.01; Figure 1C). The predicted probability of
severe BPD/death based on esRAGE levels and GA is shown in
Figure 1D.

To determine whether the expression of esRAGE and total
sRAGE in TA samples was dependent on the severity of lung disease,
we calculated the respiratory severity score (RSS =mean airway

Table 1. Demographics and Clinical Characteristics

Control
(n = 26)

Severe
Bronchopulmonary
Dysplasia/Death

(n = 19) P Value

Gestational age* 26.1 (61.2) 25.2 (61) 0.01
Birth weight* 791 (6189) 677 (6146) 0.02
Race, white 20 (77%) 11 (57%) 0.21
Sex, male 13 (50%) 8 (42%) 0.76
Antenatal steroids 21 (81%) 17 (89%) 0.68
Days on oxygen† 50 (41–99) 120 (86–155) 0.01
Days on ventilation† 26 (11–35) 43 (20–75) 0.02
Length of stay† 98 (80–121) 126 (96–176) 0.05

*Mean (6SD).
†Median (25–75th percentile).
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Figure 1. (A and B) Measured levels of esRAGE (endogenous sRAGE [soluble receptor for advanced glycation end products]) and total sRAGE (normalized
to total protein) in tracheal aspirates (TAs) from premature infants at approximately 1 week of age. Lines indicate the median with upper and lower quartiles.
Absolute values of esRAGE and total sRAGE were significantly lower in TAs from infants who developed bronchopulmonary dysplasia (BPD) or died compared
with control infants (not shown). (C) Receiver-operating characteristic curves of logistic regression models using gestational age (GA), GA1 esRAGE, and GA1
total sRAGE to predict the outcome of severe BPD/death. (D) Predicted probability of severe BPD/death by log esRAGE and GA. Each colored curve represents
the results of logistic regression modeling that depicts the probability of the outcome of severe BPD/death as a continuum at the specified GA. *P, 0.05 versus
control. AUC=area under the receiver operating characteristic curve; Gest = gestational.
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pressure3 FIO2
) for each infant on the day of sample collection

and compared it with the measured sRAGE levels. We found no
correlation between the RSS and TA esRAGE or total sRAGE levels
(esRAGE and RSS, r =20.1, P = 0.49; total sRAGE and RSS, r=20.2,
P = 0.11).

Discussion
Our findings indicate that esRAGE and total sRAGE levels
are reduced in the airways of preterm infants at risk for developing
BPD. Further, lower esRAGE (and total sRAGE) levels were
an independent predictor for severe BPD in our study. These
findings are consistent with accumulating data showing that the
RAGE/sRAGE axis is important in the pathogenesis of pulmonary
diseases. Total sRAGE is reduced in the lungs of individuals with
COPD and idiopathic pulmonary fibrosis, and membrane-bound
RAGE and its ligands AGE and HMGB1 are increased in the lungs
of patients with COPD (5, 8, 9). Similarly, prior studies have
reported that HMGB1 is increased in the TAs of preterm infants
at risk for BPD (10), and that plasma total sRAGE levels may
negatively correlate with FIO2

need in preterm infants in the first
week of life (11). Because soluble forms of RAGE act as decoy
receptors, these studies suggest a common theme in which
increased RAGE activation plays a role in both neonatal and adult
lung diseases.

We found that esRAGE accounts for the majority of total
sRAGE in preterm infant TA samples (both control and BPD). This
is in contrast to adult conditions such as acute lung injury, where
cleaved sRAGE appears to be the predominant soluble form (12).
In this setting, cleaved sRAGE, likely produced by activity of proteases,
may represent an acute inflammatory response to tissue injury. In
comparison, in chronic lung diseases such as BPD, concentrations of
total sRAGE are reduced because of downregulation of the esRAGE
isoform. Thus, expression of individual sRAGE forms may vary
substantially depending on the specific disease state.

Because TA samples could only be collected from intubated
infants, only patients who were on ventilator support at the time
of sample collection were included in this study, potentially
limiting the applicability of our findings. In addition, although we
accounted for GA in logistic regression models, our study had
limited statistical power to examine other clinical variables that
could affect the risk for BPD, including the cumulative oxygen dose
and duration of mechanical ventilation. In the future, larger studies
will be needed to specifically address whether the strength of
association between TA esRAGE and BPD varies by time of
TA collection or correlates with additional pertinent clinical
variables.

In summary, we found that preterm infants with severe BPD
had reduced airway levels of esRAGE (and total sRAGE) in the first
week of life. TA esRAGE and total sRAGEmay be useful biomarkers
for early identification of infants at risk for severe BPD. Further
studies are required to determine how the expression of different
forms of sRAGE changes over time in the preterm lung. In addition,
a promising area of inquiry is the possibility that sRAGE levels can
be pharmacologically augmented to reduce lung inflammation and
prevent BPD. n
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The Plausibility of “Bronchiolotrauma”

To the Editor:

I fully agree with Chen and colleagues that airway closure has
been underestimated and misinterpreted in patients with acute
respiratory distress syndrome (ARDS) (1). However, I kindly
disagree that the high prevalence of substantial airway closure the
authors elegantly evidenced is unexpected.

Mechanical ventilation causes airway fluid structure
instabilities that can lead to cyclic opening and closing of small
airways. The airway epithelium is particularly susceptible to
mechanical stresses inflicted by these mechanisms, and cell
damage seems to be directly related to the pressure gradient,
as shown in a model of airway reopening. Airway dysfunction
has been increasingly recognized as an important contributor
to pulmonary impairment in patients with ARDS. Small
airway injuries are characterized by bronchiolar epithelial
necrosis and sloughing, as well as rupture of alveolar–bronchiolar
attachments. The loss of mechanical alveolar/airway
interdependence, airway epithelial injury, interstitial edema, and
alveolar collapse may all contribute to distal airway instability. It
has been reported recently that in patients who died with ARDS,
small airway changes were characterized by wall thickening with
inflammation, extracellular matrix remodeling, and epithelial
denudation. Importantly, the degree of airway epithelial
denudation in these patients was associated with disease
severity (2).

We studied the distribution of early pulmonary inflammation
in a porcine ventilator-induced lung injury model by measuring
regional pulmonary uptake of [18F]fluoro-2-deoxy-D-glucose
with positron emission tomography combined with computed
tomography. Ventilated, normally, and poorly aerated units of the
lung were the primary targets of inflammation (3). Low tidal
volume strategy resulted in the concentration of inflammatory
activity in the poorly aerated lung regions (4). It is noteworthy that
a significant tidal/cyclical change was found for the percentage
mass of poorly aerated tissue, which was one of the regions that
exhibited the highest inflammatory activity. This suggests high
interfacial stresses because of cyclic small airways collapse and
reopening as an important tidal injurious mechanism within
poorly aerated units. Airway narrowing can occur in poorly
aerated regions, especially at low-length scales with a significant
component revealed at subresolution-length (,12 mm) scales.
Components of specific ventilation heterogeneity at length scales
of less than 12, 12–36, and 36–60 mm are also highest in poorly
aerated regions. The size and distribution of poorly aerated

compartments in patients with ARDS were correlated to an uneven
distribution of ventilation because of the presence of small airway
closure.

Furthermore, these hazardous phenomena may also occur
during spontaneous breathing. In many patients with hypoxemic
respiratory failure, airway closure may occur during expiration.
Those who in addition have a high respiratory drive when
spontaneously breathing can develop a strong negative pleural
pressure, and their terminal airways may suffer injurious tidal
stretch and reopening. Absolute values of esophageal, pleural,
alveolar, and intrathoracic pressure may be progressively
lower during strenuous breathing efforts, leading to values
below positive end-expiratory pressure for the entire respiratory
cycle. Spontaneous breathing efforts associated with high
transpulmonary pressure cause cyclic collapse and tidal
recruitment (5). Pendelluft causes tidal recruitment of
dependent regions by concomitant deflating nondependent
regions (5). The consequences of these negative pressure swings
can be far-reaching and thoroughgoing. A regionally amplified
transpulmonary pressure resulting from strong inspiratory
efforts is usually undetected. We emphasize the clinical hazard
related to such amplification effect that is “hidden,” as the
ventilators only measure airway-opening pressures. Then, tidal
opening and closing of distal bronchioles (“bronchiolotrauma,”
as a subtype of the term atelectrauma) might also play a role as
a triggering factor in a potentially hazardous chain of events
during patient self-inflicted lung injury (6).

During controlled mechanical and spontaneous ventilation,
there may be an interplay between regional and undetected airway
closure, surfactant dysfunction, and cyclic small airways collapse
and reopening, which potentially leads to or amplifies ventilation-
induced lung injury. n
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