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Abstract

Metabolomics is maturing as an experimental approach in nutrition science, and it is a useful 

analysis for revealing systems biology outcomes associated with changes in diet. A major goal of 

this review is to present the rapidly evolving body of scientific literature that seeks to reveal 

connections between an individual’s metabolic profile and experimentally manipulated or 

naturally varied dietary intakes. Metabolite profiles in tissue, serum, urine, or stool reflect changes 

in metabolic pathways that respond to dietary intervention which makes them accessible samples 

for revealing metabolic effects of diet. Three broadly defined areas of investigation related to 

dietary-metabolomic strategies include: (1) describing the metabolite variation within and between 

dietary exposures or interventions; (2) characterizing the metabolic response to dietary 

interventions with respect to time; and (3) assessing individual variation in baseline nutritional 

health and/or disease status. An overview of metabolites that were responsive to dietary 

interventions as reported from original research in human or animal studies is provided and 

illustrates the breadth of metabolites affected by dietary intervention. Advantages and drawbacks 

for assessing metabolic changes are discussed in relation to types of metabolite analysis platforms. 

A combination of targeted and non-targeted global profiling studies as a component of future 

dietary intervention trials will increase our understanding of nutrition in a systems context.
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INTRODUCTION

Nutritional metabolomics has emerged as a high-throughput and sensitive approach to 

identify and characterize biochemical pathways that underlie complex relationships between 

dietary exposures and chronic diseases with altered metabolic phenotypes [1–3]. The ability 

to identify novel correlations between dietary patterns and health, or between consumption 

of specific foods and disease-related outcomes has presented challenges due to individual 

variability in complex metabolic pathways and digestion, as well as novel metabolite 

identification [4, 5]. Food-omics refers to the metabolite profiling of foods prior to 

consumption [6, 7], while nutritional metabolomics has emerged with two major goals: (1) 

to determine the effects of dietary compounds on host metabolism after consumption for a 

defined period of time, and (2) to identify dietary intake or phytochemical dose-dependent 

associated metabolite biomarkers.

The number of nutritional metabolomics studies has substantially increased in the last 

decade, as evidenced by the number of original research articles cited in Pubmed Central 

with the terms ‘metabolome’ and ‘diet’ (Fig. 1). The solid line illustrates the number of 

reports from human studies, the dashed line represents papers reporting metabolite data 

across animal models (e. g. rodents, pigs, dogs etc.), and the dotted line shows review 

articles published in this field. Fig. (1) demonstrates an increasing trend in nutritional 

metabolomics investigations and future studies will benefit from a critical synthesis of this 

data prior to conducting new experiments. For example, dietary exposure studies are 

designed to improve our understanding of disease-fighting and health-promoting properties 

of medical foods, phytochemicals, food ingredients, food-associated toxicants, and dietary 

patterns. The results of such studies can guide future dietary intervention studies that seek to 

examine mechanistic relationships between metabolic changes and healthy organs or 

diseased tissues. Unfortunately, the nutritional research community lacks a synthesis of 

original nutritional metabolome data across trial designs, species, biological samples and 

analytical platforms. Previous review articles have largely emphasized the opportunities, 

limitations and importance of diet-metabolome research. In this review, we summarize 

nutritional metabolome data from the literature. As further discussed below, the literature 

reveals a breadth of metabolites influenced in dietary intervention studies. Thus, a renewed 

focus for nutritional metabolome investigations should include both targeted (biased to a 

select group of metabolites) and non-targeted (analysis of all detectable metabolites) studies. 

We discuss the application of metabolomics to nutritional investigations with a focus on 

experimental design and biological interpretation unique to food components, including the 

influence of the gut microbiome.

OVERVIEW OF NUTRITIONAL METABOLOMICS LITERATURE

A review of the literature was performed for nutritional metabolomics studies targeted 

toward metabolites detected in urine, blood, and stool (Tables 1–3, respectively). Diet 

responsive metabolites included nucleotides, sterols, lipids, carbohydrates, and amino acids. 

This collection of metabolites was derived from animal and human studies, which spanned a 

variety of dietary exposures and represented both acute and long-term changes. Bolded 
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metabolites in all three tables indicate those metabolites that were classified as ‘diet 

modifiable’ in three or more distinct, independent studies.

All of the metabolites reported in the tables were overlaid onto the Meta Cyc human 

metabolism pathway map (Fig. 2). This metabolic mapping overview visualizes the extent of 

metabolism that is influenced by the diet, suggesting that narrowing analytical focus to a 

short list of target metabolites could prevent detection of important, sensitive, and subtle 

metabolic reactions that lie outside the scope of the targeted list.

EXPERIMENTAL DESIGN IN NUTRITIONAL METABOLOMICS

While some may have portrayed omics experiments as descriptive, ‘fishing expeditions’, a 

proper experimental design allows for both hypothesis-driven research, as well as generating 

new hypotheses. Experimental design is particularly essential for nutritional metabolomics 

research given the thousands of monitored metabolites and the biological variation inherent 

to clinical studies [8]. As an example, Xu et al. recently reported the results of a study using 
1H NMR spectroscopy to assess the effects of diet (lactovegetarian or omnivorous) and 

gender (male or female) on the urinary metabolome [9]. It was found that the most 

influential low molecular weight metabolites responsible for the differences between the diet 

groups were N-acetyl glycoprotein (NAG), succinate, citrate, trimethylamine-N-oxide 

(TMAO), taurine, glycine, hippurate, phenylalanine, methylhistidine and formate. The study 

was sufficiently powered and enabled the distinction between diet and gender effects on the 

metabolome. Often, however, metabolite studies are underpowered. In such a case, while 

metabolite variation would have been noted, the data would not have been able to support 

the influence of diet and gender found in the study [9]. Below, we discuss important 

considerations in experimental design for nutritional metabolomics studies including study 

size, study controls, time-points, sample matrix, individual metabolite variation, and the 

influence of the gut microbiome.

Study Size

The minimum number of biological replicates for statistically significant evaluation of a 

metabolomic dataset is determined based on pilot data and/or previously reported variation. 

Typically, the number of replicates required for a given statistical power should be estimated 

based on the variance and magnitude of the hypothesized response variable. In the 

metabolomics setting, the parameters (fold-change and variance) are dependent on both the 

metabolite and instrument platform. Thus, the number of replications is generally driven by 

study limitations such as subject availability and experimental costs, though increased 

numbers of biological replication will always provide higher confidence and statistical 

power. Biological replication should not be confused with analytical replication, in which a 

given extract of a sample is measured several times on the same instrument. Analytical 

replication is performed to address variation induced by the metabolite detection platform, 

and involves the collection of duplicate or triplicate data for each biological sample. 

Biological replication requires sampling from several subjects (recommended absolute 

minimum n=5 replicates), followed by independent metabolite extraction and data 

acquisition of those samples. These two sources of variation are independent, and analytical 
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(instrumental or measurement) variation is typically considerably smaller than biological 

variation [10].

Study Controls

The scientific discovery of meaningful and reproducible metabolome changes in response to 

dietary interventions requires consistent, detectable metabolite levels, and also a clear 

understanding of variation in a baseline metabolite profile. Statistical analyses can articulate 

a change in a single metabolite over a personal baseline, which may be unique for each 

individual. The identification of statistically significant changes in a dietary treatment group 

relative to a control group can be more complex [11, 12].

Dietary intervention studies can be inherently difficult to control when compared to drug 

treatment trials because there is not a true placebo. Nutrients and phytochemicals have been 

shown to have less functional relevance when isolated for use as single agents, and rather 

exist as a complex network of essential and nonessential components [13]. In lieu of a true 

placebo, control groups are commonly comprised of non-intervention participants that 

follow existing dietary recommendations and guidelines. A recent example comes from a 

parallel intervention trial with 5 dietary intervention groups where study participants were 

randomly assigned to a 6-month low-fat diet that differed by various combinations of low/

high glycemic index and low/high protein [14]. The control group did not follow any 

specific glycemic index recommendations. The goal of this trial was to evaluate the impact 

of dietary protein and glycemic index on weight (re) gain in a large number of families that 

suffer from obesity or overweight [15], yet the control participant metabolite profiles were 

excluded from the metabolomic investigation due to variation in glycemic load of the diet 

[14]. Thus, the design of this study exemplifies the problem of introducing bias when 

estimating the intervention’s true “metabolite effect” because the natural “non-intervention” 

metabolomic variation was not characterized. Although the study revealed that urinary 

hippurate was associated with dietary fiber intake at a group level in this population, we also 

know that this urine metabolite may be changed to some extent in a control population as a 

microbial byproduct and result of flavonoid metabolism (Table 1) [16].

Time-points

For nutritional studies, metabolite variation is assessed at multiple timepoints to consider the 

time-dependent nature of responses to a nutritional intervention. While the dynamics of the 

response are the most obvious motivation for monitoring several timepoints, additional 

sampling provides an opportunity to visualize trends and increase confidence in the results, 

particularly when the effect observed may be subtle. Furthermore, the results are more 

robust when proper study participant controls are included at each time point [17, 18]. 

Terminology regarding study duration is an essential distinction for reporting diet-affected 

metabolites, and is referred to herein as a short-term (acute, transient response) or a long-

term response (chronic metabolic phenotype). Examples of short-term experimental designs 

have consisted of metabolite assessments after a few hours to 28 days [19, 20]. Long-term 

trial designs include samples collected for analysis after one month to years post-

intervention [21, 22]. These long-term trials represent metabolite assessments that 

incorporate the complex interactions between diet-derived phytochemicals and nutrients, 
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hormone flux, gut microbiota and temporal and spatial metabolite variations [23]. Limited 

evidence exists for assessing multiple timepoints in the same trial, restricting the ability to 

perform comparisons that allow classification of metabolites as either short-term or long-

term responders [24, 25].

Sample Matrix

Blood plasma, serum, urine, stool, saliva, muscle, and liver metabolomes may all reflect 

different aspects of dietary intakes and responses [17, 26–29]. Thus, the rationale for 

selecting a particular biofluid to extract for analysis will be essential for biological 

interpretation of the observed metabolome. For example, if the goal of the study is to 

examine bioavailability, serum is traditionally assessed given the transmission of metabolites 

from food to gut to liver to blood. However, urine and/or stool may be more appropriate to 

evaluate degradation or detoxification pathways. Furthermore, as discussed in more detail 

below, the fecal metabolome might offer otherwise elusive insight into the response of the 

microbiome to nutritional interventions [19, 29–34].

The benefit of including multiple biofluids is illustrated in a recent study that showed that 

cluster analysis of blood and urine identified 3 distinct dietary patterns on the basis of the 

energy contribution assessment of different food groups in 160 individuals [35]. The 

combination of three-day diet records, plasma fatty acid profiles and 1H NMR spectra of 

urine metabolites were used to evaluate associations with the intake of specific food groups. 

Specifically, there were fatty acid profiles across percentiles of red-meat intake that showed 

significant differences in plasma oleic acid concentrations, and increased urinary O-

acetylcarnitine content in the red-meat diet group. Oleic acid has been typically associated 

with olive oil intake, yet showed a stronger relationship as the primary monounsaturated 

fatty acid in beef [36]. The vegetarian cluster group showed increased urinary glycine and 

phenylacetyl glutamine [35]. Thus the analysis of both plasma and urine allowed for more 

comprehensive and robust diet-metabolite relationships.

Individual Variation

Metabolomics studies in mammals have advanced our understanding of inter- and intra-

individual metabolite variation [37–39]. Nutritional metabolomics study design is further 

complicated by the diverse and dynamic biochemical makeup of cells and tissues, and 

because the metabolite profile is only a snapshot of metabolism at a given time [11]. 

Metabolite fluctuations occur due to many factors, including but not limited to, diet history 

and environmental exposures, presence and severity of infections or chronic diseases, and 

genetics [39]. The integrated nature of these factors contributes to individual metabolite 

variation that is inherently difficult to control for.

Crossover studies (e. g. run-in diets prior to an intervention [40] or wash-out periods [41]) 

are common trial design strategies to reduce baseline variation in study participants prior to 

beginning a dietary intervention; though the optimal amount of time for the normalization 

period is not well understood. A run-in diet may initiate a short-term, transient metabolic 

response and confound the biological mechanisms under investigation. Furthermore, the 

variation by which individuals are uniquely affected by a run-in diet is not well understood. 
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These study parameters merit methodical, focused research to better characterize 

fluctuations in metabolic status during different life stages [40].

Influence of Gut Microbiome

Gut and serum metabolism is also affected by variation in gut microbiome composition [42]. 

The gut microbiome and its relation to the diet are important to evaluate in dietary 

intervention trials with metabolomic endpoints. A recent comparison between germ-free 

mice colonized by human baby flora and conventional mice demonstrated the complexity of 

diet modifiable microbiome/metabolome covariation. In this study, the effect of the intestinal 

microbiome on plasma metabolites revealed that more than 10% of the plasma metabolome 

is directly dependent upon the microbiome [43]. Some examples for microbial dependent 

compounds in plasma include phenylalanine metabolism (e. g. cinammic acid), glycine 

conjugated compounds that can lead to the formation of hippuric acid (Table 2), and other 

plasma metabolites derived from gut anaerobes (e. g. phenyl-propionylgylcine). The gut 

microbiome also directly affects the host’s ability to metabolize lipids, carbohydrates and 

proteins, and can carry out a number of phase II detoxification mechanisms [43]. 

Additionally, there is evidence that gut microbes metabolize nonnutritive phytochemicals 

[44, 45]. For example, Wang et al. recently showed that levels of three microbiome-

dependent diet-derived metabolites, choline, trimethylamine N-oxide, and betaine, could 

predict risk for cardiovascular disease in mice [23].

Long term diet patterns and geographical location also correlate with unique gut 

microbiomes [46–48], supporting an association between gut microbial function and the 

nutritionally modulated metabolome [49, 50]. Stool is a relevant biological sample for 

microbial metabolic assessment (Table 3), whereby coprastanol, the microbial derived 

metabolite of cholesterol, was decreased in excreted stool during an 8 week study observing 

cholesterol metabolism in humans when calcium phosphate was supplemented [51]. Using 

NMR, significant amounts of amino acids and fatty acids were also detected in fecal water 

from people consuming a vegetarian diet [29]. However, an important limitation of fecal 

analysis is the inability to detect metabolites that have increased intestinal bioavailability, 

and thus are actually absorbed by the host colonic epithelium. New analytical methods are 

under development for the quantitative analysis of tissue microbial metabolites and this 

represents an emerging, integral part of global metabolomics platforms [52], and was 

recently reviewed in [53].

TECHNICAL CONSIDERATIONS IN NUTRITIONAL METABOLOMICS

In general, there are two approaches to a metabolomics experiment: targeted or non-targeted. 

A targeted approach involves the directed analysis of a pre-determined panel of metabolites 

relevant to the hypothesis of the study. The advantage of this type of approach is that it can 

be optimized for the detection of specific molecules, which enables increased sensitivity and 

absolute quantitation. It is limiting in scope, however, in that it requires a priori knowledge 

of the metabolites of interest. Alternatively, a non-targeted approach is performed in a broad 

and unbiased manner to enable the detection of many metabolites. The results of a non-

targeted approach tend to be hypothesis-generating and drive the next set of experiments to 
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validate the findings. The advantage of a non-targeted approach is the potential for novel 

discoveries. However, a substantial disadvantage of this approach is the challenge of 

metabolite annotation [54]. It is possible to combine a targeted and non-targeted 

experimental design to enable unbiased profiling while simultaneously monitoring a set of 

known metabolites within the data.

Ultimately, the choice of experimental design will depend on the goal of the study, such that 

metabolite profiling data can be hypothesis generating with a non-targeted approach and 

may enable the identification of novel metabolic pathways in response to a dietary change. 

However, if the goal is to assess a specific metabolic pathway or set of molecules with 

known mechanisms of action, than a targeted metabolite profiling approach could more 

appropriate as it can be optimized for selectivity and sensitivity for these targets.

Sample Preparation

The preparation methods may vary based on sample type, target metabolites, and analytical 

platform. While the stated goal of metabolomics is to profile the entire metabolome, this is 

technically impossible using a single analytical platform or sample extraction procedure. As 

a result, having a list of metabolites of interest is important when designing an appropriate 

sample extraction method. The sample extraction method should provide reproducible 

recovery of target compounds for profiling purposes, and additionally provide complete 

recovery for absolute quantitation. Sample integrity (frozen until extraction) and sample 

homogeneity (to ensure a representative subsample and efficient extraction) are critical 

factors to consider. Specifically, a method that incorporates solvents capable of solubilizing 

the target compounds is generally accomplished through adjustment of the solvent polarity, 

ranging from highly polar (water, often pH adjusted or buffered), through moderate polarity 

(water-methanol mixtures) to non-polar solvents such as chloroform-methanol mixtures 

designed for lipid extraction. When the goal is a broad, global profile, selecting a solvent of 

moderate polarity will provide a representative sample compatible with multiple instrument 

platforms. The limitation is that the method is not optimized for any metabolite, limiting the 

quantitative accuracy (when quantitation is desirable). It is advised to reference the literature 

and replicate methods used in previous studies when the optimal extraction methodology is 

unclear.

Analytical Platform

Nutritional metabolomics has been performed using either mass spectrometry (MS) or 

nuclear magnetic resonance spectroscopy (NMR). Mass spectrometry generally excels in 

sensitivity and breadth of coverage, while NMR offers more readily interpreted structural 

information. The largest portion of metabolomics experiments utilizes mass spectrometry 

coupled to a chromatography system. The chromatographic platforms most frequently used 

are liquid chromatography (LC), gas chromatography (GC), or capillary electrophoresis 

(CE), with LC being the most frequently used and CE the least. Each separation method has 

both advantages and limitations. The ability to couple chromatography to MS is the most 

significant reason MS is used more frequently than NMR for metabolomics experiments. 

GC-MS is typically used to monitor small polar metabolites, such as monosaccharides, 

amino acids, organic acids, nucleosides, and also routinely detects more non-polar 
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compounds such as fatty acids and sterols. Its major limitation is the requirement for 

volatility, which is achieved through chemical derivatization of small molecule extract. 

Extensive mass spectral libraries aid in the identification of compounds detected. The 

various LC-MS platforms eliminate the need for derivatization and are not limited to small 

molecules, as volatility is not a limiting criterion for detection. Mass spectral libraries for 

LC-MSMS are also developing rapidly, though the growth curve lags behind that for GC-MS 

spectra. NMR offers the advantage of simple sample prep and data collection, as well as 

being a useful tool for structure identification. Its major limitation is the lack of 

chromatographic separation: sample complexity is more limiting with NMR than 

chromatographically coupled MS systems. The lists of metabolites identified from 

nutritional metabolomics studies are provided according to the biological sample detected 

and alongside the actual platform utilized (Tables 1–3).

Metabolic

Flux—The flux of metabolites through metabolic pathways can be measured with the use of 

stable isotopes. Isotope-based metabolic flux analysis has traditionally provided 

fundamental knowledge on cooperating actions in a complex network of genes, transcripts, 

proteins, and metabolites. A detailed description of studies that use isotope labeling to 

inform metabolic flux from dietary exposures is beyond the scope of this review, yet 

metabolomics analysis of samples collected from these trials may provide invaluable and 

innovative advances to the field of nutritional, non-targeted metabolomics and may provide 

unique mechanistic insights [56].

EXAMPLE NUTRITIONAL METABOLOMICS DATASET

To illustrate the challenges associated with time-point effects on metabolites, a pilot dataset 

from an ongoing dietary intervention trial (conducted under approved protocols from the 

Colorado State University Research Integrity and Compliance Review Office and University 

of Colorado Health Institutional Review Boards) is shown in (Fig. 3). In this case, a single 

individual’s data revealed dramatic changes in the global metabolite profile after 2 and 4 

weeks of substantially increased navy bean intake. Fecal metabolites were extracted using an 

aqueous-methanol solvent (n = 3 replicates per timepoint), and a non-targeted GC-MS 

profiling technique was applied as previously described [57]. Fecal metabolite profiles were 

assessed by principal component analysis (PCA), and the model explained 81% of the 

variation (Fig. 3A). The PC scores indicated fecal metabolite profiles changed due to the 

dietary intervention. PC1 explained variation observed at the 2-week time-point, as baseline 

and 4-week samples had similar x-axis coordinates (approximately −200 units). The 2-week 

time-point can be interpreted to represent a transient effect, whereby some of the metabolites 

that increased or decreased at 2-weeks did not differ between baseline and 4-week samples. 

This transient effect explained most of the variation in the model (49% out of 81% 

visualized on this plot). Conversely, PC2 explained variation associated with a steady change 

in metabolite content over time, as the baseline, 2-week, and 4-week clusters were 

equidistant across the y-axis. Four metabolites associated with PC1 and PC2, are shown as 

examples of transient and response phase effects associated with each component (Fig. 3B). 

Z-scores (a test statistic indicating the number of standard deviations a sample group 
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differed from baseline) for glutamate and cholate indicate the metabolite content changed 

after 2-weeks, and then reverted closer to base line at 4-weeks. On the other hand, glucose 

and coprostanol steadily changed compared to baseline over the course of the 4-week diet. 

Note that all metabolites varied at 2-weeks, but the different trends over time may infer 

distinct types of metabolite-responses. In the case of glucose and coprostanol (the latter a 

strictly gut microbe associated metabolite), the changes would eventually reach a new steady 

state level, whereas the glutamate/cholate-like trend is not in a consistent direction. The 

temporal response in this dietary intervention can be divided into three stages:

1. Baseline phase: The baseline metabolite profile is intended to be an accurate 

representation of the biochemical makeup of a given biological sample prior to 

intervention.

2. Transient phase: The transient metabolite profile consists of small molecules 

that may differ via natural variation among foods in the regular diet. The 

transient effect may be distinct across diet studies and among individuals. This is 

commonly referred to as an acclimation or adjustment period to a new food or 

dietary supplement.

3. Response phase: The metabolite profile response phase represents small 

molecules that change with a trend that is distinct from baseline and control 

samples. Response metabolites vary due to the consistent intake of new dietary 

components. This phase can also be considered a new steady-state level 

following a dietary intervention.

Fig. (4). shows that the baseline, transient, and response phases are reflected in the PCA. 

Individual metabolite identifications allow for determination of affected metabolic 

pathways-networks following a dietary intervention. Investigations into specific biochemical 

pathways may be difficult to interpret when there is large variation in baseline metabolite 

profiles of one experimental group. Thus, for pathway-focused analyses derived from omic-

level data, a common first step is to combine multivariate and univariate statistical tests to 

determine metabolites that vary. One can perform ANOVA on principal components to 

identify components that vary according to the response phase, and subsequently select 

metabolites that contribute to the response variation by conducting outlier-like tests for each 

principal component’s loadings. Biased multivariate methods such as partial least squares-

discriminant analysis can achieve similar results, but may fail to describe trends in the 

transient phase if the analysis is initially biased towards the response phase. In (Fig. 3B), one 

may focus interpretation around the biochemical relationship between coprostanol and 

glucose, which both exhibited significant loadings for the PC2 described in (Fig. 3A). Thus, 

this example dataset illustrates that multivariate statistics can be used to identify sets of 

metabolites that vary according to baseline, transient, or response phases and that trends for 

each set of metabolites can be independently assessed in the context of biochemical 

pathways.

SUMMARY

Nutritional metabolomics investigations have utilized both targeted and non-targeted 

experimental approaches in a variety of non-invasively collected biological samples. 
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Additional studies are needed to gain a better understanding of dietary-associated changes in 

small molecules detected in organs and tissues. This review focused on evaluation and 

detection of short and long-term diet responsive metabolites reported in the literature from 

blood, urine, and stool, as well as specific experimental considerations in the design of 

nutritional metabolomics studies.

Advances in our knowledge of the host metabolome response across dietary exposure or 

intervention trials alongside careful consideration of experimental design have provided 

compelling data for future dietary-focused studies. Given the emerging role and evidence 

that gut microbiota influences host metabolism, cross-omic or trans-omics data integration 

will be instrumental for over all results interpretation [50, 58].

The full potential of metabolomics to the nutritional science, dietetics, and public health 

nutrition community has become better realized over the past few years, and will continue to 

advance by the availability of digital repositories of raw and/or annotated data sets useful for 

mechanistic and metabolic pathway analysis and inform the field of nutrition on diet-

modifiable metabolic networks.
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Fig. 1. Number of publications on “metabolomics and diet”* cited in PubMed Central (n= 123)
The following search criteria was used in PubMed Central: ‘metabolome AND diet’ and 

‘fecal metabolites AND diet’. Review articles also included summaries from conferences 

and opinion articles.
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Fig. 2. 
The metabolites listed in the tables were overlaid onto the core metabolic map offered at 

Meta Cyc for Homo sapiens. Red points represent diet-responsive metabolites in serum, blue 

points in urine, and orange points in fecal samples. Green points represent metabolites that 

were found to be diet-responsive in two or more biofluids. Particularly rich coverage is 

provided in amino acid metabolism (red box) and catabolism (blue box).
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Fig. 3. 
A pilot example of fecal metabolite profiling results from a healthy adult that participated in 

a dietary navy bean intervention trial for 28 days. (A) Principal component analysis scores 

plot for three timepoints: baseline, 2-weeks, and 4-weeks. (B) Selected metabolites that 

change in a transient or steady pattern at each timepoint examined.
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Fig. 4. 
Model for interpretation of three distinct effect phases that may occur during a dietary 

intervention study, and that can be observed via metabolomic profiling.
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Table 1

Dietary Modulation of the Urine Metabolome

Sample Metabolites Identified by Platform

GC-MS LC-MS NMR Other*

Urine Hippurate Trimethylamine-N-oxide Proline Niacin

4-hydroxphenylacetic acid Phenylalanine Betaine Proline

Tartrate Histidine 4- hydroxyhippurate Betaine

Ethanol Citrate Fumarate Hesperidin

Mannitol Acetaminophen Lactate Narirutin

3-methyl-oxovalerate Acetate Glucose

Nitrogen Choline Glycine

Creatinine Phenylacetylglutamine Methylamine

Succinate Taurine Phenylacetylglycine

Putrescine Methionine Formate

Threonine Urocanate Branched Chain Amino Acids

3-hydroxyisovalerate Sucrose P-cresolsulfate

Arginine Cis-aconitate Trigonelline

Acetone Methylhistidine Theobromine

N (1) -methyl-2-pyridone-5-carboxylamide 
(PYR)

Dimethylsulfone Caffeine

Tyrosine Prolinebetaine

Ascorbate derivatives Hydroxynicotnic acid Hesperidin

4-cresylsulfate Urolithin B glucuronide Narirutin

S-methyl-l-cysteine sulfoxide Urolithin A β-aminoisobutyrate

Urolithin B Oxodecanoic acid

2-oxoglutarate Acylcarnitines

Fumarate Creatinine

Hippurate Trimethylamine-N-oxide

Lactate Hippurate

Creatinine Phemylacetylglutamine

Succinate Acetone

References [59, 60] [9, 59, 61, 62] [11, 14, 17, 22, 24, 63–66] [67–69]

*
Other Platforms used in Identifying Metabolites: ICP-OES: Inductively Coupled Plasma Spectroscopy, DAD-MS/MS: Diode Array Detector Mass 

Spectrometry, FIEI-MS: Flow Injection Electrospray-ionisation.
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Table 2

Dietary Modulation of the Blood Metabolome

Sample
Metabolites Identified by Platform

GC-MS LC-MS NMR Other*

Blood Betaine Butyrylcarnitine B-hydroxybutyrate Caffeic Acid

N-dimethylglycine L-tryptophan Lactate Sulphonatemethylepicatechin

Dimethyl sulfone Choline Acetate

Stearic Acid Cysteine Betaine/trimethylamine-N-oxide

Oleic Acid Glycine Glycine betaine

LysoPC 14:0 Methionine β-glucose

LysoPC 18:0 Serine α-glucose

LysoPC 18:1 Urate inosine/adenosine and nucleotides

LysoPC 18:2 Phenylalanine Campesterol

LysoPC 20:2 Alanine DHA

L-Carnitine Histidine Cholestenol

L-Valine Branched-chain amino acids Sphingosine moiety

D-Pipecolic acid Isobutyrate Nervonic acid

L-Tyrosine Palmitic acid Erythrosphingosine

L-Leucine EPA Threosphingosine

Propionylcarnitine Cholic acid 3-O-methylsphingosine

SIRT1 Saccharic acid 5-O-methylsphingosine

11-dehydro thromboxane 
B (2)

Sucrose N-methylalanine

3-hydroxybutanoic acid γ-linoleic acid palmitoleic acid

Sulfoglycolithocholic acid Phenylacetylglutamine 3-hydroxy-3-methylglutaric acid

Threitol Tryptophan Idonic acid

Hydrocinnamic acid Taurine Lactobionic acid

α-ketoglutaric acid Citric Acid 3-phenyllactic acid

Docosapentaenoic acid L-proline Glycerol-3-galactoside

O-acetylcarnitine α-tocopherol Raffinose

Proline Betasitosterol Actetoacetate

Tyrosine Urolithin A glucuronide Glucose

Carnitine Niacine Creatinine

SIRT1 Biuret Triacylglycerol

Creatine Glycerol

Oleic Acid Ascorbic acid

Hippuric Acid urolithin C (trihydroxydibenzopyranone)

Adenine Acetone

LysoPC

Uric Acid

Creatinine

Leucine
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Sample
Metabolites Identified by Platform

GC-MS LC-MS NMR Other*

Putrescine

References [2, 38, 59, 70–72] [38, 40, 59, 61, 73–76] [11, 20, 21] [1, 67, 71]

*
Other Platforms used in Identifying Metabolites: ICP-OES: Inductively Coupled Plasma Spectroscopy, DAD-MS/MS: Diode Array Detector Mass 

Spectrometry, FIEI-MS: Flow Injection Electrospray-ionisation.
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Table 3

Dietary Modulation of the Fecal Metabolome

Sample Metabolites Identified by Platform

GC-MS LC-MS NMR Other

Stool Galactonic Acid 9-octadecenoic Acid Propanoic Acid Cholic Acid

E. rectale Lithocholic acid Fumaric Acid Deoxycholic Acid

Coprostanol Deoxycholic acid Glycine Lithocholic Acid

Cholestanone β-muricholic acid Homocysteine Hyodeoxycholic Acid

Deoxycholic acid Chenodeoxycholic acid Enterobacteriaceae

Betahyocholic acid Benzaldehyde Cholic acid

Lithocholic acid Urolithin A Cytotoxic Hyodeoxycholic acid

Cholic acid haem metabolite (haem factor) Valerate

Benzoic acid Isovalerate

Acetophenones Isobutyrate

Cholesterol Lactate

Cholestanol Benzene

Coprostanone Acetic Acid

Cholestenone Butonic Acid

Glutamic Acid

Alanine

References [51, 77] [29, 78] [33, 79] [33, 67, 79–81]

*
Other Platforms used in Identifying Metabolites: ICP-OES: Inductively Coupled Plasma Spectroscopy, DAD-MS/MS: Diode Array Detector Mass 

Spectrometry, FIEI-MS: Flow Injection Electrospray-ionisation.
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