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ABSTRACT

Much of the within species genetic variation is in
the form of single nucleotide polymorphisms (SNPs),
typically detected by whole genome sequencing
(WGS) or microarray-based technologies. However,
WGS produces mostly uninformative reads that per-
fectly match the reference, while microarrays require
genome-specific reagents. We have developed Diff-
seq, a sequencing-based mismatch detection assay
for SNP discovery without the requirement for spe-
cialized nucleic-acid reagents. Diff-seq leverages the
Surveyor endonuclease to cleave mismatched DNA
molecules that are generated after cross-annealing
of a complex pool of DNA fragments. Sequencing li-
braries enriched for Surveyor-cleaved molecules re-
sult in increased coverage at the variant sites. Diff-
seq detected all mismatches present in an initial test
substrate, with specific enrichment dependent on the
identity and context of the variation. Application to
viral sequences resulted in increased observation of
variant alleles in a biologically relevant context. Diff-
Seq has the potential to increase the sensitivity and
efficiency of high-throughput sequencing in the de-
tection of variation.

INTRODUCTION

The rapid advances in low-cost, high-throughput sequenc-
ing have enabled numerous resequencing applications, rang-
ing from clinical oncology (1) to evolutionary dynamics
(2,3). For many such applications, the goal of resequencing
is the identification of sequence variants in a population of
different genomes. This polymorphism detection problem

often requires brute-force, high-depth shotgun sequencing
of genomic DNA isolated from a population of cells, and
painstaking bioinformatics analyses to confidently identify
real genetic polymorphisms from a background of sequenc-
ing errors. For rare or infrequent polymorphisms, this ap-
proach often results in an overwhelming excess of reads that
exactly match the reference genome, whereas reads contain-
ing true variants are only a tiny fraction of the total (4–
6). Even for small genomes, such as viral genomes, several
hundred-fold coverage is required for confident detection of
variants present at ∼1% frequency (7,8), while techniques
that enable variant calling well below the error rate of the
platform require extremely high coverage data (9) or engi-
neered redundancies in sequencing (often involving molec-
ular barcodes).

If the specific polymorphism to be detected is known a
priori, a variety of powerful and elegant approaches de-
signed to detect specific locations of sequence variation may
be employed. For example, rolling circle amplification (10),
molecular inversion probes (11) and mismatch ligation with
bioluminescence detection (12), all based on DNA ligase
and often on nuclease activities, can be used to detect the
presence of specific alleles. Similarly, Taqman, molecular
beacons, and related assays can also be used to detect spe-
cific, targeted alleles (13–17). However, all of these meth-
ods require a priori knowledge of the reference sequence of
the genome and/or alleles under interrogation, and often
involve the construction of sophisticated probes to detect
individual alleles.

By contrast, mismatch detection assays rely on the base-
pairing quality of DNA, and subsequent enzymatic detec-
tion of mispaired bases (18–21), and are thus agnostic to
the exact identity of the underlying mutation. Mismatch
endonucleases act on the mismatched sites of heterohy-
brid DNA, generated by denaturation and reannealing of
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a population of DNA molecules, to produce fragments re-
solvable by electrophoresis, enabling detection of variation
across whole genes, or even across small genomes (22–24).
Genomic mismatch scanning and other platforms, such as
the tiling array and the mismatch endonuclease array-based
methodology (MENA) use DNA hybridization and mis-
match endonucleases to uncover single nucleotide polymor-
phisms (SNPs) at genomic scales (25–29).

We aimed to couple mismatch detection with high-
throughput sequencing to allow for the detection of poly-
morphisms across a DNA sample. This de novo polymor-
phism detection method allows for the identification of vari-
ation that could occur anywhere in a genome, and further-
more specifically targets sequencing capacity to the variant
positions and their genomic context. Our method, which
we refer to as differential sequencing (Diff-seq), aims to in-
crease the sensitivity of high throughput sequencing for the
detection of rare variation, and can be directly applied to
small genomes or amplicons.

The enzymatic foundation of Diff-seq is the Surveyor en-
donuclease, which cuts heterohybrid DNA molecules at the
sites of mispaired bases. By denaturing and reannealing a
complex pool of DNA fragments, we generate a pool of
heterohybrid double stranded DNA (dsDNA) molecules,
which contain mismatches at positions of genetic variation.
These heterohybrids are then digested with Surveyor en-
donuclease, and the generated fragments are targeted for in-
clusion in a high-throughput sequencing library, resulting in
substantial enrichment for DNA fragments with polymor-
phic sites. Diff-seq thus enables the identification of the vari-
ant position within the sequencing read, and determination
of the variant base.

We first applied Diff-seq to a simple 1 kb test sub-
strate with 0–4 mismatches to demonstrate its efficacy,
then further demonstrated its performance on simple but
mutation-dense populations of Human Immunodeficiency
Virus (HIV) molecules. Diff-seq enabled the detection of
polymorphic sites between two clones when the clones were
mixed in a variety of stoichiometries. We finally applied
Diff-seq to DNA molecules derived from HIV population
samples (8), and showed that Diff-seq can increase the ob-
servation frequency of variant positions in biologically rel-
evant samples.

MATERIALS AND METHODS

Preparation and amplification of 1 kb model substrate

pET17b (Novagen, Madison, WI, USA) derivatives were
generated by the introduction of single point mutations via
QuickChange PCR (primers in Supplementary Table S1)
and cloning into E. coli. 1 kb variants were amplified in 50
�l reactions from 4 ng of either pET17b or derivatives, us-
ing PrimeSTAR (TaKaRa, Mountain View, CA, USA) and
primers VK41 and VK42 (Supplementary Table S1), each
at a final concentration of 0.4 �M, in the following condi-
tions: 98◦C for 10′, 35 cycles of 98◦C for 10”, 55◦C for 5”,
72◦C for 1′.

Preparation of DNA from viral clones and populations

Viral clones, whose sequences included the reverse tran-
scriptase, integrase and protease regions of the pol gene,
were a generous gift of Mark Winters and Mark Holod-
niy. The clones were amplified in 50 �l reactions from 4
ng of each clone with PrimeSTAR and primers DAo43 and
DAo44 (Supplementary Table S1), each at a final concen-
tration of 0.4 �M, in the following conditions: 98◦C for 10′,
30 cycles of 98◦C for 10”, 59.5◦C for 5”, 72◦C for 2′.

RNA preparation, RT-PCR and amplification of the
population viral genomes have been described previously
(8), with the exception that a single ∼1 kb amplicon, in-
cluding the reverse transcriptase and protease-encoding se-
quences, was generated in a single PCR. The consensus se-
quence of the population with PID 5248 (8) was synthe-
sized by Life Technologies (Carlsbad CA) and had the most
frequently appearing nucleotide at every position, as deter-
mined by Sanger sequencing.

Diff-seq

The overall protocol, whose steps are described below, is
summarized in Figure 1.

All purification steps were carried out using the MinE-
lute Reaction Cleanup Kit (QIAGEN, Redwood City, CA,
USA) and the products were eluted in 20 �l EB buffer, un-
less otherwise stated. Oligonucleotides were synthesized by
IDT. Double stranded oligonucleotides used in the ligation
reactions were generated by mixing complementary single
stranded oligonucleotides isostoichiometrically in 50 mM
NaCl and 10 mM Tris pH 7.5, boiling at 95◦C for 5′ and
incubating at room temperature for 30′.

Reannealing reaction. PCR products were purified with
QIAquick PCR Purification Kit (QIAGEN, Redwood City,
CA, USA), concentrated to 150–200 ng/�l and the dsDNA
concentrations were estimated with a Qubit fluorometer
using the Quant-iT dsDNA HS kit (Invitrogen, Waltham,
MA, USA). A total of 3 �g of DNA was denatured at 95◦C
for 10′ and reannealed by decreasing the temperature by 5◦C
every 10′ down to 20◦C, on a thermocycler, in 10 mM Tris
pH 7.5 and 50 mM NaCl and at a DNA concentration of
125–150 ng/�l.

S1 nuclease digestion. The reannealed products were di-
gested with 50 units of S1 Nuclease (Thermo Fisher Scien-
tific, Santa Clara, CA, USA) per �g of DNA in 1X S1 buffer
at 40–60 ng/�l DNA concentration for 1 h 30′ at 25◦C. The
digested products were purified with the QIAquick PCR pu-
rification kit and eluted in 50 �l EB buffer.

Blocking 3′ ends with 2’,3’-dideoxycytidine-5’-
triphosphate (ddCTP) and Terminal Transferase (TdT).
The 3′ ends were blocked with 3–5 nmol ddCTP
(Affymetrix, Santa Clara, CA, USA) and 20 units
TdT (NEB, Ipswich, MA, USA) in 64 �l 1× TdT buffer
supplemented with 0.25 mM CoCl2, for 1 h at 37◦C, and
the products were purified.

Mismatch digestion. 800–1000 ng DNA, which is approx-
imately half the amount that was recovered from the pre-



PAGE 3 OF 11 Nucleic Acids Research, 2018, Vol. 46, No. 7 e42

Figure 1. Differential sequencing method. Hybrid DNA molecules are generated by thermal melting and reannealing. Mismatched molecules become
substrate for Surveyor and are tagged with a biotinylated nucleotide for subsequent selection. Sequencing adaptors are introduced in two ligation steps. A
type IIS recognition site, engineered in the first ligating oligo, is used to ensure a homogeneously sized library. After the second ligation step the library is
amplified, quantified with qPCR and sequenced.

vious reaction, were digested with 2 �l Surveyor endonu-
clease, in the presence of 2 �l Enhancer (Mutation De-
tection Kit, IDT, Redwood City, CA, USA), and 20 units
Ampligase (Epicentre, Madison, WI, USA) in 1X Ampli-
gase buffer and DNA concentration of 20–25 ng/�l for 50
min at 42◦C, and the products were purified.

3′ end extension with biotin-14-dCTPnucleotides (B-
dCTP) and TdT. The newly generated 3′ ends were
extended with 80–140 pmol B-14-dCTP (Invitrogen,
Waltham, MA, USA) and 20 units TdT in 27 �l 1× TdT
buffer supplemented with 0.25 mM CoCl2 for 1 h at 37◦C,
and the products were purified.

Ligation. Each of the oligos DAo83, DAo84 and DAo85
was reannealed to oligo DAo97 and the resulting double
stranded oligos were mixed isostoichiometrically to yield
the ligating oligo pool (6.7 �M per species). The purified
DNA products were ligated to 1.5 �l ligating oligo pool in
the presence of 2000 units T4 ligase (NEB, Ipswich, MA,
USA) in 33 �l 1× T4 ligase buffer and 10% polyethylene
glycol (PEG) 4000 for a minimum of 5 h at 16◦C, and the
products were purified.

Type IIS restriction endonuclease digestion. The DNA was
digested with 50 units AcuI endonuclease (NEB, Ipswich
MA) in 25 �l 1× CutSmart buffer supplemented with 65
�M S-adenosylmethionine at 37◦C for a minimum of 4 h.
AcuI recognition sites were introduced during the previ-
ous step and digestion resulted in a homogeneously-sized
library.

Biotinylated fragments pulldown with streptavidin magnetic
beads. 25 �l M270 beads (Invitrogen, Waltham, MA,
USA), were washed twice in Bind and Wash buffer (B&W,

5 mM Tris pH 7.5, 1 M NaCl, 0.5 mM EDTA) and re-
suspended in 25 �l 2× B&W. The beads were then added
to the AcuI reaction and the slurry was incubated for 1
h 30′ in a roller drum at room temperature. The beads were
washed once in 1× B&W + 0.1% Tween 20, three times
in 1× B&W, once in 1× saline-sodium citrate (SSC) buffer
(Sigma-Aldrich, St Louis, MO, USA) and once in water.

Ligation. The washed beads were resuspended in 10 �l lig-
ation reaction (2000 units T4 ligase (NEB, Ipswich, MA,
USA), ∼50 pmol ds oligo DAo98/DAo99 in 1× ligation
buffer and 10% PEG 4000). The reactions were incubated at
16◦C for a minimum of 5 h on a rocker. The beads were then
washed once in 1× B&W + 0.1% Tween 20, three times in
1× B&W, once in 1× SSC buffer (Sigma-Aldrich, St Louis,
MO, USA) and resuspended in 20 �l water.

Amplification and library sequencing. 5 �l of the bead sus-
pension was used in an amplification reaction to introduce
Nextera Illumina sequencing adaptors and read indices to
the biotinylated DNA strand for multiplexed sequencing
(Supplementary Table S1). The fragments were amplified
for 6 cycles with PrimeSTAR in a 50 �l reaction, using the
following PCR conditions: 98◦C for 10′, 6 cycles of 98◦C for
10”, 66◦C for 5”, 72◦C for 10”. The amplification product
was purified and quantified in a One Step qPCR instrument
(Thermo Fisher Scientific, Santa Clara, CA, USA) against
PhiX Control v3 (Illumina, Santa Clara, CA, USA), with
Illumina flow cell adaptor sequences (Supplementary Table
S1) to determine the number of amplification cycles avail-
able prior to PCR saturation. The cycling conditions were
98◦C for 10′, 30 cycles of 98◦C for 10”, 63◦C for 5”, 72◦C
for 10”. A fraction of the rest of the library was re-amplified
using conditions identical to the qPCR conditions for an-
other 10–12 cycles, then purified, quantified once more by
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qPCR against PhiX and paired-end sequenced on a MiSeq
instrument for 150 cycles.

Processing of sequencing reads

Processing of sequencing reads prior to downstream analy-
sis is depicted in Supplementary Figure S1. Briefly, paired-
end reads were merged using FLASH version 1.2.11 (30).
The merged reads were then deduplicated and adaptors and
auxiliary sequences (introduced by the first ligation reac-
tion, including the AcuI restriction site and the UMIs) were
trimmed using cutadapt version 1.9.1 (31). Reads that were
less than eight nucleotides long, and reads that did not start
with a G were excluded from further analysis. The 5′ G was
trimmed from the remaining reads, which were then aligned
to the reference sequence using bowtie2 version 2.2.6 (32).

Nextera libraries preparation

Nextera libraries were prepared using a modified Illu-
mina Nextera protocol as described (33) and paired-end se-
quenced on a MiSeq for 150 cycles. The data were analyzed
and processed using a custom python script in conjunction
with other freely available software. Briefly, the sequenc-
ing reads were trimmed using cutadapt version 1.9.1 (31),
then quality- and length-filtered. The filtered reads were
then aligned to the reference sequence with bwa version
0.7.15 (34), and the aligned reads were sorted and indexed
using Picard version 2.7.1 (http://broadinstitute.github.io/
picard). SNPs were called using the GATK software (35).

The values used in Figure 4 and Supplementary Figure S6
represent averages from 2 technical replicates for the Nex-
tera data and for the Diff-seq data for dilution 1:1. The val-
ues representing the rest of the dilutions for Diff-seq data
were each derived from a single experiment.

RESULTS

Method description

Diff-seq generates a sequencing library that is enriched for
loci that are polymorphic in the input DNA (Figure 1, Sup-
plementary Figure S1). To achieve this enrichment, Diff-seq
harnesses the mismatch cleavage activity of the CELII en-
donuclease (commercially available as Surveyor Nuclease)
(23). First, a population of DNA molecules is thermally
denatured and then reannealed by gradual return to 20◦C,
to create mismatch-containing heterohybrid molecules. S1
nuclease is used to eliminate poorly reannealed molecules
and excess single-stranded DNA. Free 3′ ends are extended
with ddCTP using TdT, which blocks them from participat-
ing in subsequent enzymatic steps. The reannealed DNA is
then digested using Surveyor, which specifically cuts both
strands 3′ of a mismatch position (23,24), resulting in ds-
DNA molecules with a reactive 3′ overhang at one end that
should correspond to the mismatched base(s). Surveyor di-
gestion is carried out in the presence of Ampligase to reduce
non-specific Surveyor cleavage (36). The newly-generated
3′ ends are then extended with B-dCTP using TdT. These
extended 3′ ends are then used as substrates for a ligation
reaction that introduces: (i) the primer sequence for the
forward Illumina sequencing read (along with some buffer

sequence after the B-dCTP extension), (ii) unique molec-
ular identifiers (UMIs) between the primer sequence and
the buffer sequence and (iii) an AcuI (type IIS endonucle-
ase) recognition site, oriented such that the cut site will be
within the captured fragment. The ligation reaction is de-
signed to capture fragments that had incorporated up to
3 B-dCTP nucleotides. AcuI restriction digestion then gen-
erates a homogeneously-sized library, eliminating potential
PCR and sequencing size biases. After digestion, biotiny-
lated fragments are captured using streptavidin magnetic
beads. Then, while the library is still attached to the beads,
a second ligation reaction introduces sequence for the re-
verse Illumina sequencing read. Finally, sequencing adap-
tors and library-specific indices are introduced via ampli-
fication directly from the bead-attached material. A small
aliquot of this first round of amplification is used to mon-
itor PCR saturation via qPCR with SybrGreen against the
Illumina PhiX library, and determine the number of addi-
tional cycles remaining prior to saturation. After the second
amplification, the final libraries are quantified by qPCR and
then sequenced on an Illumina MiSeq.

The assay generates sequencing reads that align at and
around variant positions (Supplementary Figures S2A and
B). Supplementary Figure S2B shows the total coverage fre-
quencies for a single mismatch case, and the fully-matched
control. From the library structure (see Figure 1 and Sup-
plementary Figure S1), we expected that the variant posi-
tion should lie at the beginning of each processed, unaligned
read, so we focused our efforts on calling variants on specific
parts of the aligned read, rather than the whole read. We
therefore converted the total coverage data to ‘Diff-seq cov-
erage’, which we used for subsequent analyses. The first lig-
ation step is designed to capture molecules extended with up
to three biotinylated CTPs. However, even after G-trimming
of the unaligned reads (see Materials and Methods), there
is still uncertainty as to where within the next two or three
bases the variant position lies when the reads start with G
or GG, respectively, as the particular Gs may have been part
of the extension, or may represent a variant base. Thus, we
retained up to three consecutive bases (depending on their
identity), located at the beginning of forward-aligned or at
the end of reverse-aligned reads to generate the Diff-seq
coverage track (Supplementary Figure S2C). Depending on
the length of the extension, the context of the mismatch, as
well as the identity of the variation itself, signal on neigh-
boring positions can be comparable to the signal in the vari-
ant position, as shown in the next section.

The efficiency of the Diff-seq protocol, calculated as the
number of unique molecules that mapped to the reference
genome, divided by the calculated number of molecules
present at the beginning of the experiment, was ∼0.00065%
using 3 �g of starting material (Supplementary Table S2).
We assumed that only half of the molecules made it into the
library preparation (only the heterohybrids), and that each
of these molecules could result in exactly two sequencing
reads (each one capturing the mismatch site from different
orientations). This second assumption holds true only for
molecules with a single polymorphic site.

http://broadinstitute.github.io/picard
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Application of Diff-seq to a simple genome

To develop and test Diff-seq, we applied it to a known se-
quence with defined mismatches. This test substrate was a
985 bp sequence originating from the pET17b vector and
derivatives containing single base-pair substitutions, which
were introduced singly in three different positions. By assay-
ing this simple substrate, we tested the extent to which the
method can detect different types of variation, and exam-
ined biases introduced by the context of the variation (Fig-
ure 2 and Supplementary Figure S3). All Diff-seq libraries
were compared to a library generated from DNA fragments
that did not contain mismatches (Figure 2A, Supplemen-
tary Figure S3F). Variants covering all possible substitu-
tions at a single position were used to test the extent to
which Diff-seq could detect different pairs of variants (Fig-
ure 2B and Supplementary Figures S3A–C). Identical mis-
match types were also introduced into 2 different positions
to determine if the local sequence context affects Diff-seq
signal (Supplementary Figures S3D and E). Finally, a more
complex sample comprising a mixture of all possible mis-
match types was also assayed to test the capacity for their
simultaneous detection (Figure 2C). The libraries were pre-
pared, sequenced and processed as described above and the
resulting numbers of reads for each library at each step are
summarized in Supplementary Table S2.

Variation introduced at position 477 of the pET17b frag-
ment was used to examine identity-based biases; our data
show that G/C variation generally gives more signal than
other variant combinations (Figure 2B and Supplementary
Figures S3A–C), consistent with a Surveyor nuclease pref-
erence for G:G/C:C mismatched pairs (23,24).

Earlier work has suggested context-dependent Surveyor
digestion activity of mismatched DNA (24). To examine
our method for possible biases due to sequence context sur-
rounding the variant position, we assayed samples that con-
tained a single type of variation within two different con-
texts (positions 328 and 477 in Supplementary Figures S3D
and E) on the same substrate. In order to ensure that each
DNA molecule had up to one mismatch only, the samples
were generated by isostoichiometrically mixing the relevant
populations post-reannealing. Surprisingly, we found that
variation at position 328 resulted in Diff-seq coverage pre-
dominantly at position 327, regardless of the exact identity
of the contributing bases at position 328, suggesting that
Diff-seq signal is context-dependent. We attribute this to
possible context-dependent hotspots for detection by the
method and/or favorable DNA reannealing alternatives.

Finally, we assayed all four variant types (alleles G and
C at position 477, alleles A and T also at position 477, alle-
les C and A at position 478 and alleles G and A at position
328) by isostoichiometrically mixing appropriate combina-
tions of reannealed molecules. We observed contributions
from each relevant base from all variant pairs, suggesting
that Diff-seq can identify multiple variant types in a com-
plex mixture of molecules (Figure 2C).

Diff-seq application to viral sequences

We next applied Diff-seq to viral genome-derived se-
quences, in order to determine our ability to identify mul-
tiple variants within a single DNA molecule, at a range of

abundances (Figure 3, Supplementary Table S1). First, we
applied Diff-seq to two HIV clones of size 2.7 kb, that orig-
inated from a single individual before and after treatment
with antivirals (Figure 3A–D). The two clones differ at 59
positions, all of which are SNPs (with 11 located within 2
nucleotides of other SNPs). One clone was mixed with the
other at varying relative abundances: 50%, 10%, 5%, 1%,
0.5%, 0.1%, 0.05%, 0.01% and 0%. We observed substan-
tial signal when the minority clone is present at as low as 5%
frequency, with substantial signal degradation upon further
dilution, though some variants still give Diff-seq coverage at
even lower frequencies (Figure 3A).

For the 5% minority variant frequency dataset, we de-
rived mismatch- and allele-specific contributions to the to-
tal and strand-specific signals for each of the variant po-
sitions (Supplementary Figure S4A). The mismatch bias,
shown in the first column, shows how much detection of
the one mismatched pair is favored over the other. The
forward and reverse allele biases, shown in the next two
columns, represent strand-specific biases for the alternative
allele. From these we derived the average and maximum
allele bias as figures of merit for variation detection. We
also calculated the total allele bias, generated from the total
reads aligning to the alternative allele on either strand com-
pared to all reads aligning to reference. The sites have been
ordered first by the identity of contributing alleles and then
by the trinucleotide context. These data suggest that the de-
tection of one mismatch pair or allele is often favored over
the other, and this preference is consistent across positions
carrying the same variation. The last column shows the log2
Diff-seq coverage frequencies. This coverage is largely in-
dependent of the variation and its context. In particular,
five out of the eight least covered SNP positions are located
within a very mutation-dense region of the substrate (posi-
tions 183, 184, 187, 188 and 190).

We also estimated the contribution of the type of vari-
ation to the detection of each nucleotide, by calculating
the average positional frequencies (across any trinucleotide
context) of each relevant base for the 59 SNP positions
of the 50% dataset, binned by type (Supplementary Fig-
ure S4B). These data suggest that the contribution of each
nucleotide to the total signal is independent of the varia-
tion type. In particular, a G nucleotide gives the majority
of the signal regardless of the identity of the other allele,
whereas, a mismatched C will give the least amount of sig-
nal, also regardless of the identity of the other allele (com-
pare C reverse and G forward plots to C forward and G
reverse plots).

To explore possible variant calling algorithms for our
data, we plotted, for the 5% minority variant frequency
dataset, the log2 ratio of Diff-seq coverage frequency for ex-
periment vs. control (y-axis) against the log2 Diff-seq cov-
erage frequencies in the experimental sample (x-axis) either
for all alleles (Figure 3B) or just the minor alleles (Figure
3C). Most variant sites, along with variant neighboring sites
are more highly covered on the 5% frequency dataset when
all alleles are considered (Figure 3B). However, when only
the minor allele is considered, there is a clear separation of
the variant and non-variant sites (Figure 3C).

Based on these observations, we constructed potential
SNP calling algorithms. We calculated z-scores for each po-
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Figure 2. Differential sequencing application to a model substrate. Differential sequencing libraries derived from a 1 kb sequence were prepared as described
in Figure 1 and sequenced. The Diff-seq coverage frequency for each position of the reference strand is plotted against the position, and color-coded
according to the nucleotide base identity. Positive and negative values represent values for the forward and reverse strand, respectively. (A) Sample with no
variation. (B) Sample with G:G|C:C variation at position 477. (C) Sample with multiple variant positions, assembled from four individually reannealed
samples mixed isostoichiometrically. The arrow points to the variant position 328. For B and C, zoom-in the x-axis plots at the variant positions is shown.
The context of the variation is annotated in gray in each graph with the mismatched bases in black and the strands that represent forward and reverse
orientations are annotated with bold italicized and regular font, respectively.

sition and strand, for the (i) total, (ii) minor allele, (iii) ma-
jor allele depending on the nucleotide identity, (iv) minor
allele depending on the nucleotide identity, (v) major allele
depending on the trinucleotide context and (vi) minor allele
depending on the trinucleotide context Diff-seq coverage.
We used these per position z-scores (sum of z-scores of the
forward and reverse strands) to generate ROC curves for
the 5% frequency dataset (Figure 3D). The ranked z-scores
for each of the variables used are shown in Supplementary
Figure S5. We find that models that consider only the mi-
nor allele outperform those that consider the total coverage
or the major allele coverage. Surprisingly, inclusion of allele

identity and trinucleotide context (cases 4 and 6) did not
increase the predictive power of the model.

To further test our SNP calling approach we applied Diff-
seq to two samples, comprising populations of amplified
HIV pol gene isolated from HIV patient plasma (8) (Fig-
ure 3E and F, see Supplementary Table S2 for sequencing
library metrics). We also sequenced these populations with
standard Nextera library preparation to identify variants in
these samples. We employed the population consensus se-
quence for the sample with PID 5248 in Varghese et al. (8),
both as a control and as ‘reference genome’ to dilute and
reanneal against the population of molecules to be assayed
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Figure 3. Differential sequencing application to viral genomes. (A) Differential sequencing libraries derived from a mixture of 2 viral clones were prepared
as described in Figure 1 and sequenced on an Illumina MiSeq. The Diff-seq coverage frequencies, aggregated across both strands, are shown for a series of
experiments where the contribution of the rare variant ranges from 50% to 0. Panels B–D focus on the 5% rare clone frequency dataset. (B and C) The log2
differential Diff-seq coverage between the 5% rare variant frequency and the control datasets were plotted against the log2 Diff-seq coverage per position
for all positions of the template, considering (B) all and (C) the minor alleles. (D) ROC curves for the polymorphic sites called using different variables as
predictors. The variables used are the sums of the per strand Diff-seq coverage enrichment scores per position (see text for details). (E and F) ROC curves
for the sums of the per strand minor allele Diff-seq coverage enrichment scores per position, for PCR amplified viral population samples after Diff-seq
application. (E) The sample corresponds to PID 5248 (8). The consensus sequence served as control and as a high-frequency variant, within which the
population was diluted to 20%. (F) The sample corresponds to PID 30269 (8).

(see Materials and Methods). The second population corre-
sponds to the sample with PID 30269 in Varghese et al. (8).
Our SNP calling method performed well for both popula-
tion samples. It also performed comparably when the pop-
ulation sample with PID 5248 was diluted down to 20% fre-
quency in the consensus sequence (Figure 3E).

Comparison of Diff-seq to standard Nextera library prepara-
tion for variant discovery

To compare Diff-seq to standard, Nextera-based sequenc-
ing for variant discovery, we constructed Nextera libraries

out of several dilutions of our clonal substrates (Diff-seq
data shown in Figure 3A–D) and sequenced them on a
MiSeq. We took into account the coverage as represented by
the whole read for the Nextera data, and the Diff-seq cover-
age for the Diff-seq data (Supplementary Figure S2). Figure
4A–C shows the log2 frequencies of the non-reference alle-
les for all positions that were covered by both library prepa-
rations for non-reference:reference genome ratios 1:4, 1:24
and 1:124 (see Supplementary Figure S6 for a more com-
plete set). The Nextera values for the non-variant positions,
shown in grey, are presumably indicative of the MiSeq plat-
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Figure 4. Comparison between Diff-seq and Nextera library preparations for the detection of variation in viral clones. (A–C) The log2 non-reference allele
coverage frequencies for each position of the reference was plotted for the Diff-seq against Nextera library preparations. Non-variant positions, SNPs and
dense SNPs are separately annotated. 1:4 (A), 1:24 (B) and 1:124 (C) rare:frequent molecule ratios are shown. (D) The log2 average of the ratios of the
non-reference allele coverage frequencies Diff-seq/Nextera for the SNPs (positions shown in black or cyan in panels A–C, see Supplementary Figure S6
for all datasets) was plotted against the log2 dilution factor. Two Diff-seq sets of dilution series were employed and the points are colored accordingly.

form error rate. However, the corresponding Diff-seq val-
ues for the non-variant positions are increased. This detec-
tion of non-reference positions could either be the conse-
quence of prior reactions, such as the extension reaction or
due to misligation events, or result from true variant sites
generated during amplification of the starting material. Our
expectation was that the greater the dilution, the more the
variant position cloud should deviate above the diagonal,
as the Diff-seq data should be enriched in variant sites. For
the 1:1 dilution (Supplementary Figure S6), although the
SNP position cloud is located the furthest away from the
error rate cloud, it does not deviate from the diagonal, and
as expected the two methods perform similarly. Increasing
the dilution factor, Diff-seq has an advantage in the detec-
tion of the rare variant (non-reference). The difference in
the detection of rare variants between the two methods is
summarized in Figure 4D, using the data shown in pan-
els 4A–C and Supplementary Figure S6. Coverage frequen-
cies of the rare variants can be 8–100× higher using Diff-

seq compared to Nextera, depending on the dilution fac-
tor, when using only aligned reads and the Diff-seq cover-
age analysis. When the positional information of the Diff-
seq dataset was not used and instead coverage derived from
the whole read was considered, the rare variant frequencies
were 4–14× higher for the Diff-seq data. Considering that
the aligned reads were 25–60% of the total reads for the
Diff-seq libraries, the number of reads ranged from being
equal to and up to 8.5 times less than the Nextera library
requirement.

We also compared the costs of the Diff-seq and Nextera
library preparation. The cost per Nextera library has been
estimated by Baym et al. (33) to be $8 per sample, excluding
the sequencing reagents themselves. The cost for the Diff-
seq per library was estimated to be $67 per sample, also ex-
cluding sequencing reagents, but including the two qPCR
quality control runs and assuming that 10 samples were
being processed simultaneously. However, the increased li-
brary costs are somewhat offset by the potential decreased
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costs associated with the sequencing reagents themselves.
As noted in the previous paragraph, that decrease will de-
pend on the frequency of the variants, and may be up to 8.5
times less than the Nextera library requirements.

DISCUSSION

Here we describe Diff-seq, a new method for the detection
of genetic variation within a population of DNA molecules.
Diff-seq aims to outperform conventional high-throughput
sequencing for SNP detection, though detection depends on
both the identity of the contributing alleles and the context
within which the variation arises. The method performed
better with decreasing SNP density, while densely-spaced
SNPs were not readily detected. The genomes we used did
not contain indels, so the method was not tested for indel
detection. It has been suggested that Surveyor endonucle-
ase is less sensitive towards the detection of indels (37), so it
would not be surprising if Diff-seq does not perform as well
in that context.

One advantage of Diff-seq, compared to other ap-
proaches for polymorphism discovery, is that it is less sensi-
tive to sequencing errors. Sequencing capacity in Diff-seq
is targeted towards the mismatch endonuclease digestion
sites, and polymorphic sites will appear in the first few nu-
cleotides of the sequencing read, significantly limiting the
sources of sequencing errors. Because of this fundamen-
tal advantage, we anticipate that further assay optimiza-
tion will increase sensitivity of rare variation detection to
extremely low frequencies.

We anticipate that polymorphism detection sensitivity
may be improved through the use of an optimized rean-
nealing protocol. Use of alternative endonucleases, such as
T7E1 that perform better at indel positions (38), could ex-
pand the applicability of Diff-seq. Further optimization of
other aspects of the method will likely also enhance its util-
ity and ease of use. Currently the protocol requires eight en-
zymatic steps and a similar number of intermediate purifi-
cation steps. Similarly to other methods, such as chromatin
immunoprecipitation sequencing (ChIP-seq), each step is
an opportunity for experimental variability and substrate
loss. Decreasing or combining steps will certainly improve
the efficiency of the protocol, and may also improve sig-
nal to background metrics. A stringent library size selection
procedure prior to sequencing might also increase the frac-
tion of usable reads and decrease the number of uninfor-
mative reads. Furthermore, the type IIS restriction enzyme
currently used, AcuI, cuts only 16 bases away from its recog-
nition site. For small genomes, such as the viral genomes
used here, this small read size does not greatly affect mappa-
bility, however for larger genomes, unique mappability be-
comes problematic (39); a possible solution may be the use
of combined sequence information from the forward and
reverse reads that are adjacent to a specific polymorphism.
MmeI and EcoP15I, which are type III restriction enzymes,
have restriction sites further than 16 bases from their recog-
nition site, yet also require two recognition sites in opposite
orientation for efficient digestion, making them impractical
for use in the Diff-seq protocol. To overcome this limita-
tion, the type IIS restriction digestion might be eliminated
altogether. However, in order to ligate the second sequenc-

ing adaptor, the end of the fragment would need to be ren-
dered reactive, for example either by exonucleolytic cleavage
of the dideoxynucleotide or by using a reversible termina-
tor. Such an approach could, however, lead to the genera-
tion of highly variable DNA fragment lengths, which have
strongly differential amplification and clustering efficiency
on the Illumina flow cell. This variability might be partially
alleviated by employing different sets of enzymes for restric-
tion digestion for the generation of the initial fragments pre-
reannealing.

As it currently stands, the Diff-seq library preparation is
∼8 times more expensive than the Nextera library prepa-
ration, because large amounts of multiple enzymes are
needed, and there are multiple clean up steps. Finally, the
quality control for Diff-seq is also a considerable part of the
expense, with a current cost of $30 per qPCR run, which
adds ∼$6 to the cost of a library. Future improvements
should be targeted at increasing efficiency and decreasing
these costs.

Diff-seq may be suitable for a variety of applications,
from genotyping to estimating DNA polymerase error rates.
In principle, any method applied to an already known
genome can employ Diff-seq immediately prior to sequenc-
ing, to target sequencing capacity towards polymorphic
sites, and in this way increase reads covering low frequency
alleles. We note however that a potential limitation of the
method is that it relies on the generation of mismatches for
the detection of variation. Thus, Diff-seq using a diploid
genome as the input DNA would only expected to detect
heterozygous alleles, and would not identify homozygous
or hemizygous variants. This limitation might be overcome
by adding a known consensus sequence or reference genome
to the sample.

Diff-seq application to more complex genomes will re-
quire robust DNA reannealing methods, such as oscillating
phenol emulsion reassociation technique (osPERT) (40).
Repetitive sequences reanneal more rapidly due to their
higher relative abundance, and thus polymorphisms within
these regions may be especially amenable to detection us-
ing Diff-seq. Alternatively, because of the kinetic separa-
tion of annealing times for repetitive regions, such regions
can be removed (e.g. by retention on a hydroxyapatite col-
umn) (41). Additional annealing dynamics likely arise due
to genome complexity, but how these will affect the out-
come of Diff-seq is difficult to predict and account for at
this stage.

Potential application of Diff-seq to more complex
genomes opens several exciting possibilities. For example,
carrying out Diff-seq during exome capture may provide
improved coverage of relevant polymorphic regions, po-
tentially decreasing the sequencing resources required for
comparable amounts of information. Furthermore, vari-
ant discovery in circulating tumor cells has been demon-
strated through arduous enrichment approaches coupled
with massive sequencing efforts involving multiple indepen-
dent library preparations to distinguish SNPs from errors
introduced during amplification and sequencing (42). Ap-
proaches for detecting somatic mutations associated with
cancer from cell-free DNA likewise involve extremely deep,
molecularly tagged sequencing. Diff-seq, coupled with sig-
nificant improvements in efficiency, has the potential to sub-
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stantially reduce the required sequencing capacity of these
workflows by moving the mismatch detection ‘up front’ and
focusing sequencing capacity on polymorphic regions.

DATA AVAILABILITY

The custom written software used for data analysis is avail-
able at https://github.com/Sherlock-Lab/Diff-seq, https://
zenodo.org/badge/latestdoi/101428770.

The datasets generated and analyzed during the current
study are available in the Sequencing Read Archive, un-
der study accession SRP116147 (https://submit.ncbi.nlm.
nih.gov/subs/sra/). Samples description can be found un-
der bioproject accession number PRJNA397463. PCR se-
quences of population samples can be found under acces-
sion numbers GQ212684 and GQ212685 for sample with
PID 30269 and GQ206339 and GQ206337 for sample with
PID 5248 (8).
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